Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/s11538-011-9688-7 |
A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction-Diffusion Plant-Surface Water Model System in an Arid Flat Environment | |
Kealy, Bonni J.; Wollkind, David J. | |
通讯作者 | Wollkind, David J. |
来源期刊 | BULLETIN OF MATHEMATICAL BIOLOGY
![]() |
ISSN | 0092-8240 |
出版年 | 2012 |
卷号 | 74期号:4页码:803-833 |
英文摘要 | The development of spontaneous stationary vegetative patterns in an arid flat environment is investigated by means of a weakly nonlinear diffusive instability analysis applied to the appropriate model system for this phenomenon. In particular, that process can be modeled by a partial differential interaction-diffusion equation system for the plant biomass density and the surface water content defined on an unbounded flat spatial domain. The main results of this analysis can be represented by closed-form plots in the rate of precipitation versus the specific rate of plant density loss parameter space. From these plots, regions corresponding to bare ground and vegetative patterns consisting of parallel stripes, labyrinth-like mazes, hexagonal arrays of gaps, irregular mosaics, and homogeneous distributions of vegetation, respectively, may be identified in this parameter space. Then those theoretical predictions are compared with both relevant observational evidence involving tiger and pearled bush patterns and existing numerical simulations of similar model systems as well as placed in the context of the results from some recent nonlinear vegetative pattern formation studies. |
英文关键词 | Vegetative Turing patterns Nonlinear stability |
类型 | Article |
语种 | 英语 |
国家 | USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000301440700002 |
WOS关键词 | UNSTABLE PARALLEL FLOWS ; NON-LINEAR MECHANICS ; WAVE DISTURBANCES ; POISEUILLE FLOW ; TIGER BUSH ; BIFURCATIONS ; LANDSCAPES ; ECOSYSTEMS ; STRIPES |
WOS类目 | Biology ; Mathematical & Computational Biology |
WOS研究方向 | Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/171675 |
作者单位 | Washington State Univ, Dept Math, Pullman, WA 99164 USA |
推荐引用方式 GB/T 7714 | Kealy, Bonni J.,Wollkind, David J.. A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction-Diffusion Plant-Surface Water Model System in an Arid Flat Environment[J],2012,74(4):803-833. |
APA | Kealy, Bonni J.,&Wollkind, David J..(2012).A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction-Diffusion Plant-Surface Water Model System in an Arid Flat Environment.BULLETIN OF MATHEMATICAL BIOLOGY,74(4),803-833. |
MLA | Kealy, Bonni J.,et al."A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction-Diffusion Plant-Surface Water Model System in an Arid Flat Environment".BULLETIN OF MATHEMATICAL BIOLOGY 74.4(2012):803-833. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。