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Abstract Ecosystems may exhibit catastrophic shifts, i.e.
abrupt and irreversible responses of ecosystem functions
and services to continuous changes in external conditions.
The search for early warning signs of approaching shifts
has so far mainly been conducted on theoretical models
assuming spatially-homogeneous external pressures (e.g.
climatic). Here, we investigate how a spatially explicit pres-
sure may affect ecosystems’ risk of catastrophic shifts and
the associated spatial early-warning signs. As a case study,
we studied a dryland vegetation model assuming ‘associa-
tional resistance’, i.e. the mutual reduction of local grazing
impact by neighboring plants sharing the investment in
defensive traits. Consequently, grazing pressure depends on
the local density of plants and is thus spatially-explicit.
We focus on the distribution of vegetation patch sizes,
which can be assessed using remote sensing and are candi-
date early warning signs of catastrophic shifts in drylands.
We found that spatially explicit grazing affected both the
resilience and the spatial patterns of the landscape. Grazing
impact became self-enhancing in more fragmented land-
scapes, disrupted patch growth and put apparently ‘healthy’
drylands under high risks of catastrophic shifts. Our study
highlights that a spatially explicit pressure may affect the
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nature of the spatial pattern observed and thereby change
the interpretation of the early warning signs. This may gen-
eralize to other ecosystems exhibiting self-organized spatial
patterns, where a spatially-explicit pressure may interfere
with pattern formation.
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Introduction

Many ecosystems respond in an abrupt manner
to a gradually increasing pressure (Suding et al. 2004;
Suding and Hobbs 2009), a phenomenon which has been
referred to as ‘catastrophic shifts’ in the literature (Holling
1973; Scheffer et al. 2001). Identifying reliable indica-
tors of imminent catastrophic shifts would help to prevent
irreversible degradation and thus improve sustainable
ecosystem management. Recent model analyses suggest
that a series of so-called generic early warning signals in
time (Scheffer et al. 2009; Dakos et al. 2012) and
space (Scheffer et al. 2009; Kéfi et al. 2014) can be
used to forecast decreasing ecosystem resilience, where
‘resilience’ refers to the magnitude of disturbance that
an ecosystem can endure without experiencing a catas-
trophic shift (Gunderson 2000). In particular, metrics
of spatial structure have been discussed as indicators
of degradation in ecosystems exhibiting a clear spatial
organisation, such as drylands (Rietkerk et al. 2004; Kéfi
et al. 2007b, 2014; Bailey 2011). In these ecosystems,
aggregation of individuals into patches (i.e. clustering)
becomes more pronounced with increasing pressure, and
the distribution of patch-sizes deviates increasingly from
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a pure power-law as the largest patches fragment into
smaller ones (Kéfi et al. 2007b, 2014; Lin et al. 2010;
Moreno-de las Heras et al. 2011). However, some experi-
mental studies have not confirmed the expected trends in
spatial patterns along gradients of pressure (Cline et al.
2014) or have been subject to important noise in the data
(Carpenter et al. 2011). Therefore, to make use of spatial
indicators, it is important to identify the conditions under
which spatial pattern can be an informative indicator of
ecosystem degradation.

The great majority of the model approaches that have
contributed to the identification of early warning signals
have assumed the existence of locally constrained, positive
feedback mechanisms on recruitment or growth of individ-
uals (Callaway 1995; van de Koppel et al. 1997; Aguiar
and Sala 1999; Puigdefábregas 2005; Borgogno et al. 2009).
These local feedbacks have been shown to play a crucial
role in both the emergence of spatial patterns and ecosys-
tem resilience (Guichard et al. 2003; Rietkerk et al. 2004;
Barbier et al. 2006; Kéfi et al. 2007b).

At the same time, these models typically consider exter-
nal pressures, e.g. mortality by consumption or disease
(Rietkerk et al. 2002; Kéfi et al. 2007b, 2011; Manor and
Shnerb 2008; von Hardenberg et al. 2010), to be homoge-
neous in space, meaning that they are affecting all individ-
uals equally. However, many types of pressures are likely
to include positive local feedback mechanisms that render
the pressure spatially heterogeneous, i.e. cases where the
intensity of the pressure depends on the local density of
individuals. For instance, the physical damage caused by
heavy storms on trees is highest next to openings in the for-
est canopy (Kubo et al. 1996; Pascual and Guichard 2005).
This mechanism explains the robust formation of scale-free
gap clusters in forests (Pascual and Guichard 2005). Similar
scale-free patterns occur in wave-disturbed intertidal mus-
sel beds where biotic interactions determine local chances
of establishment and where the abiotic, physical impact of
waves is highest on mussels at the edge of a gap, due to their
reduced byssal thread attachment to the ground (Guichard
et al. 2003). Also, predator-prey dynamics in a spatially
explicit context lead to clustering of the prey because of the
density-dependent reduction of individual feeding pressure
(Pascual and Guichard 2005). Including spatially hetero-
geneous pressures in models of pattern formation should
therefore be of great relevance for our understanding of
ecosystem dynamics as well as the relevant indicators of
ecological resilience.

