Arid
DOI10.1007/s11104-010-0425-z
Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem
Wiesmeier, Martin1; Barthold, Frauke2; Blank, Benjamin2; Koegel-Knabner, Ingrid1
通讯作者Wiesmeier, Martin
来源期刊PLANT AND SOIL
ISSN0032-079X
出版年2011
卷号340期号:1-2页码:7-24
英文摘要

Spatial prediction of soil organic matter is a global challenge and of particular importance for regions with intensive land use and where availability of soil data is limited. This study evaluated a Digital Soil Mapping (DSM) approach to model the spatial distribution of stocks of soil organic carbon (SOC), total carbon (Ctot), total nitrogen (Ntot) and total sulphur (Stot) for a data-sparse, semi-arid catchment in Inner Mongolia, Northern China. Random Forest (RF) was used as a new modeling tool for soil properties and Classification and Regression Trees (CART) as an additional method for the analysis of variable importance. At 120 locations soil profiles to 1 m depth were analyzed for soil texture, SOC, Ctot, Ntot, Stot, bulk density (BD) and pH. On the basis of a digital elevation model, the catchment was divided into pixels of 90 mx90 m and for each cell, predictor variables were determined: land use unit, Reference Soil Group (RSG), geological unit and 12 topography-related variables. Prediction maps showed that the highest amounts of SOC, Ctot, Ntot and Stot stocks are stored under marshland, steppes and mountain meadows. River-like structures of very high elemental stocks in valleys within the steppes are partly responsible for the high amounts of SOC for grasslands (81-84% of total catchment stocks). Analysis of variable importance showed that land use, RSG and geology are the most important variables influencing SOC storage. Prediction accuracy of the RF modeling and the generated maps was acceptable and explained variances of 42 to 62% and 66 to 75%, respectively. A decline of up to 70% in elemental stocks was calculated after conversion of steppe to arable land confirming the risk of rapid soil degradation if steppes are cultivated. Thus their suitability for agricultural use is limited.


英文关键词Classification and Regression Trees (CART) Soil organic carbon (SOC) China Grassland
类型Article
语种英语
国家Germany
收录类别SCI-E
WOS记录号WOS:000288607300002
WOS关键词XILIN RIVER-BASIN ; MONGOLIA PR CHINA ; INNER-MONGOLIA ; CARBON STORAGE ; LAND-USE ; SPATIAL VARIABILITY ; REGRESSION TREES ; NORTHEAST CHINA ; PREDICTION ; NITROGEN
WOS类目Agronomy ; Plant Sciences ; Soil Science
WOS研究方向Agriculture ; Plant Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/169985
作者单位1.Tech Univ Munich, Lehrstuhl Bodenkunde, Dept Okol & Okosyst Management, Wissensch Zentrum Weihenstephan Ernahrung Landnut, D-85350 Freising Weihenstephan, Germany;
2.Univ Giessen, Inst Landscape Ecol & Resources Management, D-35392 Giessen, Germany
推荐引用方式
GB/T 7714
Wiesmeier, Martin,Barthold, Frauke,Blank, Benjamin,et al. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem[J],2011,340(1-2):7-24.
APA Wiesmeier, Martin,Barthold, Frauke,Blank, Benjamin,&Koegel-Knabner, Ingrid.(2011).Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem.PLANT AND SOIL,340(1-2),7-24.
MLA Wiesmeier, Martin,et al."Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem".PLANT AND SOIL 340.1-2(2011):7-24.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wiesmeier, Martin]的文章
[Barthold, Frauke]的文章
[Blank, Benjamin]的文章
百度学术
百度学术中相似的文章
[Wiesmeier, Martin]的文章
[Barthold, Frauke]的文章
[Blank, Benjamin]的文章
必应学术
必应学术中相似的文章
[Wiesmeier, Martin]的文章
[Barthold, Frauke]的文章
[Blank, Benjamin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。