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Abstract The existence and development of oases in arid plain
areas depends mainly on the runoff generated from alpine re-
gions. Quantifying the uncertainties of runoff simulation under
climatic change is crucial for better utilization of water re-
sources and management of oases in arid areas. In the present
study, based on the ungauged Qira River Basin in Xinjiang,
China, a modified version of the Delta statistical downscaling
method was applied to reconstruct the monthly mean tempera-
ture (MMT), monthly accumulated precipitation (MAP), and
monthly accumulated evaporation (MAE) of two target sta-
tions. Then, the uncertainty in runoff simulation, implemented
using the Three-Layered Feedforward Neural Network model
with the Back-Propagation learning algorithm, was quantified.
The modified Delta method reproduced the MMT, MAP, and
MAE time series of the two target stations very well during the
calibrated periods, and the reconstructed uncertainty ranges

were small among reconstructed datasets using data from 12
observation stations. The monthly accumulated runoff simulat-
ed by the reconstructed MMT, MAP, and MAE as input vari-
ables of the model possessed unpredictable uncertainty.
Although the use of multi-data ensembles in model inputs are
considered an effective way to minimize uncertainties, it could
be concluded that, in this case, the efficiency of such an ap-
proach was limited because of errors in the meteorological data
and the deficiency of the model’s structure. The uncertainty
range in the runoff peakwas unable to capture the actual month-
ly runoff. Nevertheless, this study represents a significant at-
tempt to reproduce historical meteorological data and to evalu-
ate the uncertainties in runoff simulation through multiple input
ensembles in an ungauged basin. It can be used as reference
meteorological data for researching long-term climate change
and producing runoff forecasts for assessing the risk of droughts
and/or floods, as well as the existence and management of plain
oases in the Qira River Basin.

1 Introduction

Water resources are crucial for both social and economic sus-
tainable development in all parts of the world, but especially
in semiarid and arid regions, whose vulnerable environments
and ecology suffer a more severe threat due to the scarcity and
unreasonable utilization of water resources (Boehmer et al.
2000; Meng et al. 2009; Ling et al. 2011; Chen 2014).
Xinjiang, in Northwest China, as one of the world’s largest
arid areas, is characterized by seriously fragile water resources
and associated eco-environmental challenges (Chen 2014).
Over the last few decades, intensive exploitation of water re-
sources, mainly from agricultural activities, especially oases
expansion, has changed the temporal and spatial distribution
of water resources and led to serious environmental problems.
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In particular, the southern rim of the Tarim Basin in Xinjiang
has become a significant challenge for addressing water allo-
cation. The region is highly complex due to its climatic con-
ditions with low precipitation and very high evaporation rates
and extremely limited water resources.

The Qira River Basin, a typical inland river watershed in the
southern rim of the Tarim Basin, is characterized by a moun-
tain–oasis–desert ecosystem, owing to its different climatic
characteristics. The tops of the mountains form the glacier/
snowpack area, grassland and shrubland are the main feature
at middle altitudes, and oases are found at the mountain foot.
Then, adjoining the oases are the desert plain areas (Wu et al.
2011, 2013). In recent years, with increasing industrialization,
agricultural irrigation, and, especially, the water needs of oasis
extension for combating desertification in the Qira River Basin,
the river runoff has gradually decreased in the downstream part
of the Qira River. The state of the eco-environmental system
has worsened severely (Dai et al. 2009a, b). The government
has appealed to the people in Qira County to save water re-
sources through adopting the dripping irrigation technique;
however, most of the people prefer to employ flooding irriga-
tion for agricultural irrigation and oasis supply, causing quite a
large depletion of the water resource. More worryingly, the
unreasonable utilization of water resources in this severely
water-deficient basin has led to multiple dry-out episodes in
the lower reaches of the Qira River. The Qira oasis, the center
of the region’s human population, is facing an ever more severe
threat, without a stable water supply. These problems can also
be found in other basins in the southern rim of the Tarim Basin
and even further afield across the whole of Xinjiang.

Climate forcing plays a crucial role in integrated assess-
ments of water resources, as well as in the simulation of hydro-
logical and environmental processes in state-of-the-art models
(Ninyerola et al. 2000; Jeffrey et al. 2001; Li et al. 2013).
Although the structure of models can be modified depending
on data availability, a representatively complete dataset within
the research region is a basic requirement (Skirvin et al. 2003;
Marquinez et al. 2003; Li et al. 2013). Meteorological data in
hydrological models is essential for efficiently simulating and
predicting various hydrological and environmental dynamic
processes. However, because of difficulties in making observa-
tions in high mountain areas, as well as the paucity of meteo-
rological gauge sites, a great challenge exists for hydrological
modeling and runoff prediction within ungauged basins in the
mountain–basin systems of the world’s arid and semiarid re-
gions (Murugesu 2003; Sivapalan et al. 2003; Nataliya et al.
2005). One such region is Northwest China, in which the ob-
served meteorological and/or hydrological data in the majority
of its alpine watersheds are insufficient or, in some cases,
completely absent (i.e., ungauged) (Huang et al. 2009; Jin
et al. 2009). The Qira River Basin is an example of a poorly
gauged basin. The resultant data shortages from such basins
limit the possibility of a deep understanding of long-term

climate variation and its influence on water resources and
agro-/ecological environments.

Runoff formation is a complicatedmeteorological–hydrolog-
ical process and, as with most river basins, reliable runoff pre-
diction in the Qira River Basin could provide important infor-
mation for water resources use and oases management, includ-
ing industrial and agricultural utilization and, especially, choos-
ing a suitable scale for the expansion of oases. Unfortunately,
long-term meteorological data in the Qira River Basin are
scarce. Indeed, only short-term observational time series (6-
year period) at Kartash (2,800 m above sea level), located in
the upstream region of the Qira River, were used by Osamu and
Wang (2004) to investigate the local meteorological character-
istics. In fact, there is only one meteorological station, at Qira,
situated among the hydrological stations in the lower reaches of
the Qira River Basin, that can provide long-term time series.

