Arid
DOI10.1007/s12517-011-0517-y
Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions
Rezaeian-Zadeh, Mehdi1; Tabari, Hossein2; Abghari, Hirad3
通讯作者Rezaeian-Zadeh, Mehdi
来源期刊ARABIAN JOURNAL OF GEOSCIENCES
ISSN1866-7511
出版年2013
卷号6期号:7页码:2529-2537
英文摘要

Prediction of monthly discharge volume is important for reservoir management and evaluation of drinking-water supplies. Also, it is very essential in arid and semi-arid regions due to the lack of observed data. This study compared four artificial neural network (ANN) algorithms to predict the monthly discharge volume from Idenak Watershed in Kohkiloye Boier Ahmad Province in southwestern Iran. These algorithms, including resilient backpropagation (ANN_RP), scaled conjugate gradient (ANN_SCG), variable learning rate (ANN_GDX), and Levenberg-Marquardt (ANN_LM), were applied to monthly discharge volume data. The transfer function employed was the tangent sigmoid, and input vectors were constructed in different ways during the algorithm development. The algorithms were trained and tested using a 36-year data record (432 monthly values) selected randomly. Comparison of the algorithms showed that ANN_SCG performed better than the other algorithms, where the values of R (2) and root mean square errors during validation were 0.78 and 63 million cubic meters. Furthermore, the input vector consisting of precipitation [P(t)], antecedent precipitation [P(t - 1)], and antecedent monthly discharge volume with one time lag [V(t- 1)] was superior to the other input vectors for monthly discharge volume prediction. Generally, the proposed models are capable for prediction of monthly discharge volume in arid and semi-arid regions.


英文关键词Discharge volume Neural networks Semi-arid Algorithms Prediction Iran
类型Article
语种英语
国家Iran
收录类别SCI-E
WOS记录号WOS:000320662000026
WOS关键词RUNOFF ; MODELS
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/175840
作者单位1.Islamic Azad Univ, Young Researchers Club, Shiraz Branch, Shiraz, Iran;
2.Islamic Azad Univ, Dept Water Engn, Ayatollah Amoli Branch, Amol, Iran;
3.Urmia Univ, Dept Watershed Management, Fac Nat Resources, Orumiyeh, Iran
推荐引用方式
GB/T 7714
Rezaeian-Zadeh, Mehdi,Tabari, Hossein,Abghari, Hirad. Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions[J],2013,6(7):2529-2537.
APA Rezaeian-Zadeh, Mehdi,Tabari, Hossein,&Abghari, Hirad.(2013).Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions.ARABIAN JOURNAL OF GEOSCIENCES,6(7),2529-2537.
MLA Rezaeian-Zadeh, Mehdi,et al."Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions".ARABIAN JOURNAL OF GEOSCIENCES 6.7(2013):2529-2537.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
Prediction of monthl(578KB)期刊论文出版稿开放获取CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rezaeian-Zadeh, Mehdi]的文章
[Tabari, Hossein]的文章
[Abghari, Hirad]的文章
百度学术
百度学术中相似的文章
[Rezaeian-Zadeh, Mehdi]的文章
[Tabari, Hossein]的文章
[Abghari, Hirad]的文章
必应学术
必应学术中相似的文章
[Rezaeian-Zadeh, Mehdi]的文章
[Tabari, Hossein]的文章
[Abghari, Hirad]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。