Arid
DOI10.5194/amt-6-2301-2013
A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements
Saponaro, G.1; Kolmonen, P.1; Karhunen, J.3; Tamminen, J.2; de Leeuw, G.1,4
通讯作者Saponaro, G.
来源期刊ATMOSPHERIC MEASUREMENT TECHNIQUES
ISSN1867-1381
EISSN1867-8548
出版年2013
卷号6期号:9页码:2301-2309
英文摘要

The discrimination of cloudy from cloud-free pixels is required in almost any estimate of a parameter retrieved from satellite data in the ultraviolet (UV), visible (VIS) or infrared (IR) parts of the electromagnetic spectrum. In this paper we report on the development of a neural network (NN) algorithm to estimate cloud fractions using radiances measured at the top of the atmosphere with the NASA-Aura Ozone Monitoring Instrument (OMI). We present and discuss the results obtained from the application of two different types of neural networks, i.e., extreme learning machine (ELM) and back propagation (BP). The NNs were trained with an OMI data sets existing of six orbits, tested with three other orbits and validated with another two orbits. The results were evaluated by comparison with cloud fractions available from the MODerate Resolution Imaging Spectrometer (MODIS) flying on Aqua in the same constellation as OMI, i.e., with minimal time difference between the OMI and MODIS observations. The results from the ELM and BP NNs are compared. They both deliver cloud fraction estimates in a fast and automated way, and they both performs generally well in the validation. However, over highly reflective surfaces, such as desert, or in the presence of dust layers in the atmosphere, the cloud fractions are not well predicted by the neural network. Over ocean the two NNs work equally well, but over land ELM performs better.


类型Article
语种英语
国家Finland
收录类别SCI-E
WOS记录号WOS:000325286500006
WOS关键词OZONE COLUMN RETRIEVAL ; CLASSIFICATION ; SKY
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/176029
作者单位1.Finnish Meteorol Inst, Climate Change Unit, FIN-00101 Helsinki, Finland;
2.Finnish Meteorol Inst, Earth Observat Unit, FIN-00101 Helsinki, Finland;
3.Aalto Univ, Sch Sci, Dept Informat & Comp Sci, Espoo 00076, Finland;
4.Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
推荐引用方式
GB/T 7714
Saponaro, G.,Kolmonen, P.,Karhunen, J.,et al. A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements[J],2013,6(9):2301-2309.
APA Saponaro, G.,Kolmonen, P.,Karhunen, J.,Tamminen, J.,&de Leeuw, G..(2013).A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements.ATMOSPHERIC MEASUREMENT TECHNIQUES,6(9),2301-2309.
MLA Saponaro, G.,et al."A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements".ATMOSPHERIC MEASUREMENT TECHNIQUES 6.9(2013):2301-2309.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Saponaro, G.]的文章
[Kolmonen, P.]的文章
[Karhunen, J.]的文章
百度学术
百度学术中相似的文章
[Saponaro, G.]的文章
[Kolmonen, P.]的文章
[Karhunen, J.]的文章
必应学术
必应学术中相似的文章
[Saponaro, G.]的文章
[Kolmonen, P.]的文章
[Karhunen, J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。