To obtain reliablemeteorological data, many previous stud-
ies have reconstructed local climatic parameters by using rel-
evant reference data, such as ice cores, tree rings, spore pollen,
fossil pollen, and isotopes (Shen et al. 2001; Esper et al. 2002;
Fang et al. 2011; Li et al. 2013). However, few attempts have
been made to reconstruct long-term time series by applying
the data of adjoining areas or similar environmental condi-
tions. In Xinjiang, due to the consistent climate of the northern
slope of the Kunlun Mountains, an opportunity existed to
attempt to use the available data to reproduce historical mete-
orological data for the Qira River Basin based on correlation
theory. The subsequent reconstructed meteorological data
could then be used as the input data for the chosen hydrolog-
ical model to simulate the runoff of the basin.

However, there are considerable uncertainties involved in
reconstructing climatic parameters such as temperature, pre-
cipitation, and evaporation (Li et al. 2013; Cleridou et al.
2014) and modeling catchment runoff—the latter largely re-
lated to model structure and parameter calibration
(Krzysztofowic 1999; Cleridou et al. 2014). Since the up-
stream catchment of the Qira River Basin above the gauging
station is not inhabited, the runoff observed in the basin is
basically the natural amount of runoff controlled by climatic
factors rather than human disturbance. Assuming that the un-
derlying surface is largely unchanged, the errors in runoff
simulation would derive mainly from the biases between the
observations and the corresponding reconstructed meteoro-
logical data and any deficiencies in the model’s structure.

In the present study, based on data from 12 stations on the
northern slope of the KunlunMountains, an attempt was made
to apply a modified version of the statistical downscaling
Delta method to reconstruct the short-term meteorological
time series at two stations in the Qira River Basin, and to
reproduce the long-term monthly mean temperature (MMT),
monthly accumulated precipitation (MAP), and monthly ac-
cumulated evaporation (MAE) time series from 1961 to 2010.
To simulate the hydrometeorological characteristics of the
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Qira River Basin, the Three-Layered Feedforward Neural
Network model with the Back-Propagation learning algorithm
(TL-FNN-BP) was run with reconstructed and observed
MMT, MAP, MAE, and monthly accumulated runoff
(MAR) data during 1961–2010. In addition, the uncertainties
of the reconstructed meteorological time series, and of the
runoff simulation, were quantified and analyzed. The ultimate
aim of the work was to provide useful supporting data for the
study of long-term climate variation, for assessments of sus-
tainable water resources use, and in the management of oases
in the Qira River Basin.

2 Materials and methods

2.1 Research area and data

The Qira River Basin is situated on the northern slope of
the Kunlun Mountains in Xinjiang, China (36° 02′ N–37°
16′ N, 80° 07′ E–81° 00′ E) and covers a basin area of
approximately 3,328.51 km2 (Fig. 1). The Qira River,
which originates in the high-altitude valley of the
Kunlun Mountains, flows through the plain oasis, and
finally discharges into the desert, is approximately
136.2-km long. Surface runoff is mainly generated by
glacier- and/or snow-melt, as well as rainfall, in the high
altitudes of the mountains (Dai et al. 2009a, b). This is
because the precipitation there, which exists as snowfall,
is temporarily stored as snow pack and/or ice cover, while
precipitation over oasis and desert zones is unable to form
effective streamflow. The mountains have abundant pre-
cipitation, and the temperature in these regions is very
low. However, the plain areas are quite hot and dry (Wu
et al. 2011, 2013).

The availability of meteorological data in the basin is very
poor, and there is only one long-termmeteorological station in
Qira County, which is located in the downstream region of the
river (1,337 m above sea level). However, there are two short-
term meteorological stations at Kartash (2,800 m above sea
level) and Qira (1,318.6 above sea level), which provide only
5- and 8-year time series, respectively. Fortunately, long-term
runoff data are available from a hydrological station (1,557 m
above sea level), which is 27 km from the mountainous re-
gion. Therefore, to reconstruct long-term time series of mete-
orological parameters at Kartash and Qira stations, this study,
based on climatic similarity, used the MMT, MAP, and MAE
from 1961 to 2010 at 12 meteorological stations. Information
on all of the meteorological stations and the hydrological sta-
tion is listed in Table 1. Before using the data, some outliers
and abnormal values were deleted and substituted using inter-
polation, such that a complete and reliable data source would
be available.

2.2 Methods

2.2.1 Reconstructing the meteorological data: the modified
Delta approach

Statistical downscaling approaches are generally applied to
estimate point-scale meteorological parameters (such as tem-
perature and precipitation) by transforming large-scale climate
scenarios of general circulation models to local- and/or
regional-scale variables. These methods require a wide variety
of transfer functions and available data (Wilby et al. 1999;
Hay et al. 2000; Tripathi et al. 2006). The Delta method is
a relatively popular and straightforward downscaling ap-
proach that is more efficient and can more easily deal with
large samples of data in comparison with other methods.
Indeed, the method has already been extended to recon-
struct climatic variables and has drawn some satisfying
conclusions (Li et al. 2013). From the statistical perspec-
tive, the baseline time series for the region or site of inter-
est typically needs a long-term average of variables, such
as 30 years or more. In fact, according to the law of large
numbers, the mean of large samples converges to the ex-
pectation of the population distribution. However, the Delta
method is unadaptable and defective for limited samples or
smaller samples. Fortunately, the Bayesian paradigm pro-
vides an optimal method for updating a person’s beliefs
about a parameter of interest given new information. The
updated parameter distribution (i.e., the posterior distribu-
tion) is a very useful means of providing robust estimation
and inference for cases in which the sample size is very
small (Hoff 2009).

