Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.isprsjprs.2012.01.007 |
Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis | |
Liu, Yong1; Bian, Ling1,2; Meng, Yuhong1; Wang, Huanping1; Zhang, Shifu1; Yang, Yining1; Shao, Xiaomin1; Wang, Bo1 | |
通讯作者 | Liu, Yong |
来源期刊 | ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
![]() |
ISSN | 0924-2716 |
EISSN | 1872-8235 |
出版年 | 2012 |
卷号 | 68页码:144-156 |
英文摘要 | Most object-based image analysis use parameters to control the size, shape, and homogeneity of segments. Because each parameter may take a range of possible values, different combinations of value between parameters may produce different segmentation results. Assessment of segmentation quality, such as the discrepancy between reference polygons and corresponding image segments, can be used to identify the optimal combination of parameter values. In this research, we (1) evaluate four existing indices that describe the discrepancy between reference polygons and corresponding segments, (2) propose three new indices to evaluate both geometric and arithmetic discrepancies, and (3) compare the effectiveness of the existing and proposed indices in identifying optimal combinations of parameter values for image segmentation through a case study. A Landsat 5 Thematic Mapper (TM) image and an ALOS image of arid Northwestern China were used in the case study. The four existing indices include Quality Rate (QR), Over-segmentation Rate (OR), Under-segmentation Rate (UR), and Euclidean Distance 1 (ED1). The three proposed discrepancy indices include Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR), and Euclidean Distance 2 (ED2). These indices measure overlap, over-segmentation, and under-segmentation between reference polygons and corresponding image segments. Results show that the three proposed indices PSE, NSR, and ED2 are more effective than the four existing indices QR, OR, UR, and ED1 in their ability to identify optimal combinations of parameter values. ED2 that represents both geometric (PSE) and arithmetic (NSR) discrepancies is most effective. (C) 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved. |
英文关键词 | Object-based image analysis Image segmentation Discrepancy measures Optimal parameter value combinations Under-segmentation Over-segmentation |
类型 | Article |
语种 | 英语 |
国家 | Peoples R China ; USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000303072800012 |
WOS关键词 | ACCURACY ASSESSMENT ; SEGMENTATION ; CLASSIFICATION |
WOS类目 | Geography, Physical ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Physical Geography ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/173064 |
作者单位 | 1.Lanzhou Univ, Coll Earth & Environm Sci, Lanzhou 730000, Peoples R China; 2.SUNY Buffalo, Dept Geog, Amherst, NY 14261 USA |
推荐引用方式 GB/T 7714 | Liu, Yong,Bian, Ling,Meng, Yuhong,et al. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis[J],2012,68:144-156. |
APA | Liu, Yong.,Bian, Ling.,Meng, Yuhong.,Wang, Huanping.,Zhang, Shifu.,...&Wang, Bo.(2012).Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis.ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,68,144-156. |
MLA | Liu, Yong,et al."Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis".ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 68(2012):144-156. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。