Arid
DOI10.1029/2012GL051136
Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model
Wang, Jun1; Xu, Xiaoguang1; Henze, Daven K.2; Zeng, Jing1; Ji, Qiang4,5; Tsay, Si-Chee5; Huang, Jianping3
通讯作者Wang, Jun
来源期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2012
卷号39
英文摘要

Predicting the influences of dust on atmospheric composition, climate, and human health requires accurate knowledge of dust emissions, but large uncertainties persist in quantifying mineral sources. This study presents a new method for combined use of satellite-measured radiances and inverse modeling to spatially constrain the amount and location of dust emissions. The technique is illustrated with a case study in May 2008; the dust emissions in Taklimakan and Gobi deserts are spatially optimized using the GEOS-Chem chemical transport model and its adjoint constrained by aerosol optical depth (AOD) that are derived over the downwind dark-surface region in China from MODIS (Moderate Resolution Imaging Spectroradiometer) reflectance with the aerosol single scattering properties consistent with GEOS-chem. The adjoint inverse modeling yields an overall 51% decrease in prior dust emissions estimated by GEOS-Chem over the Taklimakan-Gobi area, with more significant reductions south of the Gobi Desert. The model simulation with optimized dust emissions shows much better agreement with independent observations from MISR (Multi-angle Imaging SpectroRadiometer) AOD and MODIS Deep Blue AOD over the dust source region and surface PM10 concentrations. The technique of this study can be applied to global multi-sensor remote sensing data for constraining dust emissions at various temporal and spatial scales, and hence improving the quantification of dust effects on climate, air quality, and human health. Citation: Wang, J., X. Xu, D. K. Henze, J. Zeng, Q. Ji, S.-C. Tsay, and J. Huang (2012), Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model, Geophys. Res. Lett., 39, L08802, doi:10.1029/2012GL051136.


类型Article
语种英语
国家USA ; Peoples R China
收录类别SCI-E
WOS记录号WOS:000303115900001
WOS关键词ASIA ; ALGORITHM ; CHINA
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
来源机构兰州大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/172599
作者单位1.Univ Nebraska, Dept Earth & Atmospher Sci, Lincoln, NE 68588 USA;
2.Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA;
3.Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China;
4.Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA;
5.NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
推荐引用方式
GB/T 7714
Wang, Jun,Xu, Xiaoguang,Henze, Daven K.,et al. Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model[J]. 兰州大学,2012,39.
APA Wang, Jun.,Xu, Xiaoguang.,Henze, Daven K..,Zeng, Jing.,Ji, Qiang.,...&Huang, Jianping.(2012).Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model.GEOPHYSICAL RESEARCH LETTERS,39.
MLA Wang, Jun,et al."Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model".GEOPHYSICAL RESEARCH LETTERS 39(2012).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Jun]的文章
[Xu, Xiaoguang]的文章
[Henze, Daven K.]的文章
百度学术
百度学术中相似的文章
[Wang, Jun]的文章
[Xu, Xiaoguang]的文章
[Henze, Daven K.]的文章
必应学术
必应学术中相似的文章
[Wang, Jun]的文章
[Xu, Xiaoguang]的文章
[Henze, Daven K.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。