Supposing the time series X1,X2,⋯Xn are independent and
identically distributed, and follow normal distribution with
mean θ and variance σ2>0, the joint sampling density (likeli-
hood function) is expressed by

p x1; x2;⋯xn
���θ;σ2

� �
¼ ∏

n

i¼1
p xi θ;σ

2
��� �

¼ 2πσ2
� �−n=2

exp −
1

2

Xn
i¼1

xi−θ
σ

� �2
8<
:

9=
;: ð1Þ

If the prior parameter θ follows a normal distribution (θ∼
N(μ0,τ0

2)), then the posterior distribution also obeys the nor-
mal distribution p(θ|x1,x2,⋯,xn,σ

2)∼N(μn,τn2) given σ2>0,

where μn ¼ μ0=τ
2
0þnx=σ2

1=τ20þn=σ2 and τ2n ¼ 1
1=τ20þn=σ2. According to

existing short-term meteorological data, the population mean
θ can be estimated and inferred. The hyper-parameters of the
normal prior distribution are set to μ0 ¼ xþ s=2 and τ0=μ0/2
(for any normal distribution, most of the probability lies be-
tween two standard deviations of the mean, i.e., μ0−2τ0≥0 or,
equivalently, τ0≤μ0/2 (Grogan and Wirth 1981; Hoff 2009).
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Given σ2=s2, the posterior distribution p{θ|x1,x2,⋯,xn,σ
2}

then follows the normal distribution, with mean μn ¼
μ0=τ

2
0þnx=σ2

1=τ20þn=σ2
and variance τ2n ¼ 1

1=τ20þn=σ2
.

The Delta method has been described at length in previous
studies (Li et al. 2013). Due to the short-term meteorological

time series of the target stations in the Qira Basin, an attempt
was made in the present study to reconstruct meteorological
parameters by modifying the Delta method. The detailed for-
mula is given by

T x; ið Þ ¼ θ̂n;T þ Tr y; ið Þ−υ̂n;T
� �

; ð2Þ

Fig. 1 Location and topography
of the study area
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P x; ið Þ ¼ Pr y; ið Þ � θ̂n;P=υ̂n;P
� �

; ð3Þ

E x; ið Þ ¼ θ̂n;E þ Er y; ið Þ−υ̂n;E
� �

; ð4Þ

where i refers to the month (i=1, 2,⋯, 12); T(x, i),P(x, i) and

E(x,i) are the reconstructed mean temperature, accumulated
precipitation, and evaporation at the target station x in the ith
month during the reconstruction period, respectively; Tr(x, i),
Pr(x, i) and Er(x,i) are the mean temperature, accumulated
precipitation, and evaporation at the reference station y in

Fig. 2 Schematic diagram of the
TL-FNN-BPmodel with structure
(9,1,1)

Table 1 Information on the
meteorological stations (the two
target stations are highlighted
using bold font), and the
hydrological station, used in this
study

Station type Name Coordinates Elevation (m) Period of data availability

Latitude Longitude

Meteorological Yopurga 76° 47′ 39° 15′ 1,208 1961–2010

Poskam 77° 16′ 38° 12′ 1,275 1961–2010

Yengisar 76° 10′ 38° 56′ 1,299 1961–2010

Qira 80° 48′ 37° 01′ 1,337 1961–2010

Lop 80° 10′ 37° 05′ 1,349 1961–2010

Kargilik 77° 24′ 37° 55′ 1,360 1961–2010

Yarkant 77° 16′ 38° 26′ 1,232 1961–2010

Akto 75° 57′ 39° 09′ 1,325 1961–2010

Hotan 79° 56′ 37° 08′ 1,375 1961–2010

Pishan 78° 17′ 37° 37′ 1,376 1961–2010

Minfeng 82° 43′ 37° 04′ 1,411 1961–2010

Keriye 81° 39′ 36° 51′ 1,423 1961–2010

Kartash 80° 25′ 36° 16′ 2,800 1992–1996

Cele 80° 44′ 37° 01′ 1,319 2005–2010

Hydrological – 80° 48′ 36° 52′ 1,557 1961–2008
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the ith month during the reconstruction period, respectively;
θ̂n;T ; θ̂n;P and θ̂n;E are the posterior means of temperature,
precipitation, and evaporation for the target station x in the
ith month, respectively; and υ̂n;T ; υ̂n;P and υ̂n;E are the poste-
rior means of the temperature, precipitation, and evaporation
for the reference station y in the ith month, respectively.

2.2.2 Runoff simulation: the TL-FNN-BP model

Among the available artificial neural network (ANN) models,
multilayer feedforwardmodels with the BP learning algorithm

are currently the most popular type. In particular, a three-
layered nonlinear network can approximate any continuous
function with arbitrary precision (Rumelhart and McCelland
1986). Thus, nonlinear functional mapping and forecasting
between a series of input and output variables have beenwide-
ly applied in many fields, such as economics, meteorology,
hydrology, amongst others. The BP neural network model is
composed of an input layer, a hidden layer, and an output layer
and has very strong learning, associations, and fault-tolerant
capabilities. In this study, the TL-FNN-BP model was used to
simulate monthly runoff. The Tan-sigmoid and linear function

Table 3 Performance of estimated MMT in the Qira River Basin at the target stations of Kartash and Cele during the calibration period using the
modified Delta approach

Reconstructed station Reference station Verification period NSCE %PBIAS Grade Performance rating

Kartash Akto 1992–1996 0.950 0 A Very good

Yopurga 1992–1996 0.938 0 A Very good

Yengisar 1992–1996 0.913 0 A Very good

Yarkant 1992–1996 0.938 0 A Very good

Kargilik 1992–1996 0.932 0 A Very good

Poskam 1992–1996 0.949 0 A Very good

Pishan 1992–1996 0.920 0 A Very good

Qira 1992–1996 0.908 0 A Very good

Hotan 1992–1996 0.894 0 A Very good

Lop 1992–1996 0.937 0 A Very good

Minfeng 1992–1996 0.930 0 A Very good

Keriye 1992–1996 0.944 0 A Very good

Average 1992–1996 0.953 −3.74 A Very good

Cele Akto 2005–2010 0.993 0 A Very good

Yopurga 2005–2010 0.992 0 A Very good

Yengisar 2005–2010 0.992 0 A Very good

Yarkant 2005–2010 0.993 0 A Very good

Kargilik 2005–2010 0.992 0 A Very good

Poskam 2005–2010 0.992 0 A Very good

Pishan 2005–2010 0.992 0 A Very good

Qira 2005–2010 0.992 0 A Very good

Hotan 2005–2010 0.991 0 A Very good

Lop 2005–2010 0.992 0 A Very good

Minfeng 2005–2010 0.992 0 A Very good

Keriye 2005–2010 0.993 0 A Very good

Average 2005–2010 0.994 0 A Very good

Table 2 Range of performance
rating (adapted fromMoriasi et al.
2007; Li et al. 2013)

