Arid
DOI10.3233/JAD-2011-101371
Independent Component Analysis-Based Classification of Alzheimer’s Disease MRI Data
Yang, Wenlu1,2,3,4; Lui, Ronald L. M.5; Gao, Jia-Hong6; Chan, Tony F.7; Yau, Shing-Tung5; Sperling, Reisa A.3,8; Huang, Xudong1,2,3,9
通讯作者Huang, Xudong
来源期刊JOURNAL OF ALZHEIMERS DISEASE
ISSN1387-2877
出版年2011
卷号24期号:4页码:775-783
英文摘要

There is an unmet medical need to identify neuroimaging biomarkers that allow us to accurately diagnose and monitor Alzheimer’s disease (AD) at its very early stages and to assess the response to AD-modifying therapies. To a certain extent, volumetric and functional magnetic resonance imaging (fMRI) studies can detect changes in structure, cerebral blood flow, and blood oxygenation that distinguish AD and mild cognitive impairment (MCI) subjects from healthy control (HC) subjects. However, it has been challenging to use fully automated MRI analytic methods to identify potential AD neuroimaging biomarkers. We have thus proposed a method based on independent component analysis (ICA) for studying potential AD-related MR image features that can be coupled with the use of support vector machine (SVM) for classifying scans into categories of AD, MCI, and HC subjects. The MRI data were selected from the Open Access Series of Imaging Studies (OASIS) and the Alzheimer’s Disease Neuroimaging Initiative databases. The experimental results showed that the ICA method coupled with SVM classifier can differentiate AD and MCI patients from HC subjects, although further methodological improvement in the analytic method and inclusion of additional variables may be required for optimal classification.


英文关键词Alzheimer’s disease independent component analysis magnetic resonance imaging mild cognitive impairment neuroimaging biomarker support vector machine
类型Article
语种英语
国家USA ; Peoples R China
收录类别SCI-E
WOS记录号WOS:000292476900014
WOS关键词MILD COGNITIVE IMPAIRMENT ; SOURCE-BASED MORPHOMETRY ; FUNCTIONAL MRI ; DIAGNOSIS ; NETWORKS ; GRAY ; ADNI
WOS类目Neurosciences
WOS研究方向Neurosciences & Neurology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/168789
作者单位1.Brigham & Womens Hosp, Dept Radiol, Ctr Adv Med Imaging, Boston, MA 02115 USA;
2.Brigham & Womens Hosp, Biomed Informat & Cheminformat Grp, Conjugate & Med Chem Lab, Div Nucl Med & Mol Imaging, Boston, MA 02115 USA;
3.Harvard Univ, Sch Med, Boston, MA 02115 USA;
4.Shanghai Maritime Univ, Informat Engn Coll, Dept Elect Engn, Shanghai, Peoples R China;
5.Harvard Univ, Dept Math, Cambridge, MA 02138 USA;
6.Univ Chicago, Brain Res Imaging Ctr, Chicago, IL 60637 USA;
7.Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China;
8.Brigham & Womens Hosp, Memory Disorders Unit, Dept Neurol, Boston, MA 02115 USA;
9.Massachusetts Gen Hosp, Dept Psychiat, Neurochem Lab, Boston, MA 02114 USA
推荐引用方式
GB/T 7714
Yang, Wenlu,Lui, Ronald L. M.,Gao, Jia-Hong,等. Independent Component Analysis-Based Classification of Alzheimer’s Disease MRI Data[J],2011,24(4):775-783.
APA Yang, Wenlu.,Lui, Ronald L. M..,Gao, Jia-Hong.,Chan, Tony F..,Yau, Shing-Tung.,...&Huang, Xudong.(2011).Independent Component Analysis-Based Classification of Alzheimer’s Disease MRI Data.JOURNAL OF ALZHEIMERS DISEASE,24(4),775-783.
MLA Yang, Wenlu,et al."Independent Component Analysis-Based Classification of Alzheimer’s Disease MRI Data".JOURNAL OF ALZHEIMERS DISEASE 24.4(2011):775-783.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Wenlu]的文章
[Lui, Ronald L. M.]的文章
[Gao, Jia-Hong]的文章
百度学术
百度学术中相似的文章
[Yang, Wenlu]的文章
[Lui, Ronald L. M.]的文章
[Gao, Jia-Hong]的文章
必应学术
必应学术中相似的文章
[Yang, Wenlu]的文章
[Lui, Ronald L. M.]的文章
[Gao, Jia-Hong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。