This paper aims at addressing the effect of a spatially
explicit pressure on ecosystem resilience, emergent spatial
patterns and the possible use of these patterns as indica-
tors of loss of ecosystem resilience. Therefore, we chose to
investigate the effect of livestock grazing on the vegetation

of arid ecosystems as a case study. Grazing, a major factor
of desertification in large parts of the world (Asner et al.
2004; Millennium Ecosystem Assessment 2005), can have
a strong spatial component (Callaway 1995; Bailey et al.
1996; WallisDeVries et al. 1999; van de Koppel et al. 2002).
In arid shrublands that have historically been exposed to
grazing by large herbivores, most plant species have devel-
oped mechanical defenses against large herbivores, such as
fast regrowth from the root stock, indigestible tissue, the
development of prostrate growth forms and the evolution of
spines and thorns (Lucas et al. 2000;Dı́as 2007).

Thus, coinciding with the effects of abiotic facilitation,
i.e. the amelioration of the local environmental conditions
through shading or water retention by the presence of vege-
tation (Milchunas and Noy-Meir 2002), the canopy of plants
with defenses against large herbivores also provides refu-
gia from large herbivores to neighboring plants (Milchunas
and Noy-Meir 2002; Baraza et al. 2006; Graff et al. 2007;
Barbosa et al. 2009). Similar to the examples of mussel
beds and forest gaps named above, this mechanism leads to
low individual mortality in places where local plant cover is
high. We will refer to this feature of a spatially constrained
negative density dependence of mortality as ‘associational
resistance’ (see Milchunas and Noy-Meir 2002 for a dis-
cussion on the term). Vice versa, a low local plant cover
will increase the risk of dying due to grazing for the
remaining vegetation (Milchunas and Noy-Meir 2002). As
a consequence, if the overall benefit of grazing protection
outweighs the cost of competition for limiting resources,
plants coincidentally team up with other plants (Atsatt and
O’Dowd 1976; Graff et al. 2007), which contributes to the
formation of patch pattern at the landscape scale (Sala 1988;
Milchunas and Noy-Meir 2002). In such case, the highest
risk of being grazed is borne by plants that grow isolated
from others, whereas plants that are growing at the border
or in the center of a patch are less vulnerable to grazing or
even entirely unaffected because they benefit from associ-
ational resistance (Milchunas and Noy-Meir 2002; Barbosa
et al. 2009).

Here, we introduce associational resistance in a spatially
explicit dryland vegetation model to investigate the effect of
a heterogeneous pressure on pattern formation and ecosys-
tem resilience. We hypothesize that such spatially hetero-
geneous pressure adds positive feedbacks to the process
of patch formation, which may as a consequence reinforce
the emergence of sharp thresholds for ecosystem degrada-
tion. Furthermore, because the emerging spatial structure is
affected by the pressure, it is worthwhile investigating the
behavior of the suggested spatial indicators of degradation:
how do the spatial indicators, and the patch size distribu-
tion in particular, behave under a spatially heterogeneous
pressure?
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Methods

We introduced the mechanism of associational resistance
by which neighboring plants protect each other from graz-
ing in a model of dryland vegetation dynamics (Kéfi
et al. 2007b). The model is an interaction particle system
(Durrett and Levin 1994) that describes the landscape as a
grid of cells, each of which can be in one of three states:
‘vegetated’ cells are occupied by a plant (annotated as ‘+’ in
equations; black cells in figures); ‘empty’ cells do not con-
tain adult plants but are suitable for seeds to germinate and
establish (‘0’, grey cells); ‘degraded’ cells represent bare
ground which has been eroded, lacks organic matter, is char-
acterized by bad water retention, and therefore cannot be
colonized by arriving seeds (‘−’, white cells).