NSCE %PBIAS Grade Performance rating

MAT, MAP, MAE MAR

(0.75, 1.00] (−15, 15] (−10, 10] A Very good

(0.65, 0.75] (−20, −15] ∪ (15, 20] (−15, −10] ∪ (10, 15] B Good

(0.50, 0.65] (−30, −20] ∪ (20, 30] (−25, −15] ∪ (15, 25] C Satisfactory

(−∞, 0.50] (−∞, −30] ∪ [30, +∞) (−∞, −25] ∪ [25, +∞) D Unsatisfactory

J. Xue et al.



were selected as the activation function in the hidden layer and
in the output layer, respectively, and the TL-FNN-BP was
trained using the Levenberg–Marquardt (LM) algorithm
(Levenberg 1944; Marquardt 1963). Two activation functions
are given as

f h xð Þ ¼ tanh
eλx−e−λx

eλx þ e−λx

� �
; ð5Þ

f o xð Þ ¼ x; ð6Þ
where λ is a positive constant and x ranges between −∞ and
+∞. In addition, the LM algorithm is expressed by

Se θð Þ ¼
Xn
i¼1

yi−M xi; θð Þ½ �2; ð7Þ

where x and y are input and output variables, respectively;
M(X,θ) refers to the TL-FNN-BP model; and θ represents

the parameters of the model structure. This algorithm aims
to make the sum of the squares of error approach towards
minimal values. Li et al. (2013) showed that the forecasting
results were similar for an ANN model with the specified
input and output structures using different numbers of hidden
neurons. Therefore, to simplify the model structure, the num-
ber of hidden layer neurons was assigned to 1 in this study.
Input variables were selected from the available meteorologi-
cal data in the Qira River Basin. Specifically, the MMT, MAP,
and MAE between 1960 and 2010 from Qira, reconstructed
for the Cele and Kartash stations (nine input variables), were
applied in the model. Due to being an output variable, the
MAR was simulated using TL-FNN-BP with the structure
(9, 1, 1) (Fig. 2). The model structure can be written as

y ¼ f 0 w⋅ f h
X9
i¼1

wixi þ w0

 !
þ w

0
0

" #
; ð8Þ

Fig. 3 MMT time series
reconstructed in the Qira River
Basin at (a, b) Kartash and (c, d)
Cele using the modified Delta
method during (a, c) 1961–2010
and (b, d) the calibration period
1992–1996
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where w refers to weight linking the neurons between the
hidden layer and the output layer, wi is weights
between the neuron in the hidden layer and the ith neuron
in the input layer; w0 and w0

′ donate biases for the neuron
in the hidden and output layer, respectively; xi and y are
the ith input values in the input layer and output value in
the output layer, respectively; and fh and f0 represent ac-
tivation functions in the hidden layer and in the output
layer, respectively.

2.2.3 Performance indices for evaluating the reconstructed
meteorological data and simulated runoff

The Nash–Sutcliffe Efficiency Coefficient (NSEC) is widely
accepted and frequently used to evaluate the objective func-
tion of model performance. It is expressed as follows:

NSEC ¼ 1−

Xn
i¼1

yobs; i−ysim; i

� �2
Xn
i¼1

yobs; i−y
� �2 ; ð9Þ

where yobs, i, ysim, i, y, and n are the observed value, simulated
value, average value of the observed value, and number of
observations and/or simulations, respectively. The value range
of NSEC is between −∞ and 1.When the NSEC value is equal
to 1, the model reproduces completely the observation time
series. The smaller the value of NSEC is, the worse the differ-
ences are between the observed and simulated values.
Moreover, percentage bias (%PBIAS) is also used as an index
to assess model performance, given by

%PBIAS ¼

Xn
i¼1

yobs; i−ysim; i

� �
Xn
i¼1

yobs; i

� 100: ð10Þ

%PBIAS reflects the rate of deviation between the model out-
put and the corresponding observed values. Positive and neg-
ative %PBIAS values show that the model is underestimating
and overestimating, respectively (Gupta et al. 1999; Li et al.
2013). Different ranges of NSEC and %PBIAS values indi-
cate the corresponding model performance rating (Moriasi
et al. 2007) (Table 2).

3 Results

3.1 Reconstruction of temperature and its uncertainty
based on the modified Delta approach and using data
from multiple stations

The MMT results for Kartash and Cele stations in the Qira
River Basin, estimated using the modified Delta approach,
were calibrated (Table 3). From the perspective of the perfor-
mance indices, the values of NSCE and %PBIAS indicated
that the MMT at Kartash station, calculated based on the 12
sets of reference data during the calibration period (1992–
1996), reproduced the target data very well. All 12 reference
MMT sets yielded identical performance ratings—judged as
Bvery good.^Moreover, the MMTat Cele station, again using
the 12 sets of reference data, but during the calibration period
of 2005–2010, produced similar results, i.e., all the MMT sets
during the calibration period were also identified as Bvery
good^ according to the performance ratings. However, ac-
cording to the NSCE values, the performance of the recon-
struction at Cele station during the calibration period was bet-
ter than that at Kartash station. This reveals that, due to the
impact of complex conditions such as airflow dynamics and
topographic characteristics, the MMT reconstruction perfor-
mance can vary at different stations, even when based on the
same available data. Although there were differences in the
calibration, the reconstructed MMT results at the two target
stations, obtained during the calibration period using the

Fig. 4 Annual average temperature and uncertainty range of 95 %
confidence intervals during 1961–2010 at the target stations of (a)
Kartash and (b) Cele
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modified Delta method, could be classed as Bvery good^ in
terms of an estimate of the corresponding observed data. In
addition, a better calibration performance was achieved when
applying the average of the 12 estimated MMTsets at the two
target stations, as compared to estimation based on any single
MMT set. Clearly, use of the average of all the reference data
provided more reliable estimated MMT results.

