Arid
DOI10.1007/s00521-012-1087-y
Artificial neural network-genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran
Aghajanloo, Mohammad-Bagher1; Sabziparvar, Ali-Akbar2; Talaee, P. Hosseinzadeh3
通讯作者Aghajanloo, Mohammad-Bagher
来源期刊NEURAL COMPUTING & APPLICATIONS
ISSN0941-0643
出版年2013
卷号23期号:5页码:1387-1393
英文摘要

This study compares the daily potato crop evapotranspiration (ETC) estimated by artificial neural network (ANN), neural network-genetic algorithm (NNGA) and multivariate nonlinear regression (MNLR) methods. Using a 6-year (2000-2005) daily meteorological data recorded at Tabriz synoptic station and the Penman-Monteith FAO 56 standard approach (PMF-56), the daily ETC was determined during the growing season (April-September). Air temperature, wind speed at 2 m height, net solar radiation, air pressure, relative humidity and crop coefficient for every day of the growing season were selected as the input of ANN models. In this study, the genetic algorithm was applied for optimization of the parameters used in ANN approach. It was found that the optimization of the ANN parameters did not improve the performance of ANN method. The results indicated that MNLR, ANN and NNGA methods were able to predict potato ETC at desirable level of accuracy. However, the MNLR method with highest coefficient of determination (R (2) > 0.96, P value < 0.05) and minimum errors provided superior performance among the other methods.


英文关键词Cold semi-arid climate Penman-Monteith FAO 56 model Neural network-genetic algorithm Nonlinear regression
类型Article
语种英语
国家Iran
收录类别SCI-E
WOS记录号WOS:000325026400020
WOS关键词LIMITED CLIMATIC DATA ; NONLINEAR-REGRESSION ; MODELS ; ENVIRONMENT ; EQUATIONS
WOS类目Computer Science, Artificial Intelligence
WOS研究方向Computer Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/179018
作者单位1.Islamic Azad Univ, Zanjan Branch, Dept Water Engn, Zanjan, Iran;
2.Bu Ali Sina Univ, Fac Agr, Dept Irrigat, Hamadan, Iran;
3.Islamic Azad Univ, Hamedan Branch, Young Researchers Club, Hamadan, Iran
推荐引用方式
GB/T 7714
Aghajanloo, Mohammad-Bagher,Sabziparvar, Ali-Akbar,Talaee, P. Hosseinzadeh. Artificial neural network-genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran[J],2013,23(5):1387-1393.
APA Aghajanloo, Mohammad-Bagher,Sabziparvar, Ali-Akbar,&Talaee, P. Hosseinzadeh.(2013).Artificial neural network-genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran.NEURAL COMPUTING & APPLICATIONS,23(5),1387-1393.
MLA Aghajanloo, Mohammad-Bagher,et al."Artificial neural network-genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran".NEURAL COMPUTING & APPLICATIONS 23.5(2013):1387-1393.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Aghajanloo, Mohammad-Bagher]的文章
[Sabziparvar, Ali-Akbar]的文章
[Talaee, P. Hosseinzadeh]的文章
百度学术
百度学术中相似的文章
[Aghajanloo, Mohammad-Bagher]的文章
[Sabziparvar, Ali-Akbar]的文章
[Talaee, P. Hosseinzadeh]的文章
必应学术
必应学术中相似的文章
[Aghajanloo, Mohammad-Bagher]的文章
[Sabziparvar, Ali-Akbar]的文章
[Talaee, P. Hosseinzadeh]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。