Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.5194/acp-8-7367-2008 |
Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation | |
Matsunaga, S. N.1,2; Guenther, A. B.2; Potosnak, M. J.3; Apel, E. C.2 | |
通讯作者 | Matsunaga, S. N. |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
出版年 | 2008 |
卷号 | 8期号:24页码:7367-7371 |
英文摘要 | Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C-15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 3.1, 1.0 and 4.8 mu gC dwg(-1) h(-1), respectively (dwg; dry weight of the leaves in gram). The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate ( homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because they probably produce oxidation products that can condense onto the aerosol phase. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas area using a BVOC emission model. The contribution was estimated to reach 50% of the biogenic terpenoid emission in the landscapes dominated by desert willow and mesquite and 13% in the Las Vegas area. The contributions to biogenic SOA are likely to be higher due to the potentially high SOA yields of these compounds. |
类型 | Article |
语种 | 英语 |
国家 | USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000262411800003 |
WOS关键词 | SECONDARY ORGANIC AEROSOL ; MONOTERPENE ; ISOPRENE ; MODEL ; ATMOSPHERE |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
来源机构 | Desert Research Institute |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/156554 |
作者单位 | 1.Natl Ctr Atmospher Res, Adv Study Program, Boulder, CO 80301 USA; 2.Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80301 USA; 3.Desert Res Inst, Reno, NV 89512 USA |
推荐引用方式 GB/T 7714 | Matsunaga, S. N.,Guenther, A. B.,Potosnak, M. J.,et al. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation[J]. Desert Research Institute,2008,8(24):7367-7371. |
APA | Matsunaga, S. N.,Guenther, A. B.,Potosnak, M. J.,&Apel, E. C..(2008).Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation.ATMOSPHERIC CHEMISTRY AND PHYSICS,8(24),7367-7371. |
MLA | Matsunaga, S. N.,et al."Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation".ATMOSPHERIC CHEMISTRY AND PHYSICS 8.24(2008):7367-7371. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。