Due to the Bvery good^ performance during the calibration
period, the time series of MMT at the two target stations from
1961 to 2010 were reconstructed based on the modified Delta
method. Figure 3 shows the reconstructed MMT at Kartash
and Cele stations during 1960–2010, based on the data from
the 12 reference stations as well as their average. It can be seen
that the reconstructed MMT based on the 12 reference sta-
tions, and their average, demonstrated similar results
(Fig. 3a, c). However, there were common defects within all
the reconstructed MMT results, in that they featured slight
differences in maximum and minimum values. Figure 3b, d
illustrates the performances of the reconstructions by compar-
ing the estimation results with observed MMT at Kartash and

Cele during the calibration period. As can be seen, the recon-
structed MMT at Cele performed better than that at Kartash,
which was overestimated at times during the calibration
period.

An MMT time series reconstructed using the modified
Delta method will inevitably involve uncertainty because of
the variability in the meteorological time series and limitations
of the method. Figure 4a, b shows the reconstructed annual
average temperature and uncertainty intervals during 1961–
2010 at the two target stations, Kartash and Cele. The gray-
shaded region represents the 95 % confidence intervals, and
the red line indicates the annual average temperature based on
the average data of the 12 reconstructed MMT sets. The un-
certainty range differed substantially during different periods.
Moreover, there was greater uncertainty for the reconstructed
temperature at Kartash than at Cele during the reconstruction
period. Nevertheless, since the spatiotemporal field of temper-
ature was continuous, the total uncertainty was modest; the
reconstructed temperature at the two target stations
reproduced the historical data very well.

Table 4 Performance of estimated MAP in the Qira River Basin at the target stations of Kartash and Cele during the calibration period using the
modified Delta approach

Reconstructed station Reference station Verification period NSCE %PBIAS Grade Performance rating

Kartash Akto 1992–1996 −0.06 0 D Unsatisfactory

Yopurga 1992–1996 −0.15 0 D Unsatisfactory

Yengisar 1992–1996 −0.48 0 D Unsatisfactory

Yarkant 1992–1996 −0.11 0 D Unsatisfactory

Kargilik 1992–1996 0.05 0 D Unsatisfactory

Poskam 1992–1996 0.19 0 D Unsatisfactory

Pishan 1992–1996 0.30 0 D Unsatisfactory

Qira 1992–1996 −0.25 0 D Unsatisfactory

Hotan 1992–1996 0.26 0 D Unsatisfactory

Lop 1992–1996 0.55 0 C Satisfactory

Minfeng 1992–1996 0.05 −0.07 D Unsatisfactory

Keriye 1992–1996 0.05 −0.07 D Unsatisfactory

Average 1992–1996 0.68 −0.14 B Good

Cele Akto 2005–2010 0.71 0 B Good

Yopurga 2005–2010 0.75 0 B Good

Yengisar 2005–2010 0.77 0 A Very good

Yarkant 2005–2010 0.80 0 A Very good

Kargilik 2005–2010 0.75 −0.13 B Good

Poskam 2005–2010 0.79 0 A Very good

Pishan 2005–2010 0.76 0 A Very good

Qira 2005–2010 0.89 0 A Very good

Hotan 2005–2010 0.81 0 A Very good

Lop 2005–2010 0.84 0 A Very good

Minfeng 2005–2010 0.80 0 A Very good

Keriye 2005–2010 0.72 0 B Good

Average 2005–2010 0.83 −0.01 A Very good
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3.2 Reconstruction of precipitation and its uncertainty
based on the modified Delta approach and using data
from multiple stations

The performance of MAP at the target stations within the Qira
River Basin (Kartash and Cele), calibrated by the modified
Delta method, was assessed and the results are listed in
Table 4. At Kartash station, only the MAP estimated based
on the average of the 12 reference station MAP sets, and that
based on data from Lop station, performed well during the
calibration period (1992–1996); according to the NSCE and
%PBIAS values, the otherMAP reconstructions were relative-
ly poor, rated as Bunsatisfactory.^ In contrast, the calibrated
MAP results at Cele station during 2005–2010, estimated
based on the data from each of the 12 reference stations, and

their average, performed very well. Specifically, the MAP at
Cele estimated based on the data from Qira station performed
the best, according to the NSCE value. Clearly, the perfor-
mance at Cele during 2005–2010 was superior to that at
Kartash during 1992–1996, demonstrating that it is harder to
capture the MAP in alpine areas (i.e., where Kartash is locat-
ed) than plain areas (i.e., where Cele is located), despite using
the same source data for the estimation. However, although
the MAP estimations at Kartash based on the data from indi-
vidual stations were largely Bunsatisfactory,^ the result based
on the average was Bgood.^ Combined with the fact that the
MAP estimations at Cele based on the average were Bvery
good,^ overall, the reconstruction of precipitation at both tar-
get stations based on the average data from the 12 reference
stations is a viable approach.

Fig. 5 MAP time series
reconstructed in the Qira River
Basin at (a, b) Kartash and (c, d)
Cele using the modified Delta
method during (a, c) 1961–2010
and (b, d) the calibration period
2005–2010
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The MAP time series at the two target stations during
1961–2010 were reconstructed using the modified Delta
method (Fig. 5). As can be seen, the ability to reconstruct
the MAP during the reconstruction period and calibration pe-
riod differed depending on the reference station data used for
the estimation (Fig. 5a, c). All the reconstructed MAP time
series were characterized by non-stationarity and periodicity.
Moreover, clear differences could be seen between the ob-
served and calibrated MAP results at Kartash and Cele during
the calibration periods of 1992–1996 and 2005–2010
(Fig. 5b, d). The same sources of data yielded different per-
formances of the estimations at the two target stations.

