Arid
DOI10.1007/s10651-012-0235-y
Regression-type estimators for adaptive two-stage sequential sampling
Salehi, Mohammad1,2; Panahbehagh, Bardia2; Parvardeh, Afshin3; Smith, David R.4; Lei, Yuancai5
通讯作者Salehi, Mohammad
来源期刊ENVIRONMENTAL AND ECOLOGICAL STATISTICS
ISSN1352-8505
EISSN1573-3009
出版年2013
卷号20期号:4页码:571-590
英文摘要

Adaptive two-stage sequential sampling (ATSSS) design was developed to observe more rare units and gain higher efficiency, in the sense of having a smaller variance estimator, than conventional sampling designs with equal effort for rare and spatially cluster populations. For certain rare populations, incorporating auxiliary variables into a sampling design can further improve the observation of rare units and increase efficiency. In this article, we develop regression-type estimators for ATSSS so that auxiliary variables can be incorporated into the ATSSS design when warranted. Simulation studies on two populations show that the regression-type estimators can significantly increase the efficiency of ATSSS and the detection of more rare units as compared to conventional sampling counterparts. Simulation of sampling of desert shrubs in Inner Mongolia (one of the two populations studied) showed that by incorporating a GIS auxiliary variable into ATSSS with the regression estimators resulted in a gain in efficiency over ATSSS without the auxiliary variable. Further, we found that the use of the GIS auxiliary variable in a conventional two-stage design with a regression estimator did not show a gain in efficiency.


英文关键词Adaptive sampling Freshwater mussels GIS auxiliary variable Optimal coefficient Rare population Tamarix ramosissima
类型Article
语种英语
国家Qatar ; Iran ; USA ; Peoples R China
收录类别SCI-E
WOS记录号WOS:000327086000004
WOS关键词DISTRIBUTION MODELS ; CONSERVATION ; POPULATIONS ; TAMARIX ; MUSSELS ; RIVER ; RARE
WOS类目Environmental Sciences ; Mathematics, Interdisciplinary Applications ; Statistics & Probability
WOS研究方向Environmental Sciences & Ecology ; Mathematics
来源机构United States Geological Survey
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/176856
作者单位1.Qatar Univ, Dept Math Stat & Phys, Doha, Qatar;
2.Isfahan Univ Technol, Dept Math Sci, Esfahan, Iran;
3.Univ Isfahan, Dept Stat, Esfahan, Iran;
4.US Geol Survey, Leetown Sci Ctr, Kearneysville, WV USA;
5.Chinese Acad Forestry, Res Inst Forest Resource Informat Tech, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Salehi, Mohammad,Panahbehagh, Bardia,Parvardeh, Afshin,et al. Regression-type estimators for adaptive two-stage sequential sampling[J]. United States Geological Survey,2013,20(4):571-590.
APA Salehi, Mohammad,Panahbehagh, Bardia,Parvardeh, Afshin,Smith, David R.,&Lei, Yuancai.(2013).Regression-type estimators for adaptive two-stage sequential sampling.ENVIRONMENTAL AND ECOLOGICAL STATISTICS,20(4),571-590.
MLA Salehi, Mohammad,et al."Regression-type estimators for adaptive two-stage sequential sampling".ENVIRONMENTAL AND ECOLOGICAL STATISTICS 20.4(2013):571-590.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Salehi, Mohammad]的文章
[Panahbehagh, Bardia]的文章
[Parvardeh, Afshin]的文章
百度学术
百度学术中相似的文章
[Salehi, Mohammad]的文章
[Panahbehagh, Bardia]的文章
[Parvardeh, Afshin]的文章
必应学术
必应学术中相似的文章
[Salehi, Mohammad]的文章
[Panahbehagh, Bardia]的文章
[Parvardeh, Afshin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。