Transitions between cell states are only possible between
vegetated and empty (by the processes of plant ‘death’
and ‘recolonization’) and between empty and degraded (by
‘degradation’ and ‘regeneration’). In biological terms, a
degraded site needs to be enriched first, before a plant can
establish on it. Conversely, when a plant dies, it leaves the
spot empty but still enriched, until it becomes degraded by
erosion. The probabilities for these transitions to occur on
any cell currently at state i are defined in the following para-
graphs. They might be constants or functions of the global
vegetation cover, ρ+, or of the local vegetation cover in
the neighborhood of the focal cell, q+|i (i.e. proportion of
neighbors in state ‘+’ given that the focal cell is in state ‘i’).

The model

Under the harsh environmental conditions of drylands,
plants enhance the abiotic conditions in their direct neigh-
borhood by accumulating organic matter, providing shade
and retaining water. The original model by Kéfi et al.
(2007b) mimics such local facilitation of plants in drylands
by defining the probability w{−,0} of a degraded cell (state
‘−’) to regenerate (change into state ‘0’) as a function of
the plant cover in the direct neighborhood, q+|− (four near-
est cells, i.e. “von Neumann”-neighborhood of range 1, Kéfi
et al. 2007b):

w{−,0} = r + q+|−f , (1)

where r is the intrinsic regeneration rate of degraded cells in
the absence of vegetated neighbors, and f is the intensity of
facilitation provided by vegetated neighbors, which is max-
imal when all four neighbors are occupied (i.e. q+|− = 1).
Thus, plants act as ‘ecosystem engineers’ that increase the
availability of their own habitat (Gurney and Lawton 1996;
Jones et al. 1997; Gilad et al. 2007; Hastings et al. 2007).

The probability of empty cells (in state ‘0’) to be recolo-
nized by vegetation is

w{0,+} = (
δρ+ + (1 − δ) q+|0

)
(b − cρ+) , (2)

where the first term of the equation represents seed disper-
sal including the proportion, δ, of seeds originating from all
over the lattice (global dispersal), and the proportion 1−δ of
seeds arriving from plants in the direct neighborhood (local
dispersal). The second term represents the germination and
early survival rate, b, in the absence of competition which
decreases with the global competition for limited resources,
c, reflecting that the recruitment of a new plant becomes
more difficult with increasing plant cover, ρ+, because of
competition for the limited resource at the landscape scale
(Kéfi et al. 2007b). The germination and early survival rate,
b, is a direct consequence of the environmental quality of
the landscape and therefore we vary this term as a proxy for
homogeneous environmental pressure.

The probability of empty cells to degrade is a constant
rate, d:

w{0,−} = d . (3)

Finally, in the original model of Kéfi et al. (2007b),
the intrinsic plant mortality rate is defined as a constant,
w{+,0} = m0, which can be interpreted as the inverse of
the average plant lifespan. While this approach assumed
spatially homogeneous pressure (Fig. 1a), associational
resistance renders grazing pressure on an individual plant
dependent on its local neighborhood and therefore on the
current spatial configuration (Fig. 1b).

To account for the spatially heterogeneous impacts of
grazing due to associational resistance, we assumed that a
plant’s vulnerability to grazers decreases with the propor-
tion of occupied neighbors, q+|+. The individual probability
of dying is therefore defined as

w{+,0} = m0 + g0
(
1 − q+|+

)
, (4)

where the additional mortality due to grazing is maximized
to g0 if a plant has no vegetated neighbor (i.e. q+|+ = 0)
and gradually reduces to 0 with an increasing fraction of
occupied neighbors, q+|+.

Numerical simulations

We applied the transition probabilities defined in Eqs. 1–4
on 100 × 100 squared grid cells assuming that each grid cell
covers an area of about 0.25 m2 (the average size of an adult
plant individual). We initiated the landscape with two dif-
ferent starting conditions: from high cover to quantify veg-
etation patterns in an undegraded landscape and from very
low cover to assess the ability of the landscape to recover
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Fig. 1 Individual plant risk of
death due to grazing (bars). a In
most previous spatially explicit
models of dryland resilience,
grazing was defined
homogeneously, i.e. affected all
plants likewise, regardless of
local cover. b A more realistic
approach to grazing assumes
plant death to be reduced by the
presence of other plants in the
direct neighborhood, i.e. the
mechanism of ‘associational
resistance’, with implications
for the total plant mortality at
both high (left panels) and low
(right panels) vegetation cover

a)

b)

high vegetation cover low vegetation cover

homogenous grazing pressure

spatially heterogeneous grazing pressure

environmental pressure

from a degraded state (see below for further specifications).
A timestep was defined to include the dynamics occur-
ring within 1 year. The model dynamics followed stochastic
processes: at each timestep, the transition probabilities of
each cell were compared against a uniform random num-
ber to determine if the cell remained unchanged or if one
of the possible transitions occurred (i.e. synchronous updat-
ing). The local densities were calculated assuming periodic
boundary conditions (i.e. cells at left/upper border were
neighboring the cells at the right/lower border and vice
versa).