The reconstructed annual accumulated precipitation and
uncertainty ranges during the period 1961–2010 at Kartash
and Cele are shown in subpanels a and b of Fig. 6, respective-
ly. Compared with the reconstructed MMT results, the uncer-
tainties in the reconstructed MAP at the two target stations are
larger, owing to the variability in the meteorological time se-
ries and poor performance of the estimations. The annual av-
erage precipitation Boverflowed^ the uncertainty range in
some periods at Kartash station. In general, the uncertainty
at Kartash was greater than at Cele during the entire recon-
struction period. This large uncertainty may be a result of the
discreteness of the precipitation in the spatiotemporal field.
Nevertheless, the reconstructed annual accumulated precipita-
tion at Kartash and Cele could still capture the original data.

3.3 Reconstruction of evaporation and its uncertainty
based on an empirical model and the modified Delta
approach

The evapotranspiration in inland river basins in arid zones is
crucial to the hydrological cycle and acts as a dissipation
quantity in hydrological models. Unfortunately, evaporation
data are difficult to obtain quantitatively in high-altitude
mountainous areas. Kartash station, situated in the alpine re-
gion of the Qira River Basin, is no exception to the rule. To
combat the problem, a number of empirical models have been
developed to forecast evaporation, yielding good results. In
the present study, the empirical evaporation model for alpine
areas proposed by Chen et al. (2002) was adopted:

E Mð Þ ¼
104:1exp

3:545T Mð Þ
47:281þ T Mð Þ
� �

1þ 0:009558P Mð Þexp −
3:545T Mð Þ

47:281þ T Mð Þ
� � ; ð11Þ

where T(M), P(M), and E(M) denote the monthly mean tem-
perature, monthly accumulated precipitation, and evaporation,
respectively.

The estimated MAE using the above empirical model
based on the 12 reference station MMT and MAP results,
and their averages, are displayed in Fig. 7a. It can be seen that

large differences existed between the reconstructions based on
different data sources. The average of the 12 estimated MAE
sets was presumed to be the best reconstructedMAE under the
circumstances due to no verification data. In terms of the
evaporation at Cele station, because 11 (i.e., apart from Qira
station) of the reference evaporation datasets were seriously
lacking, the MAE at Qira station was used to reconstruct the
MAE at Cele based on the modified Delta method. Figure 7b,
c illustrates the reconstructed MAE time series during the
reconstruction period (1961–2010) and the calibration period
(2006–2010). According to the NSCE and %PBIAS values,
which were 0.94 and 0 during the period 2006–2010, respec-
tively, the MAE at Cele, estimated based on the MAE at Qira
station, achieved Bvery good^ performance. Therefore, the
reconstructed MAE at Cele was used in the estimation of
runoff, as reported in the next section.

The reconstructed annual accumulated evaporation and un-
certainty ranges at Kartash station during the period 1961–
2010 are shown in Fig. 8c. The uncertainty at this target sta-
tion was moderate for the reconstructed MAE. It was similar
to the uncertainty for the MMT at Kartash station. Because of
the connectivity of the evaporation in the spatiotemporal field,

Fig. 6 Annual accumulated precipitation and uncertainty range of 95 %
confidence intervals during 1961–2010 at the target stations of (a)
Kartash and (b) Cele
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the reconstructed annual accumulated evaporation at Kartash
station captured the historical data well.

3.4 Runoff simulation and its uncertainty based
on the TL-FNN-BP model

The monthly runoff simulation was divided into three parts:
calibration (learning and training), verification, and simula-
tion. Although the meteorological stations within the Qira
River Basin, including Qira and Cele, are situated downstream
of the hydrological station, the correlation coefficients be-
tween the MMT, MAP, and MAE results at the two stations
and the MAR at the hydrological station were all statistically
significant at the 0.01 significance level (Table 5), and thus

Fig. 8 Annual accumulated evaporation and uncertainty range of 95 %
confidence intervals for Kartash station during 1961–2010

Fig. 7 MAE time series
reconstructed using an empirical
model and the modified Delta
method during 1961–2010 in the
Qira River Basin: (a) based on the
12 reference stations and at Cele
station during (b) the entire
reconstruction period
(1961–2010) and (c) the
calibration period (2006–2010)
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these variables could be used as the inputted layer neurons in
the runoff simulation using the TL-FNN-BP model.
Therefore, the MMT, MAP, and MAE at Kartash, Cele, and
Qira stations were inputted into the neurons to output the
estimated runoff using the TL-FNN-BP model during the cal-
ibration period of 1961–1990, the verification period of 1991–
1998, and the simulation period of 1999–2008. Table 6 lists
the results of MAR simulated by the TL-FNN-BP model with
the structure (9,1,1). The resultant values of NSCE of between
0.82 and 0.88, as well as all the 0 %PBIAS values, demon-
strated that the simulated results were, on the whole, compa-
rable with observations during the calibration and verification
periods, being regarded as Bvery good^ in terms of estimating
the actual runoff. However, remarkable differences existed in
the model’s performance during the simulation period. The
meteorological data reconstructed by Yopurga and Hortan’s
reference data as the inputted data resulted in the worst simu-
lation performance. The runoff simulated by the inputted data
reconstructed based on Pishan’s reference data achieved the
best performance during the simulated period, while the re-
maining sources showed moderate performance.

Figure 9 illustrates the runoff simulation based on the in-
putted meteorological data reconstructed based on Pishan’s
station data. It can be seen that the TL-FNN-BP model with
structure (9,1,1) reproduced the MAR very well during the

calibration period (Fig. 9a). Similarly, the model captured
the runoff’s periods of fluctuation and relative smoothness
effectively during the verification and simulation periods.
However, peak runoff could not be captured in the simulation,
with runoff peaks underestimated throughout the whole peri-
od. The runoff simulated based on the other inputted datasets
showed similar results to that based on Pishan.

