Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.2113/100.1.0087 |
Response of supergene processes to episodic Cenozoic uplift, pediment erosion, and ignimbrite eruption in the porphyry copper province of southern Peru | |
Quang, CX; Clark, AH; Lee, JKW; Hawkes, N | |
通讯作者 | Clark, AH |
来源期刊 | ECONOMIC GEOLOGY
![]() |
ISSN | 0361-0128 |
EISSN | 1554-0774 |
出版年 | 2005 |
卷号 | 100期号:1页码:87-114 |
英文摘要 | The Jurassic to middle Eocene porphyry copper deposits and prospects exposed on the Pacific slopes of the central Andean Cordillera Occidental of southern Peru between latitudes 16 degrees 30’ and 18 degrees S record a protracted, ca. 30-m.y. history of supergene processes that were fundamentally controlled by the evolving local geomorphologic environment, itself a response to successive regional tectonic events, including the late Eocene Incaic, the late Oligocene to earliest Miocene Aymara, and the middle to late Miocene Quechuan events. Weathering of the porphyry centers also overlapped temporally ,vith the local resumption of arc volcanismin southern Peru at 25.5 Ma following a 27-m.y. amagmatic interval, and supergene processes were variously interrupted or terminated by ignimbrite blanketing, although in several locations supergene profiles were preserved by such cover. The landform chronology for the area surrounding the Cuajone, Quellaveco, and Toquepala deposits (ca. 17 degrees S) is revised and extended northwestward through field mapping to the Cerro Verde-Santa Rosa district (ca. 16 degrees 30’ S). The Ar-40-Ar-39 incremental-heating dates of supergene alunite group minerals from the Angostura (38.1 and 38.8 Ma) and Posco (38.8 Ma) prospects and the Cerro Verde deposit (36.1-38.8 Ma) demonstrate that supergene processes were underway in the late Eocene beneath a subplanar topography resulting from uplift and erosion during the Incaic orogny, now represented by a regional unconformity in the Cenozoic volcanic-sedimentary rock succession. Broadly contemporaneous supergene processes were probably active in the Cuajone-Quellaveco-Toquepala district. Slow erosion and the accumulation of elastic sediments through the tectonically quiescent early to mid-Oligocene are envisaged to have caused a rise in the water table and the widespread preservation of the Incaic supergene profiles. Aymara uplift subsequently led to the incision of the 23.8 to 24 Ma Altos de Camilaca and the 18.8 to 19.1. Ma Pampa Lagunas pediplains and their regional correlatives. The ensuing water-table lowering was associated with intense leaching and sulfide enrichment from the late Oligocene (24.4-28 Ma natroalunite at Cerro Verde, 26-27 Ma natroalunite at Santa Rosa, and 28.6 Ma jarosite at La Llave) to the early Miocene (23 Ma alunite and 21 Ma natroalunite at Cerro Verde, and 19.2 Ma jarosite at La Llave) and was plausibly responsible for much of the upgrading of the Cuajone and Toquepala deposits and thr Quellaveco prospect, which are intersected by both the Altos de Camilaca pediplain and erosional features representing upslope extensions of the Pampa Lagunas pediplain. The younger supergene profiles were widely superimposed on the remnants of those generated during the Incaic orogeny. Middle Miocene (<= 14.2 Ma biotite age) Chuntacala Formation flows protected the Cuajone supergene profile from destruction by erosion, but at 13.0 Ma interrupted supergene processes at Quellaveco. Revision of volcano-stratigraphic relationships in the latter area reveals that subsequent erosion of the Chuntacala Formation ignimbrites and part of the supergene profile took place prior to the deposition of a 10.1 Ma ash-flow tuff of the Asana Formation. Elsewhere, supergene activity persisted at the Cachuyito prospect through 11.4 Ma, and minor jarosite development occurred at least Until 4.9 Ma both there and at Cerro Verde during and following the Multiple Pediment landform stage (ca. 7.9-1.5.0 Ma). The occurrence of relies of late Eocene alunite group minerals within considerably younger late Oligocene to late Miocene supergene alteration profiles suggests that the overall physiographic configuration of the Pacific piedmont of southern Peru remained remarkably consistent from the late Eocene to the middle Miocene. Moreover, the new age data confirm that, as in northern Chile, semiarid climatic conditions prevailed along much of the plate boundary from the mid-Eocene until the late Miocene or early Pliocene onset of hyperaridity. The local geomorphologic and volcanic conditions in southern Peru, however, conspired to generate more complex supergene profiles with lower aggregate enrichment factors relative to the strongly enriched profiles in the late Eocene to early Oligocene porphyry copper belt of northern Chile, which underwent supergene upgrading over relatively brief periods. |
类型 | Article |
语种 | 英语 |
国家 | Canada ; Peru |
收录类别 | SCI-E |
WOS记录号 | WOS:000227707900006 |
WOS关键词 | NORTHERN CHILE ; EL-SALVADOR ; SOUTHEASTERN PERU ; VOLCANIC-ROCKS ; ATACAMA DESERT ; CENTRAL ANDES ; EVOLUTION ; MINERALIZATION ; CORDILLERA ; AGE |
WOS类目 | Geochemistry & Geophysics |
WOS研究方向 | Geochemistry & Geophysics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/148883 |
作者单位 | (1)Queens Univ, Dept Geol Sci & Geol Engn, Kingston, ON K7L 3N6, Canada;(2)Rio Tinto Min & Explorat Ltd, Lima 18, Peru |
推荐引用方式 GB/T 7714 | Quang, CX,Clark, AH,Lee, JKW,et al. Response of supergene processes to episodic Cenozoic uplift, pediment erosion, and ignimbrite eruption in the porphyry copper province of southern Peru[J],2005,100(1):87-114. |
APA | Quang, CX,Clark, AH,Lee, JKW,&Hawkes, N.(2005).Response of supergene processes to episodic Cenozoic uplift, pediment erosion, and ignimbrite eruption in the porphyry copper province of southern Peru.ECONOMIC GEOLOGY,100(1),87-114. |
MLA | Quang, CX,et al."Response of supergene processes to episodic Cenozoic uplift, pediment erosion, and ignimbrite eruption in the porphyry copper province of southern Peru".ECONOMIC GEOLOGY 100.1(2005):87-114. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。