Arid

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
Spatial scale effect of Sentinel-2, Landsat OLI, and MODIS imagery in the assessment of landscape condition of Zagros mountains 期刊论文
发表期刊: GEOCARTO INTERNATIONAL. 出版年: 2021
作者:  Safaei, Mojdeh;  Jafari, Reza;  Datta, Pawan;  Bashari, Hossein;  Pothier, David;  Koch, Barbara
收藏  |  浏览/下载:51/0  |  提交时间:2021/07/30
Spatial resolution  multi-sensor data  upscaling  semi-arid rangeland and forest  fragmentation  
Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion 期刊论文
发表期刊: AGRICULTURAL AND FOREST METEOROLOGY. 出版年: 2014, 卷号: 186, 页码: 1-11
作者:  Cammalleri, C.;  Anderson, M. C.;  Gao, F.;  Hain, C. R.;  Kustas, W. P.
收藏  |  浏览/下载:25/0  |  提交时间:2019/11/29
Thermal remote sensing  Surface energy balance  Multi-sensor data fusion  
Nature Inspired Optimization Techniques For Flood Assesment And Land Cover Mapping Using Satellite Images 学位论文
出版年: 2014
作者:  Senthilnath;J
收藏  |  浏览/下载:14/0  |  提交时间:2019/11/29
Satellite Images  Remote Sensing Sensor System  Flood Assesment - Satellite Images  Land Cover Mapping  Satellite Image Processing  Spatio-Temporal Satellite Data  Multi-Sensor Satellite Data  Multi-Modal Satellite Image  Flood MODIS Image  Multisensor Image Alignment  Flood Damage Assesment  Satellite Imagery  Applied Optics  
Basin scale water management and forecasting using artificial neural networks 期刊论文
发表期刊: JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION. 出版年: 2005, 卷号: 41, 期号: 1, 页码: 195-208
作者:  Khalil, AF;  McKee, M;  Kemblowski, M;  Asefa, T
收藏  |  浏览/下载:11/0  |  提交时间:2019/11/28
artificial neural networks  multi-sensor data  irrigation  water management  multi-time scale forecasting  streamflow  
Preparing the Joint Multi-Sensor Mine-signatures project database for data fusion 会议论文
会议名称: IEEE International Geoscience and Remote Sensing Symposium. 会议地点: SYDNEY, AUSTRALIA. 会议日期: JUL 09-13, 2001
作者:  Verlinde, P;  Acheroy, M;  Nesti, G;  Sieber, A
收藏  |  浏览/下载:8/0  |  提交时间:2019/12/07
Humanitarian de-ruining  multi-sensor data fusion  MsMs project database