Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1029/1999JE001190 |
DIRTCam in the desert: The Silver Lake field test of the Robotic Arm Camera | |
Yingst, RA; Smith, PH; Lemmon, MT; Marcialis, RL; Rice, JW; Weinberg, JD | |
通讯作者 | Yingst, RA |
来源期刊 | JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
![]() |
ISSN | 0148-0227 |
出版年 | 2001 |
卷号 | 106期号:E4页码:7721-7732 |
英文摘要 | Robotic Arm Camera (RAC) is a panchromatic imager included as part of the Mars Volatiles and Climate Surveyor (MVACS) science experiment on Mars Polar Lander and on the Mars 2001 lander. It is designed to take both panoramic and microscopic images in order to gather data on the morphology and mineralogy of surface materials. In order to demonstrate these capabilities, a field test was conducted at Silver Lake playa in the Mojave Desert. The test consisted of going to a remote site unknown to the science team and providing that team with a data set of RAC panoramic, anaglyph, and microscopic images similar to what would be available during an actual landing. With only this information the science team attempted a determination of the position and the geology of the field test site. Using panoramic and anaglyph images provided by RAG, in conjunction with overflight images simulating data from a descent camera, the landing site for the field test was determined within 50 m of the actual site as lying near both a playa and an alluvial fan. Images of samples from the surface and within the trench revealed grain morphology, texture, and mineralogy indicating a soil dominated by quartz and feldspar, interspersed with a minor mafic component. Grain-size distribution was bimodal, with small, rounded to subrounded grains dominant at lower depths and larger, more angular grains more plentiful near the surface. This mineralogy is confirmed by the geology of the site and the data provided by the descent images and mid-IR measurements. RAC has demonstrated its ability to image the local geology and identify the major mineralogic components of an unknown site. These abilities will be crucial in understanding both the macroscopic and the microscopic geology of future Mars landing sites. This test also has demonstrated the crucial link between RAC data and complementary data sets such as context images and compositional data that can support the mineralogic observations made by RAG. |
类型 | Article |
语种 | 英语 |
国家 | USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000168288300012 |
WOS类目 | Geochemistry & Geophysics |
WOS研究方向 | Geochemistry & Geophysics |
来源机构 | University of Arizona |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/141264 |
作者单位 | (1)Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA |
推荐引用方式 GB/T 7714 | Yingst, RA,Smith, PH,Lemmon, MT,et al. DIRTCam in the desert: The Silver Lake field test of the Robotic Arm Camera[J]. University of Arizona,2001,106(E4):7721-7732. |
APA | Yingst, RA,Smith, PH,Lemmon, MT,Marcialis, RL,Rice, JW,&Weinberg, JD.(2001).DIRTCam in the desert: The Silver Lake field test of the Robotic Arm Camera.JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS,106(E4),7721-7732. |
MLA | Yingst, RA,et al."DIRTCam in the desert: The Silver Lake field test of the Robotic Arm Camera".JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS 106.E4(2001):7721-7732. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。