Arid
DOI10.1002/hyp.257
Application of a data-based mechanistic modelling (DBM) approach for predicting runoff generation in semi-arid regions
Mwakalila, S; Campling, P; Feyen, J; Wyseure, G; Beven, K
通讯作者Mwakalila, S
来源期刊HYDROLOGICAL PROCESSES
ISSN0885-6087
出版年2001
卷号15期号:12页码:2281-2295
英文摘要

This paper addresses the application of a data-based mechanistic (DBM) modelling approach using transfer function models (TFMs) with non-linear rainfall filtering to predict runoff generation from a semi-arid catchment (795 km(2)) in Tanzania. With DBM modelling, time series of rainfall and streamflow were allowed to suggest an appropriate model structure compatible with the data available. The model structures were evaluated by looking at how well the model fitted the data, and how well the parameters of the model were estimated. The results indicated that a parallel model structure is appropriate with a proportion of the runoff being routed through a fast flow pathway and the remainder through a slow flow pathway. Finally, the study employed a Generalized Likelihood Uncertainty Estimation (GLUE) methodology to evaluate the parameter sensitivity and predictive uncertainty based on the feasible parameter ranges chosen from the initial analysis of recession curves and calibration of the TFM. Results showed that parameters that control the slow flow pathway are relatively more sensitive than those that control the fast flow pathway of the hydrograph. Within the GLUE framework, it was found that multiple acceptable parameter sets give a range of predictions. This was found to be an advantage, since it allows the possibility of assessing the uncertainty in predictions as conditioned on the calibration data and then using that uncertainty as part of the decision-making process arising from any rainfall-runoff modelling project. Copyright (C) 2001 John Wiley & Sons, Ltd.


英文关键词data-based mechanistic modelling approach transfer function models Generalized Likelihood Uncertainty Estimation parameter sensitivity and predictive uncertainty
类型Article
语种英语
国家Belgium ; England
收录类别SCI-E
WOS记录号WOS:000170791600004
WOS关键词RESPONSE CHARACTERISTICS ; RAINFALL-RUNOFF ; CATCHMENTS ; UNCERTAINTY ; CALIBRATION ; SCALE ; FLOW
WOS类目Water Resources
WOS研究方向Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/140898
作者单位(1)Katholieke Univ Leuven, Inst Land & Water Management, B-3000 Louvain, Belgium;(2)Katholieke Univ Leuven, Fac Agr & Appl Biol Sci, B-3000 Louvain, Belgium;(3)Univ Lancaster, Inst Environm & Nat Sci, Lancaster LA1 4YW, England
推荐引用方式
GB/T 7714
Mwakalila, S,Campling, P,Feyen, J,et al. Application of a data-based mechanistic modelling (DBM) approach for predicting runoff generation in semi-arid regions[J],2001,15(12):2281-2295.
APA Mwakalila, S,Campling, P,Feyen, J,Wyseure, G,&Beven, K.(2001).Application of a data-based mechanistic modelling (DBM) approach for predicting runoff generation in semi-arid regions.HYDROLOGICAL PROCESSES,15(12),2281-2295.
MLA Mwakalila, S,et al."Application of a data-based mechanistic modelling (DBM) approach for predicting runoff generation in semi-arid regions".HYDROLOGICAL PROCESSES 15.12(2001):2281-2295.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mwakalila, S]的文章
[Campling, P]的文章
[Feyen, J]的文章
百度学术
百度学术中相似的文章
[Mwakalila, S]的文章
[Campling, P]的文章
[Feyen, J]的文章
必应学术
必应学术中相似的文章
[Mwakalila, S]的文章
[Campling, P]的文章
[Feyen, J]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。