Arid
DOI10.1117/1.2819344
Land cover classification using moderate resolution imaging spectrometer-enhanced vegetation index time-series data and self-organizing map neural network in Inner Mongolia, China
Bagan, Hasi1; Wang, Qinxue2; Yang, Yonghui3; Yasuoka, Yoshifumi1; Bao, Yuhai4
通讯作者Bagan, Hasi
来源期刊JOURNAL OF APPLIED REMOTE SENSING
ISSN1931-3195
出版年2007
卷号1
英文摘要

The Moderate Resolution Imaging Spectroradiometer (MODIS) data offers a unique combination of spectral, temporal, and spatial resolution in comparison to other global sensors. The MODIS Enhanced Vegetation Index (EVI) product has several advantages, which make it suitable for regional land cover mapping. This paper investigates the application of MODIS EVI time-series data for mapping temperate arid and semi-arid land cover at a moderate resolution (500 m), for regional land-cover/land-use monitoring purposes. A 16-day composite EVI time-series data for 2003 (22 March 2003 - 30 September 2003) was adopted for the study. A land cover map was generated for the Inner Mongolia Autonomous Region using 7 tiles of MODIS EVI time-series data and Self-Organizing Map (SOM) neural network classification. Land-use GIS data, Landsat TM/ETM, and ASTER data were employed as reference data. The results show that the overall accuracy of land cover classification is about 84% with a Kappa coefficient of 0.8170. These results demonstrate that the SOM neural network model could work well for the multi-temporal MODIS EVI data, and suggest a potential of using MODIS EVI time-series remote sensing data to monitor desertification in Inner Mongolia with limited ancillary data and little labor-input in comparison with using high-spatial resolution remote sensing data.


英文关键词MODIS EVI neural network land cover desertification
类型Article
语种英语
国家Japan ; Peoples R China
收录类别SCI-E
WOS记录号WOS:000260914300005
WOS关键词MODIS ; DESERTIFICATION ; PATTERNS ; IMAGERY ; FUTURE ; USA
WOS类目Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/154712
作者单位1.Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan;
2.Natl Inst Environm Studies, Asian Environm Res Grp, Asia Water Environm Sect, Ibaraki 3058506, Japan;
3.Chinese Acad Sci, Inst Genet & Dev Biol, Ctr Agr Resources Res, Shijiazhuang 050021, Peoples R China;
4.Inner Mongolia Normal Univ, Coll Geog Sci, Inner Mongolia 010022, Peoples R China
推荐引用方式
GB/T 7714
Bagan, Hasi,Wang, Qinxue,Yang, Yonghui,et al. Land cover classification using moderate resolution imaging spectrometer-enhanced vegetation index time-series data and self-organizing map neural network in Inner Mongolia, China[J],2007,1.
APA Bagan, Hasi,Wang, Qinxue,Yang, Yonghui,Yasuoka, Yoshifumi,&Bao, Yuhai.(2007).Land cover classification using moderate resolution imaging spectrometer-enhanced vegetation index time-series data and self-organizing map neural network in Inner Mongolia, China.JOURNAL OF APPLIED REMOTE SENSING,1.
MLA Bagan, Hasi,et al."Land cover classification using moderate resolution imaging spectrometer-enhanced vegetation index time-series data and self-organizing map neural network in Inner Mongolia, China".JOURNAL OF APPLIED REMOTE SENSING 1(2007).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bagan, Hasi]的文章
[Wang, Qinxue]的文章
[Yang, Yonghui]的文章
百度学术
百度学术中相似的文章
[Bagan, Hasi]的文章
[Wang, Qinxue]的文章
[Yang, Yonghui]的文章
必应学术
必应学术中相似的文章
[Bagan, Hasi]的文章
[Wang, Qinxue]的文章
[Yang, Yonghui]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。