Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/s00374-012-0673-6 |
Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts | |
Wertin, Timothy M.1; Phillips, Susan L.2; Reed, Sasha C.1; Belnap, Jayne1![]() | |
通讯作者 | Wertin, Timothy M. |
来源期刊 | BIOLOGY AND FERTILITY OF SOILS
![]() |
ISSN | 0178-2762 |
出版年 | 2012 |
卷号 | 48期号:7页码:797-805 |
英文摘要 | Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment. |
英文关键词 | Biological soil crust Collema spp Cyanobacteria Drought Elevated CO2 Global climate change Syntrichia spp |
类型 | Article |
语种 | 英语 |
国家 | USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000310081800005 |
WOS关键词 | MOJAVE DESERT ; TEMPERATURE RESPONSES ; PHOTOSYSTEM-II ; CLIMATE-CHANGE ; SOUTHERN UTAH ; WATER-CONTENT ; NAMIB DESERT ; ARID LANDS ; PHOTOSYNTHESIS ; EXCHANGE |
WOS类目 | Soil Science |
WOS研究方向 | Agriculture |
来源机构 | United States Geological Survey |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/171585 |
作者单位 | 1.US Geol Survey, SW Biol Sci Ctr, Moab, UT 84532 USA; 2.US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, Corvallis, OR 97330 USA |
推荐引用方式 GB/T 7714 | Wertin, Timothy M.,Phillips, Susan L.,Reed, Sasha C.,et al. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts[J]. United States Geological Survey,2012,48(7):797-805. |
APA | Wertin, Timothy M.,Phillips, Susan L.,Reed, Sasha C.,&Belnap, Jayne.(2012).Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts.BIOLOGY AND FERTILITY OF SOILS,48(7),797-805. |
MLA | Wertin, Timothy M.,et al."Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts".BIOLOGY AND FERTILITY OF SOILS 48.7(2012):797-805. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。