The model of this study inherited all parameters from the
model of Kéfi et al. (2007b; r = 0.01, f = 0.9, δ = 0.1,
c = 0.2, d = 0.1). We assumed only a small proportion of
long-range dispersal, δ, following the empirical evidence for
predominantly local dispersal in drylands (Aguiar and Sala
1994). Furthermore, the intrinsic mortality (m0 = 0.05) and
grazing intensities (0 < g0 < 0.5) reflected an average indi-
vidual lifespan between 20 years, if no additional grazing
mortality was taking effect due to associational resistance,
and 2 years for strongly exposed plants (Condit et al. 1995).

If not stated otherwise, we performed the following sim-
ulations and measurements along a gradient of grazing
intensity, g0, and environmental pressure, (1 − b).

Quantifying the vegetation patterns

The state of persistent vegetation cover was assessed by
starting grids from randomly scattered high plant cover with
0.8 ≤ ρ+ ≤ 0.9 and 50 % of the remaining cells in the
degraded state. Dynamics were run until a steady state was
reached (i.e. difference of mean vegetation cover, ρ+, over
two subsequent periods of 200 years was inferior to 10−6)

or the vegetation went extinct. The simulations were repli-
cated 5–10 times. Replicates that did not reach a steady state
after 5000 years were discarded (less than 1 % of total simu-
lation runs), but simulations were repeated until at least five
replicates fulfilled the criterion.

A set of simple descriptors of the landscape state were
calculated as the average in a period of the final 400 years
of the simulation after steady state. These included the aver-
age total vegetation cover, ρ+, the average local vegetation
cover, q+|+ (i.e. the cover in the local neighborhood, q+|+,
averaged over all vegetated cells on the grid) and the cluster-
ing coefficient, c++ = ρ+/q+|+, which is larger than one if
plants are more associated in space than expected by chance.

Additionally, more advanced metrics of spatial structure
were assessed at the landscape scale at the end of the simula-
tions. For each replicate, the number and size of vegetation
patches, i.e. continuously vegetated areas connected by at
least one side of a cell, were assessed. Of these, the largest
patch size, smax, was calculated and averaged across all
replicates of a parameter set.

Furthermore, the inverse cumulative distribution of patch
sizes observed in the simulated landscapes was derived:
unique patch sizes, s, occurring at the end of each simula-
tion run were ranked and for each value the frequency, p,
of a given patch being equal or larger than s was calculated
by dividing s by the total number of patches in the land-
scape (White et al. 2008). We pooled the inverse cumulative
patch–size distributions (i.e. the obtained p and s values)
of all replicates for a given parameter set (n = 5 − 10)
before fitting models to these distributions. Assessing the
shape of the inverse cumulative patch–size distribution was
done in two steps: To test for up-bent vs. down-bent cur-
vature of the distributions, we fitted a polynomial model
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on bootstrapped data (log(p) = a log(s) + b log(s)2; ordi-
nary nonparametric resampling using the R-package ‘boot’;
Canty and Ripley (2015); least-squares fitting) to obtain
95 % confidence intervals of the parameters a and b of the
polynomial. We then chose one of the following probabil-
ity density functions based on the significance and algebraic
sign of the parameter b, which determines the curvature of
the fitted polynomial (Kéfi et al. 2007a, 2014; White et al.
2008): a pure power law (p = s−λ+1) if no significant
curvature was detected, i.e. the confidence intervals for b

included zero (λ corresponds to the exponent of the corre-
ponding non-cumulative patch-size distribution); an up-bent
power law due to the presence of large spanning patches
in the landscape, ranging from one edge of the lattice to
another (p = pmin + s−λ+1; pmin being the lower limit
of observed probabilities) if confidence intervals for b only
included positive values; and a down-bent power law with
a truncation threshold (p = s−λ+1 exp(s/smax)) if con-
fidence intervals for b only included negative values (the
model selection by bootstrapped polynomial coefficients
is respecting the error structure of the data and is more
conservative than model selection using AIC). The log-log
transforms of these models were fitted using nonlinear least-
squares on the log-log-transformed data (White et al. 2008).
This method is adequatly mapping the shape of the dis-
tributions (other fitting methods, e.g. maximum-likelihood
estimation, would have been marginally more precise but
were unavailable for the up-bent power-law function, White
et al. 2008; Clauset et al. 2009).

