Arid
DOI10.1007/s11538-011-9688-7
A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction-Diffusion Plant-Surface Water Model System in an Arid Flat Environment
Kealy, Bonni J.; Wollkind, David J.
通讯作者Wollkind, David J.
来源期刊BULLETIN OF MATHEMATICAL BIOLOGY
ISSN0092-8240
出版年2012
卷号74期号:4页码:803-833
英文摘要

The development of spontaneous stationary vegetative patterns in an arid flat environment is investigated by means of a weakly nonlinear diffusive instability analysis applied to the appropriate model system for this phenomenon. In particular, that process can be modeled by a partial differential interaction-diffusion equation system for the plant biomass density and the surface water content defined on an unbounded flat spatial domain. The main results of this analysis can be represented by closed-form plots in the rate of precipitation versus the specific rate of plant density loss parameter space. From these plots, regions corresponding to bare ground and vegetative patterns consisting of parallel stripes, labyrinth-like mazes, hexagonal arrays of gaps, irregular mosaics, and homogeneous distributions of vegetation, respectively, may be identified in this parameter space. Then those theoretical predictions are compared with both relevant observational evidence involving tiger and pearled bush patterns and existing numerical simulations of similar model systems as well as placed in the context of the results from some recent nonlinear vegetative pattern formation studies.


英文关键词Vegetative Turing patterns Nonlinear stability
类型Article
语种英语
国家USA
收录类别SCI-E
WOS记录号WOS:000301440700002
WOS关键词UNSTABLE PARALLEL FLOWS ; NON-LINEAR MECHANICS ; WAVE DISTURBANCES ; POISEUILLE FLOW ; TIGER BUSH ; BIFURCATIONS ; LANDSCAPES ; ECOSYSTEMS ; STRIPES
WOS类目Biology ; Mathematical & Computational Biology
WOS研究方向Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/171675
作者单位Washington State Univ, Dept Math, Pullman, WA 99164 USA
推荐引用方式
GB/T 7714
Kealy, Bonni J.,Wollkind, David J.. A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction-Diffusion Plant-Surface Water Model System in an Arid Flat Environment[J],2012,74(4):803-833.
APA Kealy, Bonni J.,&Wollkind, David J..(2012).A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction-Diffusion Plant-Surface Water Model System in an Arid Flat Environment.BULLETIN OF MATHEMATICAL BIOLOGY,74(4),803-833.
MLA Kealy, Bonni J.,et al."A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction-Diffusion Plant-Surface Water Model System in an Arid Flat Environment".BULLETIN OF MATHEMATICAL BIOLOGY 74.4(2012):803-833.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kealy, Bonni J.]的文章
[Wollkind, David J.]的文章
百度学术
百度学术中相似的文章
[Kealy, Bonni J.]的文章
[Wollkind, David J.]的文章
必应学术
必应学术中相似的文章
[Kealy, Bonni J.]的文章
[Wollkind, David J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。