Arid
DOI10.1080/01431160600784242
Geomorphologic mapping from hyperspectral data, using Gaussian mixtures and lower confidence bounds
Koltunov, A.; Crouvi, O.; Ben-Dor, E.
通讯作者Koltunov, A.
来源期刊INTERNATIONAL JOURNAL OF REMOTE SENSING
ISSN0143-1161
出版年2006
卷号27期号:20页码:4545-4566
英文摘要

Probabilistic classification under the Gaussian mixture model is normally based on posterior probability (p. p.) estimates of class membership. The question, how accurate they are for a given pixel, is traditionally left without attention, which may lead to unreasonable optimism about the classification results obtained. Addressing the issue, Koltunov and Ben-Dor have proposed an unsupervised, lower confidence bound (l.c.b.)-based method for thematic interpretation of remote sensing data. This method predicts the sampling properties of the p. p. estimators of a given pixel, to assess reliability of the estimates. The present paper describes a modified version of the method. In particular, instead of defining the l. c. bounds in terms of two first moments of the sampling distribution, as has been suggested previously, we use percentiles. Combining this with a probabilistic model of supervised identification of the mixture components yields the post-classification uncertainty value for a given pixel and the confidence level, at which this value is proven to be maximal. In the application to an and landscape in the Southern Negev desert, Israel, the compressed raw hyperspectral data acquired by the Digital Airborne Imaging Spectrometer (DIAS-7915) was clustered once, whereas two thematic tasks were solved corresponding to different map legends, identification procedures, and the associated requirements to the level of detail and reliability of the thematic maps. The reference data collected in the field have provided evidence for accurate algorithmically estimated confidence bounds of the classification quality. The classification has revealed new information about the geomorphological subunits forming the study area.


类型Article
语种英语
国家Israel
收录类别SCI-E
WOS记录号WOS:000241651200010
WOS关键词CLASSIFICATION ; REFLECTANCE ; MINERALS
WOS类目Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/151761
作者单位(1)Tel Aviv Univ, Dept Geog & Human Environm, IL-69978 Tel Aviv, Israel;(2)Geol Survey Israel, Jerusalem, Israel
推荐引用方式
GB/T 7714
Koltunov, A.,Crouvi, O.,Ben-Dor, E.. Geomorphologic mapping from hyperspectral data, using Gaussian mixtures and lower confidence bounds[J],2006,27(20):4545-4566.
APA Koltunov, A.,Crouvi, O.,&Ben-Dor, E..(2006).Geomorphologic mapping from hyperspectral data, using Gaussian mixtures and lower confidence bounds.INTERNATIONAL JOURNAL OF REMOTE SENSING,27(20),4545-4566.
MLA Koltunov, A.,et al."Geomorphologic mapping from hyperspectral data, using Gaussian mixtures and lower confidence bounds".INTERNATIONAL JOURNAL OF REMOTE SENSING 27.20(2006):4545-4566.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Koltunov, A.]的文章
[Crouvi, O.]的文章
[Ben-Dor, E.]的文章
百度学术
百度学术中相似的文章
[Koltunov, A.]的文章
[Crouvi, O.]的文章
[Ben-Dor, E.]的文章
必应学术
必应学术中相似的文章
[Koltunov, A.]的文章
[Crouvi, O.]的文章
[Ben-Dor, E.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。