Eventually, we assigned the outcome of the simulations
obtained for each parameter set to one of the following five
cases: (i) fully vegetated, if the vegetation cover was almost
complete (ρ+ > 0.8) and thus largely aggregated into one
single patch; (ii) up-bent power law, if the inverse cumula-
tive patch–size distribution was best fitted by a power law
with a lower limit defined by large spanning patches; (iii)
power law, if the inverse cumulative patch–size distribution
was best described by a straight power law; (iv) down-bent
power law, if the inverse cumulative patch–size distribution
was best described by a truncated power law where the large
vegetation patches were significantly smaller than expected
in a pure power law; (v) desert, if the vegetation cover was
negligible (ρ+ < 0.01). We compared the exponent λ of the
power law for the cases ii–iv.

Capacity of the ecosystem to recover

In a second set of simulations, we ran the same parame-
ter combinations but starting from a desert state in which a
very low initial vegetation cover was introduced (randomly
scattered plants, ρ+ = 0.001, in a fully degraded land-
scape, ρ− = 0.999; i.e. a ‘perturbation’ of the desert state
by adding ten vegetated cells). The simulations started with

1 year of regeneration only before grazing set in, and were
run until vegetation went extinct or reached a vegetation
cover of 1 % within a period of 100 years (corresponding
to a tenfold increase in initial vegetation), in which case
we considered that the landscape was undergoing recovery.
Since the events in the model are stochastic, not every repli-
cate would recover with certainty, even if the conditions
are feasible. Therefore, those simulations were replicated
100 times. Note also that the size of the lattice constrains
the minimal possible plant cover (min (ρ+) = 0.0001 =
1/(100 × 100)).

We considered the degradation to be irreversible, i.e. the
desert state being ‘stable’, if less than 50 % of the replicates
recovered. Conversely, we considered the degradation to be
reversible if more than 50 % of the replicates recovered.

Results

Simultaneously increasing environmental (1 − b) and graz-
ing (g) pressures showed a gradual decline in vegetation
cover (Fig. 2a; black contours) until it reached a threshold
value of pressure after which the landscape degraded into
a desert (which we defined as a landscape with less than
1 % cover). Subsequently, we refer to this threshold value as
the ‘tipping point’. Once degraded, restoration was unlikely
(gray area in Fig. 2a) unless the combined pressure level
was decreased below a second threshold (border between
gray and white areas). The pressure levels where both desert
and vegetated landscapes co-exist (i.e. overlap of grey area
and black contours in Fig. 2a) define the domain of ‘bista-
bility’. In this range of pressure levels, the ecosystem can
be in either one of the two states depending on its history,
and perturbations can push the ecosystem from one stable
state to the other. The bistability domain became wider with
increasing grazing pressure, indicating that grazing reduced
the ecosystem resilience (Fig. 2a).

For clarification, we show two cross-sections through the
parameter space at low vs. high grazing pressure (g0 =
0.1 vs. g0 = 0.4, Fig. 2b, c). In both cases, vegetation
cover declined with increasing environmental pressure until
it reached a tipping point at which the ecosystem degraded
into a desert. When grazing pressure was high, vegetation
cover was still high at the tipping point (ρ+ = 0.44; Fig. 2b,
upper line). Moreover, once degraded to a desert, vegetation
was unlikely to recover since the desert state was stable even
if the environmental conditions were improved (lower line).
In contrast, at low grazing level, the tipping point occurred
at much higher levels of environmental pressure and the
vegetation cover of the landscape was low before collapsing
to a desert (ρ+ = 0.16), meaning that low vegetation cover
could be sustained in the ecosystem (Fig. 2c, upper line).
Also, once in a desert state, a reduction of the environmental



Theor Ecol

a)

b)

c)

Fig. 2 a Changes in the vegetated (black contour lines: ρ+) and desert
(i.e. no vegetation) states (grey zone) along gradients of environmental
and grazing pressure; overlap of the grey zone and the contour lines
correspond to the bistability area where both the vegetation and the
desert states are stable. The tipping point, at which the ecosystem drops
from vegetated to desert, is reached at the lowest contour line (ρ+ <

0.01). (b, c) Cross sections of (a) at low (b; g0 = 0.1) and high (c;
g0 = 0.4) grazing intensities showing the steady state vegetation cover

pressure would improve the probability for a recovery of the
ecosystem (Fig. 2c, lower line).

