Arid
DOI10.3390/rs3030638
A Comparison of Two Open Source LiDAR Surface Classification Algorithms
Tinkham, Wade T.1; Huang, Hongyu2; Smith, Alistair M. S.1; Shrestha, Rupesh3; Falkowski, Michael J.4; Hudak, Andrew T.5; Link, Timothy E.1; Glenn, Nancy F.3; Marks, Danny G.6
通讯作者Tinkham, Wade T.
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2011
卷号3期号:3页码:638-649
英文摘要

With the progression of LiDAR (Light Detection and Ranging) towards a mainstream resource management tool, it has become necessary to understand how best to process and analyze the data. While most ground surface identification algorithms remain proprietary and have high purchase costs; a few are openly available, free to use, and are supported by published results. Two of the latter are the multiscale curvature classification and the Boise Center Aerospace Laboratory LiDAR (BCAL) algorithms. This study investigated the accuracy of these two algorithms (and a combination of the two) to create a digital terrain model from a raw LiDAR point cloud in a semi-arid landscape. Accuracy of each algorithm was assessed via comparison with >7,000 high precision survey points stratified across six different cover types. The overall performance of both algorithms differed by only 2%; however, within specific cover types significant differences were observed in accuracy. The results highlight the accuracy of both algorithms across a variety of vegetation types, and ultimately suggest specific scenarios where one approach may outperform the other. Each algorithm produced similar results except in the ceanothus and conifer cover types where BCAL produced lower errors.


英文关键词LiDAR algorithm filtering DTM MCC BCAL
类型Article
语种英语
国家USA ; Peoples R China
收录类别SCI-E
WOS记录号WOS:000306745800013
WOS关键词DISCRETE-RETURN LIDAR ; NEAREST-NEIGHBOR IMPUTATION ; ELEVATION ; ACCURACY ; VEGETATION ; DENSITY ; LEVEL ; SLOPE ; MODEL ; AREA
WOS类目Remote Sensing
WOS研究方向Remote Sensing
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/170301
作者单位1.Univ Idaho, Dept Forest Ecol & Biogeosci, Coll Nat Resources, Moscow, ID 83844 USA;
2.Fuzhou Univ, Spatial Informat Res Ctr, Fuzhou 350002, Fujian, Peoples R China;
3.Idaho State Univ, Dept Geosci, Boise Ctr Aerosp Lab, Boise, ID 83702 USA;
4.Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA;
5.US Forest Serv, Rocky Mt Res Stn, USDA, Moscow, ID 83843 USA;
6.ARS, NW Watershed Res Ctr, USDA, Boise, ID 83712 USA
推荐引用方式
GB/T 7714
Tinkham, Wade T.,Huang, Hongyu,Smith, Alistair M. S.,et al. A Comparison of Two Open Source LiDAR Surface Classification Algorithms[J],2011,3(3):638-649.
APA Tinkham, Wade T..,Huang, Hongyu.,Smith, Alistair M. S..,Shrestha, Rupesh.,Falkowski, Michael J..,...&Marks, Danny G..(2011).A Comparison of Two Open Source LiDAR Surface Classification Algorithms.REMOTE SENSING,3(3),638-649.
MLA Tinkham, Wade T.,et al."A Comparison of Two Open Source LiDAR Surface Classification Algorithms".REMOTE SENSING 3.3(2011):638-649.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tinkham, Wade T.]的文章
[Huang, Hongyu]的文章
[Smith, Alistair M. S.]的文章
百度学术
百度学术中相似的文章
[Tinkham, Wade T.]的文章
[Huang, Hongyu]的文章
[Smith, Alistair M. S.]的文章
必应学术
必应学术中相似的文章
[Tinkham, Wade T.]的文章
[Huang, Hongyu]的文章
[Smith, Alistair M. S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。