Arid
DOI10.1007/s00442-011-2118-6
An evaluation of prior influence on the predictive ability of Bayesian model averaging
St-Louis, Veronique1,2; Clayton, Murray K.3; Pidgeon, Anna M.2; Radeloff, Volker C.2
通讯作者St-Louis, Veronique
来源期刊OECOLOGIA
ISSN0029-8549
EISSN1432-1939
出版年2012
卷号168期号:3页码:719-726
英文摘要

Model averaging is gaining popularity among ecologists for making inference and predictions. Methods for combining models include Bayesian model averaging (BMA) and Akaike’s Information Criterion (AIC) model averaging. BMA can be implemented with different prior model weights, including the Kullback-Leibler prior associated with AIC model averaging, but it is unclear how the prior model weight affects model results in a predictive context. Here, we implemented BMA using the Bayesian Information Criterion (BIC) approximation to Bayes factors for building predictive models of bird abundance and occurrence in the Chihuahuan Desert of New Mexico. We examined how model predictive ability differed across four prior model weights, and how averaged coefficient estimates, standard errors and coefficients’ posterior probabilities varied for 16 bird species. We also compared the predictive ability of BMA models to a best single-model approach. Overall, Occam’s prior of parsimony provided the best predictive models. In general, the Kullback-Leibler prior, however, favored complex models of lower predictive ability. BMA performed better than a best single-model approach independently of the prior model weight for 6 out of 16 species. For 6 other species, the choice of the prior model weight affected whether BMA was better than the best single-model approach. Our results demonstrate that parsimonious priors may be favorable over priors that favor complexity for making predictions. The approach we present has direct applications in ecology for better predicting patterns of species’ abundance and occurrence.


英文关键词Bayesian model averaging BIC weights Prior model weights Predictive modeling Chihuahuan Desert Birds
类型Article
语种英语
国家USA
收录类别SCI-E
WOS记录号WOS:000301706800012
WOS关键词MULTIMODEL INFERENCE ; CHIHUAHUAN DESERT ; SELECTION ; BIODIVERSITY ; UNCERTAINTY ; INFORMATION
WOS类目Ecology
WOS研究方向Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/174219
作者单位1.Univ Minnesota, Dept Fisheries Wildlife & Conservat Biol, St Paul, MN 55108 USA;
2.Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA;
3.Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
推荐引用方式
GB/T 7714
St-Louis, Veronique,Clayton, Murray K.,Pidgeon, Anna M.,et al. An evaluation of prior influence on the predictive ability of Bayesian model averaging[J],2012,168(3):719-726.
APA St-Louis, Veronique,Clayton, Murray K.,Pidgeon, Anna M.,&Radeloff, Volker C..(2012).An evaluation of prior influence on the predictive ability of Bayesian model averaging.OECOLOGIA,168(3),719-726.
MLA St-Louis, Veronique,et al."An evaluation of prior influence on the predictive ability of Bayesian model averaging".OECOLOGIA 168.3(2012):719-726.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[St-Louis, Veronique]的文章
[Clayton, Murray K.]的文章
[Pidgeon, Anna M.]的文章
百度学术
百度学术中相似的文章
[St-Louis, Veronique]的文章
[Clayton, Murray K.]的文章
[Pidgeon, Anna M.]的文章
必应学术
必应学术中相似的文章
[St-Louis, Veronique]的文章
[Clayton, Murray K.]的文章
[Pidgeon, Anna M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。