Spatial indicators

We used the shape of the inverse cumulative patch–size
distributions to assign the simulated landscapes in cate-
gories (see methods) distinguishing landscapes of highly
connected vegetation cover (Fig. 3(i and ii), black and grey)
from landscapes where large vegetation patches were over-
proportionally fragmented (marked by down-bent, trun-
cated power laws; Fig. 3(iv), red). A straight power law
(Fig. 3(iii), orange) describes the margin between these two

cases. The same sequence of vegetation patterns (i–v) was
observed along both gradients of pressures. However, the
pressure levels at which truncated power-laws (iv in red)
were observed became more constrained as grazing pressure
increased, until they disappeared at the highest grazing lev-
els. In those cases, the tipping point at which vegetation was
suddenly lost was not preceded by truncated power-laws,
but happened in landscapes were vegetation patches were
best described by straight power-laws (Fig. 3).

To gain further understanding in the response of the
spatial patterns to increasing pressure levels, we tracked
the average largest patch size smax, the clustering coef-
ficient c++ and the exponent of the inverse cumulative
patch–size distribution λ along the two pressure gradients.
When observing along a gradient of environmental pres-
sure, regardless of the grazing level, the largest patch size
(Fig. 4a–c) dropped as the inverse cumulative patch–size
distribution approached the straight power-law distribution.
At low grazing, the largest patch size dropped dramatically
from covering approximately 60 % of the entire landscape
to significantly smaller patches covering less than 20 %
before collapsing into a desert. The clustering coefficient
(Fig. 4d–f) increased with environmental pressure, but the
values reached just before the collapse were much higher
at low grazing level than at high grazing level. The power-
law exponent, λ (Fig. 4g–i), the parameter that describes the
change in patch frequency with patch size for the smaller
patches, was constantly declining (from approx. 3.5 to 1.7)
along the environmental pressure gradient.

Thus, as environmental and grazing pressure increased,
the spatial metrics of vegetation seemed to respond quali-
tatively in a consistent way, which suggests that they may
contribute to building monitoring tools of ecosystem degra-
dation. However, at high grazing levels, there were clear
signs of a qualitative alteration of the spatial structure close
to the threshold to degradation. More precisely, at high graz-
ing levels, the vegetation patterns were characterized by a
power law were characterized by a power law, and not by a
truncated power-law, just before the ecosystem degradation
to desertification. More generally, the trends and maximum
values of all spatial metrics were weaker under high than
under low grazing pressure (Fig. 3). Thus, the interpreta-
tion of the spatial patterns, and hence their potential role as
indicators, depends on the level of grazing pressure in this
system.

Discussion

A number of spatially explicit ecosystem models have
contributed to predicting the risk of catastrophic shifts
using early warning signals (e.g. Rietkerk et al. 2004;
Kéfi et al. 2007b, 2014; Guttal and Jayaprakash 2009;
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Fig. 3 Landscapes classified based on the shape of the inverse
cumulative patch–size distributions obtained from pooled data of n
independent replicates along gradients of environmental and grazing
pressures (where n is between five and ten replicates for each combina-
tion of environmental and grazing pressures). Classes are i: full cover;
ii: up-bent power-law with spanning clusters; iii: straight power-law;
iv: down-bent power law; v: desert. Note that at high grazing pressure,
a vegetation collapse was not preceded by down-bent power laws (iv).
If crossing the tipping point, the system transitions from vegetated (i.e.
colored area) to desert (white area)

Dakos et al. 2010). Until now, these models have not inves-
tigated the possible spatial component of external pressures.
In this study, we show that spatially explicit pressures may
fundamentally alter the resilience properties of ecosystems
and that it is important to take the interactive character of
the feedback mechanisms behind catastrophic shifts into
account.

As an illustration, we studied a mechanistic model
of vegetation dynamics in grazed drylands in which
we introduced the mechanisms of plants’ ‘associational
resistance’—i.e. the mutual protection from grazing of
plants growing next to each other. We used this model to
investigate resilience as well as the emergent spatial pat-
terns, which have been proposed as candidate early warning
signals of catastrophic shifts in drylands (Rietkerk et al.
2004; Kéfi et al. 2007a).

Our model analyses suggest that a spatially explicit pres-
sure can interfere with other spatially explicit mechanisms,
such as plant-soil feedbacks, and may thereby alter the rela-
tionship between spatial patterns and ecosystem resilience.
First, the range of pressure levels at which both desert and
vegetated landscapes were simultaneously stable (i.e. the so-
called bistability area) increased as spatially explicit grazing
became more intense. This is consistent with previous mod-
elling studies of spatially homogeneous grazing pressure
(Rietkerk et al. 2002; Kéfi et al. 2007a, 2007b). Second,
under high grazing pressure, state transitions from a vege-
tated to a bare landscape were more sudden and unexpected.
The ecosystem shift to desert occurred at higher vegetation
cover and connectivity, i.e. in apparently ‘healthy’ land-
scapes, and became more difficult to predict using spatial
indicators.

