Arid
DOI10.1016/j.rse.2006.05.023
Support vector machines for recognition of semi-arid vegetation types using MISR multi-angle imagery
Su, Lihong; Chopping, Mark J.; Rango, Albert; Martonchik, John V.; Peters, Debra P. C.
通讯作者Su, Lihong
来源期刊REMOTE SENSING OF ENVIRONMENT
ISSN0034-4257
出版年2007
卷号107期号:1-2页码:299-311
英文摘要

Accurately mapping community types is one of the main challenges for monitoring and and semi-arid grasslands with remote sensing. The multi-angle approach has been proven useful for mapping vegetation types in desert grassland. The Multi-angle Imaging Spectro-Radiometer (MISR) provides 4 spectral bands and 9 angular reflectance. In this study, 44 classification experiments have been implemented to find the optimal combination of MISR multi-angular data to mine the information carried by MISR data as effectively as possible. These experiments show the following findings: 1) The combination of MISR’s 4 spectral bands at nadir and red and near infrared bands in the C, B, and A cameras observing off-nadir can obtain the best vegetation type differentiation at the community level in New Mexico desert grasslands. 2) The k parameter at red band of Modified-Rahman-Pinty-Verstraete (MRPV) model and the structural scattering index (SSI) can bring useful additional information to land cover classification. The information carried by these two parameters, however, is less than that carried by surface anisotropy patterns described by the MRPV model and a linear semi-empirical kernel-driven bidirectional reflectance distribution function model, the RossThin-LiSparseMODIS (RTnLS) model. These experiments prove that: 1) multi-angular reflectance raise overall classification accuracy from 45.8% for nadir-only reflectance to 60.9%. 2) With surface anisotropy patterns derived from MRPV and RTnLS, an overall accuracy of 68.1% can be obtained when maximum likelihood algorithms are used. 3) Support Vector Machine (SVM) algorithms can raise the classification accuracy to 76.7%. This research shows that multi-angular reflectance, surface anisotropy patterns and SVM algorithms can improve desert vegetation type differentiation importantly. (c) 2006 Elsevier Inc.. All rights reserved.


英文关键词MISR support vector machine semi-arid vegetation classification multi-angle observations
类型Article
语种英语
国家USA
收录类别SCI-E
WOS记录号WOS:000244829800028
WOS关键词REFLECTANCE CSAR MODEL ; BIDIRECTIONAL REFLECTANCE ; CLASSIFICATION ; SURFACE ; AVHRR ; BRDF
WOS类目Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/155864
作者单位(1)Montclair State Univ, Dept Earth & Environm Studies, Montclair, NJ 07043 USA;(2)USDA ARS, Jornada Expt Range, Las Cruces, NM 88003 USA;(3)CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA
推荐引用方式
GB/T 7714
Su, Lihong,Chopping, Mark J.,Rango, Albert,et al. Support vector machines for recognition of semi-arid vegetation types using MISR multi-angle imagery[J],2007,107(1-2):299-311.
APA Su, Lihong,Chopping, Mark J.,Rango, Albert,Martonchik, John V.,&Peters, Debra P. C..(2007).Support vector machines for recognition of semi-arid vegetation types using MISR multi-angle imagery.REMOTE SENSING OF ENVIRONMENT,107(1-2),299-311.
MLA Su, Lihong,et al."Support vector machines for recognition of semi-arid vegetation types using MISR multi-angle imagery".REMOTE SENSING OF ENVIRONMENT 107.1-2(2007):299-311.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Su, Lihong]的文章
[Chopping, Mark J.]的文章
[Rango, Albert]的文章
百度学术
百度学术中相似的文章
[Su, Lihong]的文章
[Chopping, Mark J.]的文章
[Rango, Albert]的文章
必应学术
必应学术中相似的文章
[Su, Lihong]的文章
[Chopping, Mark J.]的文章
[Rango, Albert]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。