Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3233/JAD-2011-101371 |
Independent Component Analysis-Based Classification of Alzheimer’s Disease MRI Data | |
Yang, Wenlu1,2,3,4; Lui, Ronald L. M.5; Gao, Jia-Hong6; Chan, Tony F.7; Yau, Shing-Tung5; Sperling, Reisa A.3,8; Huang, Xudong1,2,3,9 | |
通讯作者 | Huang, Xudong |
来源期刊 | JOURNAL OF ALZHEIMERS DISEASE
![]() |
ISSN | 1387-2877 |
出版年 | 2011 |
卷号 | 24期号:4页码:775-783 |
英文摘要 | There is an unmet medical need to identify neuroimaging biomarkers that allow us to accurately diagnose and monitor Alzheimer’s disease (AD) at its very early stages and to assess the response to AD-modifying therapies. To a certain extent, volumetric and functional magnetic resonance imaging (fMRI) studies can detect changes in structure, cerebral blood flow, and blood oxygenation that distinguish AD and mild cognitive impairment (MCI) subjects from healthy control (HC) subjects. However, it has been challenging to use fully automated MRI analytic methods to identify potential AD neuroimaging biomarkers. We have thus proposed a method based on independent component analysis (ICA) for studying potential AD-related MR image features that can be coupled with the use of support vector machine (SVM) for classifying scans into categories of AD, MCI, and HC subjects. The MRI data were selected from the Open Access Series of Imaging Studies (OASIS) and the Alzheimer’s Disease Neuroimaging Initiative databases. The experimental results showed that the ICA method coupled with SVM classifier can differentiate AD and MCI patients from HC subjects, although further methodological improvement in the analytic method and inclusion of additional variables may be required for optimal classification. |
英文关键词 | Alzheimer’s disease independent component analysis magnetic resonance imaging mild cognitive impairment neuroimaging biomarker support vector machine |
类型 | Article |
语种 | 英语 |
国家 | USA ; Peoples R China |
收录类别 | SCI-E |
WOS记录号 | WOS:000292476900014 |
WOS关键词 | MILD COGNITIVE IMPAIRMENT ; SOURCE-BASED MORPHOMETRY ; FUNCTIONAL MRI ; DIAGNOSIS ; NETWORKS ; GRAY ; ADNI |
WOS类目 | Neurosciences |
WOS研究方向 | Neurosciences & Neurology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/168789 |
作者单位 | 1.Brigham & Womens Hosp, Dept Radiol, Ctr Adv Med Imaging, Boston, MA 02115 USA; 2.Brigham & Womens Hosp, Biomed Informat & Cheminformat Grp, Conjugate & Med Chem Lab, Div Nucl Med & Mol Imaging, Boston, MA 02115 USA; 3.Harvard Univ, Sch Med, Boston, MA 02115 USA; 4.Shanghai Maritime Univ, Informat Engn Coll, Dept Elect Engn, Shanghai, Peoples R China; 5.Harvard Univ, Dept Math, Cambridge, MA 02138 USA; 6.Univ Chicago, Brain Res Imaging Ctr, Chicago, IL 60637 USA; 7.Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China; 8.Brigham & Womens Hosp, Memory Disorders Unit, Dept Neurol, Boston, MA 02115 USA; 9.Massachusetts Gen Hosp, Dept Psychiat, Neurochem Lab, Boston, MA 02114 USA |
推荐引用方式 GB/T 7714 | Yang, Wenlu,Lui, Ronald L. M.,Gao, Jia-Hong,等. Independent Component Analysis-Based Classification of Alzheimer’s Disease MRI Data[J],2011,24(4):775-783. |
APA | Yang, Wenlu.,Lui, Ronald L. M..,Gao, Jia-Hong.,Chan, Tony F..,Yau, Shing-Tung.,...&Huang, Xudong.(2011).Independent Component Analysis-Based Classification of Alzheimer’s Disease MRI Data.JOURNAL OF ALZHEIMERS DISEASE,24(4),775-783. |
MLA | Yang, Wenlu,et al."Independent Component Analysis-Based Classification of Alzheimer’s Disease MRI Data".JOURNAL OF ALZHEIMERS DISEASE 24.4(2011):775-783. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。