Two pressures, one shift

It is important to highlight that the interference of grazing
and environmental pressure was a property that emerged at
the patch scale from the feedback mechanisms on mortality
and recruitment defined at the plant individual level. On the
one hand, environmental pressure affected plant seedling
establishment and early survival. That process depended on
the local facilitation mechanism which favored the regen-
eration of degraded sites in the neighborhood of already
established plants. On the other hand, grazing affected the
mortality of mature plants. That depended on the mecha-
nism of associational resistance which decreases the risk
of being consumed when in the neighborhood of other
established plants. Thus, at any given time, the two mecha-
nisms acted on different individuals, in different life history
stages and at different locations in the landscape. Still, over
the course of time, these mechanisms affected vegetation
patches by determining growth and mortality at the edge
of the patches linked only through the spatially explicit



Theor Ecol

0.0

0.5

0 1

0.0

0.5

0 1

0.0

0.5

0 1

0 1

0

5000

10000

0 1

0.0

2.5

5.0

0 1

1

2

3

0 1

0

5000

10000

0 1

0.0

2.5

5.0

0 1

1

2

3

largest patch sizea) d) exponent, λg)

environmental pressure, (1−b)

gr
az

in
g 

in
te

ns
ity

, g
0

la
rg

es
t p

at
ch

 s
iz

e c ++

ex
po

ne
nt

, λ

b) e) h)

c) f) i)

b)

c)

e)

f)

h)

i)

0 5000 10000 2.50 2.25 2.00 1.75 1.501.26 1.58 1.99 2.5

Fig. 4 Spatial metrics along gradients of grazing and environmental
pressures. a–c Largest patch size smax, d–f clustering coefficient c++
and g–i exponent λ of the fitted probability density functions. Second

and third rows correspond to cross-sections of the first row at high
(g = 0.4) and low (g = 0.1) grazing level, respectively

‘memory’ of the landscape. In other words, patches were
shaped by grazing and aridity in highly complex, interactive
ways that are difficult to disentangle quantitatively. The two
pressures were thus coupled by cross-scale interactions in
space and time to define a single threshold for a catastrophic
shift at the ecosystem level.

Spatial indicators of degradation

Metrics of spatial patterns, such as the clustering coeffi-
cient and the patch size distributions, have attracted a lot of
attention in the literature as potential early warning signs
or indicators of ecosystem degradation (Kéfi et al. 2007b;
Maestre et al. 2009; Lin et al. 2010). Given that such spatial
metrics are relatively easy to assess using image process-
ing, air-borne imagery or remote sensing (Fuentes et al.
1984; Barbier et al. 2006; Scanlon et al. 2007; Deblauwe
et al. 2008), understanding their ability to predict degrada-
tion would provide a useful tool for sustainable land use
management.

At low grazing pressure, the sequence of spatial pat-
terns along a stress gradient observed in our model is in
agreement with previous models assuming spatially homo-
geneous pressure (Kéfi et al. 2007b; Manor and Shnerb
2008; von Hardenberg et al. 2010) and empirical studies
(Kéfi et al. 2007b; Lin et al. 2010): with increasing pressure,

spanning vegetation clusters were replaced by power-law
distributions, which disintegrated into truncated power-laws
before the collapse of the landscape. It is noteworthy that
vegetation cover decreased along gradients of environmen-
tal pressures and reached low levels before the ecosystem
collapsed (therefore low vegetation cover landscapes were
sustainable at low grazing). However, the results presented
here show that this scenario does not operate under high
grazing pressure. Then, the degradation risk can be high
even in landscapes showing straight power-law distributions
since a strong spatially explicit feedback may delay the dis-
integration of patches. Indeed, as grazing pressure increases,
the positive feedback induced by associational resistance
cumulatively adds to the local facilitation mechanism to pro-
mote plant clustering and the formation of large patches.
More specifically, the threshold of ecosystem collapse coin-
cided with power-law distributions of patch-sizes. This
means that even landscapes exhibiting high total vegeta-
tion cover and pure power-law patch size distributions were
prone to degradation under high grazing pressure. Under
high grazing pressure, the interpretation of the observed
vegetation patterns is altered and the early warning signals
of degradation change from truncated power law to power
law.

