Arid
DOI10.1007/s00704-012-0595-0
Hourly air temperature driven using multi-layer perceptron and radial basis function networks in arid and semi-arid regions
Rezaeian-Zadeh, Mehdi1; Zand-Parsa, Shahrookh2; Abghari, Hirad3; Zolghadr, Masih4; Singh, Vijay P.5,6
通讯作者Rezaeian-Zadeh, Mehdi
来源期刊THEORETICAL AND APPLIED CLIMATOLOGY
ISSN0177-798X
EISSN1434-4483
出版年2012
卷号109期号:3-4页码:519-528
英文摘要

This study employed two artificial neural network (ANN) models, including multi-layer perceptron (MLP) and radial basis function (RBF), as data-driven methods of hourly air temperature at three meteorological stations in Fars province, Iran. MLP was optimized using the Levenberg-Marquardt (MLP_LM) training algorithm with a tangent sigmoid transfer function. Both time series (TS) and randomized (RZ) data were used for training and testing of ANNs. Daily maximum and minimum air temperatures (MM) and antecedent daily maximum and minimum air temperatures (AMM) constituted the input for ANNs. The ANN models were evaluated using the root mean square error (RMSE), the coefficient of determination (R (2)) and the mean absolute error. The use of AMM led to a more accurate estimation of hourly temperature compared with the use of MM. The MLP-ANN seemed to have a higher estimation efficiency than the RBF ANN. Furthermore, the ANN testing using randomized data showed more accurate estimation. The RMSE values for MLP with RZ data using daily maximum and minimum air temperatures for testing phase were equal to 1.2A degrees C, 1.8A degrees C, and 1.7A degrees C, respectively, at Arsanjan, Bajgah, and Kooshkak stations. The results of this study showed that hourly air temperature driven using ANNs (proposed models) had less error than the empirical equation.


类型Article
语种英语
国家Iran ; USA
收录类别SCI-E
WOS记录号WOS:000307243900016
WOS关键词RAINFALL-RUNOFF PROCESS ; NEURAL-NETWORKS ; PREDICTION ; WATER ; MODELS ; MAIZE
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/175169
作者单位1.Islamic Azad Univ, Shiraz Branch, Shiraz, Iran;
2.Shiraz Univ, Coll Agr, Irrigat Dept, Shiraz, Iran;
3.Urmia Univ, Fac Nat Resources, Dept Watershed Management, Orumiyeh, Iran;
4.Chamran Univ Ahwaz, Sch Water Sci Engn, Ahwaz, Iran;
5.Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA;
6.Texas A&M Univ, Dept Civil & Environm Engn, College Stn, TX 77843 USA
推荐引用方式
GB/T 7714
Rezaeian-Zadeh, Mehdi,Zand-Parsa, Shahrookh,Abghari, Hirad,et al. Hourly air temperature driven using multi-layer perceptron and radial basis function networks in arid and semi-arid regions[J],2012,109(3-4):519-528.
APA Rezaeian-Zadeh, Mehdi,Zand-Parsa, Shahrookh,Abghari, Hirad,Zolghadr, Masih,&Singh, Vijay P..(2012).Hourly air temperature driven using multi-layer perceptron and radial basis function networks in arid and semi-arid regions.THEORETICAL AND APPLIED CLIMATOLOGY,109(3-4),519-528.
MLA Rezaeian-Zadeh, Mehdi,et al."Hourly air temperature driven using multi-layer perceptron and radial basis function networks in arid and semi-arid regions".THEORETICAL AND APPLIED CLIMATOLOGY 109.3-4(2012):519-528.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rezaeian-Zadeh, Mehdi]的文章
[Zand-Parsa, Shahrookh]的文章
[Abghari, Hirad]的文章
百度学术
百度学术中相似的文章
[Rezaeian-Zadeh, Mehdi]的文章
[Zand-Parsa, Shahrookh]的文章
[Abghari, Hirad]的文章
必应学术
必应学术中相似的文章
[Rezaeian-Zadeh, Mehdi]的文章
[Zand-Parsa, Shahrookh]的文章
[Abghari, Hirad]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。