Due to bias between the reconstructed meteorological time
series and the actual variable series, as well as the reasonabil-
ity and limitations of the model structure, the monthly accu-
mulated runoff simulated by the TL-FNN-BP model with
structure (9,1,1) inevitably possessed uncertainty. Figure 10
shows the MAR and uncertainty range of 95 % confidence
intervals during the simulation period (1999–2008). The gray-
shaded band refers to the 95 % confidence interval based on
the 12 simulated source datasets, and the red line denotes the
MAR time series. It can be seen that the uncertainty range was
quite small and nearly overlapped in most parts, except for the
peak of runoff, which escaped from the gray-shaded band, i.e.,
it did not fall between the 95% confidence intervals. All of the
uncertainty ranges in the peaks of runoff demonstrated that the
TL-FNN-BP model structure (9,1,1) overestimated/
underestimated the actual monthly runoff, suggesting that
the multi-data ensembles in the model input still could not
capture the monthly runoff peaks. However, the total

Table 6 Performance of the estimated MAR in the Qira River Basin based on TL-FNN-BP model with the structure (9,1,1)

Inputted data NSCE (C/V/S) %PBIAS (C/V/S) Grades (C/V/S) Performance rating (C/V/S)

Kartash_Akto,Cele_Akto,Qira (0.84/0.83/0.54) (0/0/−0.25) (A/A/C) (V*/V*/S*)

Kartash_Yopurga,Cele_Yopurga,Qira (0.83/0.82/0.46) (0/0/−0.22) (A/A/D) (V*/V*/U*)

Kartash_Yengisar,Cele_Yengisar,Qira (0.86/0.82/0.54) (0/0/−0.27) (A/A/C) (V*/V*/S*)

Kartash_Yarkant,Cele_Yarkant,Qira (0.83/0.88/0.51) (0/0/−0.46) (A/A/C) (V*/V*/S*)

Kartash_Kargilik,Cele_Yarkant,Qira (0.83/0.87/0.71) (0/0/−0.20) (A/A/B) (V*/V*/G*)

Kartash_Poskam,Cele_Poskam,Qira (0.84/0.87/0.66) (0/0/−0.16) (A/A/B) (V*/V*/G*)

Kartash_Pishan,Cele_Pishan,Qira (0.84/0.86/0.83) (0/0/−0.07) (A/A/A) (V*/V*/V*)

Kartash_Qira,Cele_Qira,Qira (0.83/0.85/0.63) (0/0/−0.32) (A/A/B) (V*/V*/G*)

Kartash_Hotan,Cele_Hotan,Qira (0.82/0.86/0.45) (0/0/−0.21) (A/A/D) (V*/V*/U*)

Kartash_Lop,Cele_Lop,Qira (0.83/0.82/0.67) (0/0/0.14) (A/A/B) (V*/V*/G*)

Kartash_Minfeng,Cele_Minfeng,Qira (0.86/0.87/0.62) (0/0/−0.21) (A/A/B) (V*/V*/G*)

Kartash_Keriye,Cele_Keriye,Qira (0.82/0.86/0.70) (0/0/−0.25) (A/A/B) (V*/V*/G*)

Kartash_Average,Cele_Average,Qira (0.85/0.86/0.67) (0/0/−0.32) (A/A/B) (V*/V*/G*)

C/V/S calibration/verification/simulation, V*/G*/S*/U* very good/good/satisfactory/unsatisfactory

Table 5 Pearson correlation analysis between observed MMT, MAP, and MAE at Qira and Cele stations and observed MAR at the hydrological
station in the Qira River Basin

Variable Qira*_MMT Qira_MAP Qira_MAE Cele&_MMT Cele_MAP Cele_MAE

MAR 0.678a 0.295a 0.453a 0.641a 0.640a 0.616a

Qira* observed monthly data from 1961 to 2008, Cele& observed monthly data during 2005–2008
a Correlation is significant at the 0.01 confidence level (two-tailed)
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uncertainty was small, and could be accepted, meaning the
monthly runoff simulated based on the reconstructed meteo-
rological data reproduced the hydrological response in the
Qira River Basin.

4 Discussion

The accurate forecasting or prediction of hydrological re-
sponses, such as runoff, ground water, etc., has posed great
challenges within ungauged or poorly gauged basins, owing
to the inadequate records of climatic variables (e.g., precipita-
tion, temperature, evaporation) and hydrological observations
in the researched watershed (Murugesu 2003; Sivapalan et al.
2003). The Qira River Basin is a typical poorly gauged basin
and is characterized by short meteorological time series within
the basin. The scarcity and inadequacy of climate parameter
records in the Qira River Basin has limited the ability to ana-
lyze long-term climatic variation, simulate the hydrological
response, and, more importantly, provide evidence for oasis
management in the lower reaches.

In order to overcome the problem of a lack of data, previ-
ous studies have attempted to reconstruct meteorological pa-
rameters through the use of climate proxy data such as tree
rings, ice cores, fossil pollen, and so on (Shen et al. 2001;
Esper et al. 2002; Yang et al. 2002; Fang et al. 2011). These
proxy data provide quite high precision in reconstructing me-
teorological parameters, but it is difficult to obtain these data
in the Qira River Basin. In addition, remote sensing or satellite
data (products) have been applied to assess climatic variability
and the climatic forcing of the hydrological response.
However, such data need to be coupled with ground-
observed data, because their precision and resolution are gen-
erally quite coarse or worse (Yang and Luo 2014). This re-
quires complicated downscaling technology and an abundant
availability of data. As an alternative, Li et al. (2013) recon-
structed hydrometeorological time series in the Kaidu River
Basin using neighboring data from Central Asia, based on
climate comparability theory. The results showed that the re-
constructed variables were reproduced well and satisfactorily
estimated the actual hydrometeorological time series. The
present study, in which meteorological time series were recon-
structed in the Qira River Basin to assess the associated un-
certainty in runoff simulation, was inspired by those findings.

