Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.5194/amt-6-2301-2013 |
A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements | |
Saponaro, G.1; Kolmonen, P.1; Karhunen, J.3; Tamminen, J.2; de Leeuw, G.1,4 | |
通讯作者 | Saponaro, G. |
来源期刊 | ATMOSPHERIC MEASUREMENT TECHNIQUES
![]() |
ISSN | 1867-1381 |
EISSN | 1867-8548 |
出版年 | 2013 |
卷号 | 6期号:9页码:2301-2309 |
英文摘要 | The discrimination of cloudy from cloud-free pixels is required in almost any estimate of a parameter retrieved from satellite data in the ultraviolet (UV), visible (VIS) or infrared (IR) parts of the electromagnetic spectrum. In this paper we report on the development of a neural network (NN) algorithm to estimate cloud fractions using radiances measured at the top of the atmosphere with the NASA-Aura Ozone Monitoring Instrument (OMI). We present and discuss the results obtained from the application of two different types of neural networks, i.e., extreme learning machine (ELM) and back propagation (BP). The NNs were trained with an OMI data sets existing of six orbits, tested with three other orbits and validated with another two orbits. The results were evaluated by comparison with cloud fractions available from the MODerate Resolution Imaging Spectrometer (MODIS) flying on Aqua in the same constellation as OMI, i.e., with minimal time difference between the OMI and MODIS observations. The results from the ELM and BP NNs are compared. They both deliver cloud fraction estimates in a fast and automated way, and they both performs generally well in the validation. However, over highly reflective surfaces, such as desert, or in the presence of dust layers in the atmosphere, the cloud fractions are not well predicted by the neural network. Over ocean the two NNs work equally well, but over land ELM performs better. |
类型 | Article |
语种 | 英语 |
国家 | Finland |
收录类别 | SCI-E |
WOS记录号 | WOS:000325286500006 |
WOS关键词 | OZONE COLUMN RETRIEVAL ; CLASSIFICATION ; SKY |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/176029 |
作者单位 | 1.Finnish Meteorol Inst, Climate Change Unit, FIN-00101 Helsinki, Finland; 2.Finnish Meteorol Inst, Earth Observat Unit, FIN-00101 Helsinki, Finland; 3.Aalto Univ, Sch Sci, Dept Informat & Comp Sci, Espoo 00076, Finland; 4.Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland |
推荐引用方式 GB/T 7714 | Saponaro, G.,Kolmonen, P.,Karhunen, J.,et al. A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements[J],2013,6(9):2301-2309. |
APA | Saponaro, G.,Kolmonen, P.,Karhunen, J.,Tamminen, J.,&de Leeuw, G..(2013).A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements.ATMOSPHERIC MEASUREMENT TECHNIQUES,6(9),2301-2309. |
MLA | Saponaro, G.,et al."A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements".ATMOSPHERIC MEASUREMENT TECHNIQUES 6.9(2013):2301-2309. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。