Arid
DOI10.1016/j.isprsjprs.2012.01.007
Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis
Liu, Yong1; Bian, Ling1,2; Meng, Yuhong1; Wang, Huanping1; Zhang, Shifu1; Yang, Yining1; Shao, Xiaomin1; Wang, Bo1
通讯作者Liu, Yong
来源期刊ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
ISSN0924-2716
EISSN1872-8235
出版年2012
卷号68页码:144-156
英文摘要

Most object-based image analysis use parameters to control the size, shape, and homogeneity of segments. Because each parameter may take a range of possible values, different combinations of value between parameters may produce different segmentation results. Assessment of segmentation quality, such as the discrepancy between reference polygons and corresponding image segments, can be used to identify the optimal combination of parameter values. In this research, we (1) evaluate four existing indices that describe the discrepancy between reference polygons and corresponding segments, (2) propose three new indices to evaluate both geometric and arithmetic discrepancies, and (3) compare the effectiveness of the existing and proposed indices in identifying optimal combinations of parameter values for image segmentation through a case study. A Landsat 5 Thematic Mapper (TM) image and an ALOS image of arid Northwestern China were used in the case study. The four existing indices include Quality Rate (QR), Over-segmentation Rate (OR), Under-segmentation Rate (UR), and Euclidean Distance 1 (ED1). The three proposed discrepancy indices include Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR), and Euclidean Distance 2 (ED2). These indices measure overlap, over-segmentation, and under-segmentation between reference polygons and corresponding image segments. Results show that the three proposed indices PSE, NSR, and ED2 are more effective than the four existing indices QR, OR, UR, and ED1 in their ability to identify optimal combinations of parameter values. ED2 that represents both geometric (PSE) and arithmetic (NSR) discrepancies is most effective. (C) 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.


英文关键词Object-based image analysis Image segmentation Discrepancy measures Optimal parameter value combinations Under-segmentation Over-segmentation
类型Article
语种英语
国家Peoples R China ; USA
收录类别SCI-E
WOS记录号WOS:000303072800012
WOS关键词ACCURACY ASSESSMENT ; SEGMENTATION ; CLASSIFICATION
WOS类目Geography, Physical ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Physical Geography ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/173064
作者单位1.Lanzhou Univ, Coll Earth & Environm Sci, Lanzhou 730000, Peoples R China;
2.SUNY Buffalo, Dept Geog, Amherst, NY 14261 USA
推荐引用方式
GB/T 7714
Liu, Yong,Bian, Ling,Meng, Yuhong,et al. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis[J],2012,68:144-156.
APA Liu, Yong.,Bian, Ling.,Meng, Yuhong.,Wang, Huanping.,Zhang, Shifu.,...&Wang, Bo.(2012).Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis.ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,68,144-156.
MLA Liu, Yong,et al."Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis".ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 68(2012):144-156.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yong]的文章
[Bian, Ling]的文章
[Meng, Yuhong]的文章
百度学术
百度学术中相似的文章
[Liu, Yong]的文章
[Bian, Ling]的文章
[Meng, Yuhong]的文章
必应学术
必应学术中相似的文章
[Liu, Yong]的文章
[Bian, Ling]的文章
[Meng, Yuhong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。