Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.catena.2012.02.016 |
Algae influence the hydrophysical parameters of a sandy soil | |
Lichner, Lubomir1; Hallett, Paul D.2; Drongova, Zuzana3; Czachor, Henryk4; Kovacik, Lubomir3; Mataix-Solera, Jorge5; Homolak, Marian6 | |
通讯作者 | Lichner, Lubomir |
来源期刊 | CATENA
![]() |
ISSN | 0341-8162 |
出版年 | 2013 |
卷号 | 108页码:58-68 |
英文摘要 | Biological soil crusts have a major effect on water flow in soils. Two study sites, located at a pine-forest glade covered with a biological soil crust, formed the basis of our study. The sand soil at the surface (Glade soil) was compared to a control soil (Pure sand) with limited impact of vegetation or organic matter, occurring at 50 cm depth beneath a glade area. To assess the influence of algae in the biological soil crust on the properties of pure sand, a coccal green alga (Choricystis minor), filamentous green alga (Klebsormidium subtile) and stramenopile alga (Tribonema minus) were isolated from the top layer of glade soil and grown in the lab in Petri dishes on sterile pure sand as monoalgal and bialgal (C. minor and K. subtile) crusts for 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 days. At the end of each growth stage, the hydrophysical parameters of crusted sand were estimated after drying at 50 degrees C for 15 h (equivalent to a 3-day hot spell) and compared to the parameters of pure sand. The hydrophysical parameters were substantially different between the two surfaces. The glade soil had an index of water repellency about 18-times that of pure sand and the persistence of water repellency almost 54-times that of pure sand. Both sorptivity and hydraulic conductivity in the glade soil were about 7% those of the pure sand, respectively. The growth of artificial algal crusts, characterized by an increase in organic carbon content from 0.16% to 0.33%, resulted in an increase in water drop penetration time of the dried crusts up to 14-times that of the pure sand and a decrease in the water sorptivity of the dried crusts up to 10% that of the pure sand. Whereas K. subtile crusts (both monoalgal and bialgal with C. minor) had up to a 9% decrease in hydraulic conductivity compared to pure sand, there was no impact of monoalgal C. minor and T. minus crusts on hydraulic conductivity. K. subtile was possibly limited to surface growth, whereas C. minor and T. minus penetrated to depth. Consequently, K. subtile may have clogged the top pores more effectively than the other two strains. The water repellency cessation time increased with an increase in water drop penetration time for all the dried monoalgal and bialgal crusts used in this study. A greater impact of K. subtile on the shifts in hydraulic behaviour could influence water capture and storage, potentially decreasing evaporation during dry periods, but enhancing overland flow diminishing leaching during wet periods. (c) 2012 Elsevier B.V. All rights reserved. |
英文关键词 | Algae Biological soil crust Soil water repellency Sand dune Sorptivity Hydraulic conductivity |
类型 | Article |
语种 | 英语 |
国家 | Slovakia ; Scotland ; Poland ; Spain |
收录类别 | SCI-E |
WOS记录号 | WOS:000320428500008 |
WOS关键词 | PREFERENTIAL FLOW PATHS ; WATER REPELLENCY ; HYDRAULIC CONDUCTIVITY ; MICROBIAL ACTIVITY ; ORGANIC-MATTER ; FOREST SOILS ; TRACER EXPERIMENT ; PINE FORESTS ; NEGEV DESERT ; LAND-USE |
WOS类目 | Geosciences, Multidisciplinary ; Soil Science ; Water Resources |
WOS研究方向 | Geology ; Agriculture ; Water Resources |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/176340 |
作者单位 | 1.Slovak Acad Sci, Inst Hydrol, SK-83102 Bratislava, Slovakia; 2.James Hutton Inst, Dundee DD2 5DA, Scotland; 3.Comenius Univ, Dept Bot, Fac Nat Sci, SK-81102 Bratislava, Slovakia; 4.Polish Acad Sci, Inst Agrophys, PL-20236 Lublin, Poland; 5.Univ Miguel Hernandez, Dept Agroquim & Medio Ambiente, GEA Grp Edafol Ambiental, E-03202 Alicante, Spain; 6.Tech Univ Zvolen, Dept Nat Environm, SK-96053 Zvolen, Slovakia |
推荐引用方式 GB/T 7714 | Lichner, Lubomir,Hallett, Paul D.,Drongova, Zuzana,et al. Algae influence the hydrophysical parameters of a sandy soil[J],2013,108:58-68. |
APA | Lichner, Lubomir.,Hallett, Paul D..,Drongova, Zuzana.,Czachor, Henryk.,Kovacik, Lubomir.,...&Homolak, Marian.(2013).Algae influence the hydrophysical parameters of a sandy soil.CATENA,108,58-68. |
MLA | Lichner, Lubomir,et al."Algae influence the hydrophysical parameters of a sandy soil".CATENA 108(2013):58-68. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。