Our results suggest that knowledge about the possible
spatial components of feedback mechanisms is of great
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importance to understand pattern formation and their inter-
pretation (Fuentes et al. 1984; Aguiar and Sala 1999). The
model proposed here is just a first step towards a higher
degree of realism in spatially explicit models of resilience.
We anticipate that models that aim to predict pressure
thresholds for applied ecosystem management (Westoby
et al. 1989; Suding and Hobbs 2009) will need to identify
and include the relevant sources of heterogeneity as well as
their spatial scales in the positive feedback mechanisms.

Note that in the present study, we investiagte the spatial
patterns at steady state for each level of a given environmen-
tal condition. Going along a gradient of the environmental
conditions, this assumes that the ecosystem has the time
to reach steady state before the environmental conditions
changes, i.e. that the change in the external condition is slo-
wer than the ecological dynamics of the system. In the case
where the changes in external conditions would occur at si-
milar or faster pace than the ecological dynamics, the behav-
ior of the spatial patterns, and their sequence of changes
along the gradient would deserve further investigations.

Positive feedbacks and criticality

Pascual and Guichard (2005) have highlighted how different
disturbance and recovery mechanisms lead to different types
of criticality and thereby different spatial signatures. In our
model without associational resistance, all plants have the
same probability of being consumed by grazers indepen-
dent of their local spatial configuration (i.e. whether they
have neighbors or not). Grazing has no spatial component
in this case. Vegetation recovery by recruitment, however,
is rendered spatially explicit through the local facilitation
mechanism (a local recovery process, Pascual and Guichard
2005). Previous work (Kéfi et al. 2011) has shown that
this system exhibits properties similar to ‘robust criticality’
(sensu Pascual and Guichard 2005; such as found in mus-
sel beds, Pascual et al. 2002; Guichard et al. 2003; Roy
et al. 2003), and power-law scaling in this case occurs at the
percolation point without being associated with an abrupt
change in the vegetation cover of the landscape. The patch
size distribution increasingly deviates from a pure power
law as the system approaches the extinction threshold of
vegetation cover below which desertification is inevitable
(i.e. a catastrophic shift; Kéfi et al. 2011).

When associational resistance is added to this model, as
proposed in the present study, grazing intensity becomes
dependent on the local plant density (a ‘well-mixed’ or ‘dis-
tributed’ disturbance sensu Pascual and Guichard 2005).
Local plant mortality is highest if plants have few or no
neighbors. Consequently, fragmented vegetation patches
experience a higher pressure and loss of plant individuals
than aggregated patches. This type of disturbance has been
suggested to favor ‘classical criticality’ which is associated

with scale invariance at the critical point (e.g. as observed
in wind disturbed tropical forest, Kizaki and Katori 1999,
Pascual and Guichard 2005). Thus, our model combines
local recovery with a well-mixed disturbance. Following the
classification of Pascual and Guichard (2005), as the inten-
sity of grazing pressure increases (i.e. the disturbance), so
does the mechanism favoring classical criticality, suggest-
ing that the system moves from robust to classical criticality
along the grazing gradient. The introduction of a spatially
heterogeneous disturbance intimately interferes with both
the pattern formation and the ecosystem resilience, which
are tightly linked in those ecosystems. As a consequence,
the interpretation of the patterns changes as well. While in
robust critical systems power laws indicate that the system
is still relatively resilient, in classic critical systems power
laws indicate that the system is at (or very close to) the
critical point (Pascual and Guichard 2005; Kéfi et al. 2011).

Conclusion

Our results indicate that when ignoring the interfering feed-
back mechanisms caused by spatially explicit pressure, we
might over-estimate ecosystem resilience and impede the
success of sustainable management practices. To under-
stand sudden degradation, we must develop more integra-
tive views that extrapolate from spatially heterogeneous
feedback mechanisms occurring at the local scale to spa-
tial patterns and resilience at the landscape scale. In the
case example of drylands under livestock grazing pres-
sure, this means that we must incorporate spatially explicit
plant mortality due to grazing into our models to see if
early warning signs of spatial structure do apply under the
given circumstances. More generally, our study warns about
the possible effect of spatially heterogeneous pressures on
spatial metrics since they may interact with the mecha-
nisms responsible for pattern formation. Thereby, spatially
explicit pressures may alter the qualification of spatial met-
rics for use as ‘early-warning signs’ of degradation. We
conclude that the identification of the main external pres-
sures involved in pattern formation is a prerequisite for the
development of reliable spatial indicators of catastrophic
shifts.
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