However, to apply the Delta method, the baseline time
series for the region or site of interest typically need long-
term averages of variables, such as 30 years or more; the
method is otherwise unadaptable and defective for limited or
smaller time series. In this study, the Bayesian paradigm was
adopted to modify the conventional Delta method. Such an
approach can provide robust estimation and inference with
respect to parameters under circumstances where the sample
is very limited (Hoff 2009). To compare the modified Delta

method based on the Bayesian paradigm, the Delta method
was used to reconstruct meteorological time series, and the
results showed that the modified method provided superior
estimation. In fact, the Delta method implies that it should
ensure stationarity for reconstructed variables. Based on the
performance of the reconstruction during the calibration peri-
od, the modified Delta method can perform very well.

Fig. 9 MAR time series of MAR produced by the TL-FNN-BP model
for the period 1961–2008 in the Qira River Basin: (a) MAR calibrated by
the model based on the reference data from Pishan station; (b) verified
MAR during 1991–1998; (c) simulated MAR during 1999–2008
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The MMT and MAE estimations at the Qira River Basin
target stations (Kartash and Cele) performed better than that of
MAP during the calibration period. A possible reason for this
is that the temperature and evaporation, due to being continu-
ous spatiotemporal fields, were affected mainly by the radia-
tion balance and so were easily captured and reconstructed.
However, precipitation is influenced by a combination of fac-
tors including local climatic changes, geographical location,
and moisture sources, and thus there is greater uncertainty in
its reconstruction. It is possible that precipitation is a variable
with discreteness on certain spatiotemporal scales. In particu-
lar, it was found that reliable estimation of precipitation in the
mountainous areas, where runoff is generated, remains a sig-
nificant challenge. In future work, it is necessary to use remote
sensing or satellite data (products), coupled with ground-
observed data, to improve the precision and resolution of pre-
cipitation data in the ungauged Qira River Basin.

Runoff generation is a quite complicated hydrometeorologi-
cal process. In this study, based on the assumption that the
underlying surface is largely unchanged due to the uninhabited
nature of the basin, the errors in runoff simulation derived main-
ly from the biases between the observations and the correspond-
ing reconstructed meteorological data and the defectiveness of
the model structure. Therefore, a black-boxmodel, i.e., an ANN
model, was used to simulate runoff in the Qira River Basin. The
TL-FNN-BP model with structure (9,1,1) was run to estimate
the MAR, and satisfactory results were obtained. However, the
modeling of catchment runoff and reconstructing the climatic
parameters that affect it inevitably involve uncertainties.

A multi-meteorological ensemble in the model input is
considered to be an effective way to reduce uncertainties.
However, the results in this study showed that the ability of
such an approach was limited in predicting runoff, owing to
errors in the reconstructed meteorological time series and the
reasonability and limitations of the model’s structure. The un-
certainty ranges of the runoff simulation by the TL-FNN-BP
model with structure (9,1,1) were quite small and nearly

overlapped in most parts, except for the runoff peaks, which
generally escaped the 95 % confidence intervals. It was found
that the ability of the TL-FNN-BPmodel with structure (9,1,1)
to simulate runoff by was insufficient. It is possible that this is
because an ANN is unable to capture the peak of a variable,
and the uncertainty of the input parameters (meteorological
time series) jointly lead to uncertainty in the runoff simulation.
In fact, this study only attempted to reproduce historical me-
teorological data and to quantify the uncertainties in runoff
simulation via multiple input ensembles in the ungauged
Qira River Basin. Further work should focus on improving
the accuracy of meteorological time series and developing a
sound hydrological model structure, such as hydrological
models with physical mechanisms, to minimize the uncertain-
ty in the Qira River Basin.

5 Conclusion

Based on available neighboring station data around the northern
slope of the Kunlun Mountains, the MMT, MAP, and MAE
time series from 1961 to 2010 at Kartash and Cele stations
within the Qira River Basin were reconstructed by applying a
modified version of the Delta method. In addition, the level of
uncertainty for these reconstructed meteorological parameters
was analyzed on the basis of the 95 % confidence intervals
among 12 reference data sources. Then, the MAR was simulat-
ed using the TL-FNN-BPmodel with the structure (9,1,1), using
the reconstructed MMT, MAP, and MAE results at Kartash and
Cele, and observed MMT, MAP, and MAE data from Qira
station as the model’s inputted variables. Finally, the uncertainty
of the runoff simulation was quantified and discussed.

The MMT at Kartash and Cele, estimated using the modi-
fied Delta method based on the 12 sets of reference station
data, achieved Bvery good^ and similar performances during
the calibration periods but that the MMT estimations at the
two target stations based on the average data of the 12 refer-
ence stations showed the best performance, as determined by
the values of NSCE and%PBIAS. The calibration of theMAP
results at the two target stations performed relatively poorly in
comparison with that for MMT. Similarly, the estimated MAP
at Kartash and Cele, obtained via the average data of the 12
reference stations, yielded Bsatisfactory^ performance. The
MAE at Kartash and Cele was reconstructed based on an
empirical model for alpine areas and the modified Delta meth-
od, respectively. The MAE at Cele, estimated based on the
data from Qira station only, showed good performance during
the calibration period, comparable to that of MMT. In addi-
tion, the uncertainties for these reconstructed meteorological
parameters were also analyzed. It was found that the uncer-
tainty ranges were small, on the basis of the 95 % confidence
intervals among the 12 reconstructed datasets.

Fig. 10 MAR and uncertainty range of 95 % confidence intervals during
the simulation period (1999–2008)
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The MAR simulated by the TL-FNN-BP model with struc-
ture (9,1,1) showed that there is inevitable uncertainty in
MAR simulation. The results also revealed that the efficiency
in runoff simulation is limited because of the errors in meteo-
rological data and the deficiency of the model’s structure. In
particular, runoff peaks could not be captured in the uncertain-
ty range. However, the total uncertainty of the runoff simula-
tion was small and moderate based on the reconstructed me-
teorological data, especially based on the data at Pishan sta-
tion. Therefore, the result provides a useful reference for
assessing the risk of droughts and/or floods in the Qira River
Basin, as well as for decision-making as part of water re-
sources planning and management.
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