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Abstract Knowledge about future rainfall is important for
agriculture management and planning in arid and semi-arid
regions. Australia has complex variations in rainfall patterns
in time and space, arising from the combination of the geo-
graphic structure and the dual effects of Indian and Pacific
Ocean. This study aims to develop a forecasting model of
spatiotemporal monthly rainfall totals using lagged climate
indices and historical rainfall data from 1950–2011 for
south-eastern and eastern Australia. Data were obtained from
the Australian Bureau of Meteorology (BoM) from 136 high-
quality weather stations. To reduce spatial complexity, climate
regionalization was used to divide the stations in homogenous
sub-regions based on similarity of rainfall patterns and inten-
sity using principal component analysis (PCA) and K-means
clustering. Subsequently, a fuzzy ranking algorithm (FRA)
was applied to the lagged climatic predictors and monthly
rainfall in each sub-region to identify the best predictors.
Selected predictors by FRAwere found to vary by sub-region.
After these two stages of pre-processing, an artificial neural
network (ANN) model was developed and optimized sepa-
rately for each sub-region and the entire area. The results
indicate that climate regionalization can improve a monthly
spatiotemporal rainfall forecast model. The location and

number of sub-regions were important for ranking predictors
and modeling. This further suggests that the impact of climate
variables on Australian rainfall is more variable in both time
and space than indicated thus far.

1 Introduction

Knowledge about future rainfall can significantly benefit land,
water resources, and agriculture management, as this assists
with planning and management decisions (Anwar et al. 2007;
Bannayan et al. 2011; Chiew et al. 2003; Sivakumar and
Hansen 2007). In Australia, rainfall and climate patterns vary
greatly in time and space. South-eastern and eastern Australia
has distinctly different rainfall regimes and is agriculturally
productive and home for more than half of Australia’s popu-
lation. However, topographic and geographic features of this
region make developing a reliable and skilful rainfall forecast-
ing system for this area complicated (Drosdowsky 1993;
Murphy and Timbal 2008).

The first step in developing a forecast model is to investi-
gate possible predictors. Several studies have suggested that
concurrent and lagged broad-scale climate indices are impor-
tant predictors for Australian rainfall and streamflows; for
example, El Niño Southern Oscillation (ENSO) (Cai et al.
2001; Drosdowsky 1993; Drosdowsky and Chambers 2001;
McBride and Nicholls 1983; Nicholls 1983; Piechota et al.
1998; Power et al. 1999; Wang and Hendon 2007), Southern
Oscillation Index (SOI) (McBride and Nicholls 1983;
Ropelewski and Jones 1987; Stone and Auliciems 1992),
Indian Ocean Dipole (IOD) (Cai et al. 2009; Saji et al. 1999;
Saji and Yamagata 2003), and Southern Annular Mode
(SAM) (Cai et al. 2009; Hendon et al. 2007; Meneghini
et al. 2007). Particularly, over the Pacific and Indian regions,
lagged climate indices have been indicated as the most useful
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predictors for forecasting rainfall at seasonal andmonthly time
scales over Australia at different times of the year and regions
of the continent (Cai et al. 2012; Cai et al. 2001; Kirono et al.
2010;Murphy and Timbal 2008; Risbey et al. 2009; Ruiz et al.
2007; Schepen et al. 2012a). Seasonal rainfall forecasts based
on sea surface temperature anomalies over the Indian and
Pacific Ocean have been developed by the Australian
Bureau of Meteorology (BoM) (Drosdowsky and Chambers
2001; Fawcett et al. 2005).

The strength of the effect of these climate indices is vari-
able for different areas and seasons. Given this, many re-
searchers have investigated this across the Australian conti-
nent (Ashok et al. 2003a; Cai et al. 2012; McBride and
Nicholls 1983; Power et al. 1998; Risbey et al. 2009; Wang
and Hendon 2007) or separately for different parts of Australia
(Kirono et al. 2010; Mekanik et al. 2012; Nicholls 2010;
Piechota et al. 1998; Shi et al. 2008). In some regions and
seasons, climate indices did not show strong correlation with
seasonal and monthly rainfall and were weak predictors for
rainfall forecasting (Kirono et al. 2010; Schepen et al. 2012a).
This might explain why the BoM has moved away from sta-
tistical models and now uses a regional circulation model
(POAMA) to develop forecasts. However, statistical models
can be more computationally efficient, can be developed for
focus areas, and can highlight specific influences.

Most of the recent studies used forecasts models with fixed
climate indices for all of continental Australia or part of
Australia defined by conventional boundaries (Schepen et al.
2012a; Schepen et al. 2012b; Stone et al. 1996; Wang et al.
2012). However, what has not been comprehensively ad-
dressed is whether different climate indices at different time
lags influence monthly rainfall variations at a finer spatial
resolution. Understanding these relationships could improve
rainfall forecasts at specific locations (Risbey et al. 2009).

Most studies apply traditional statistical analysis such as lin-
ear correlation and time series analysis methods to investigate
the relationship between lagged climate indices and rainfall in
Australia (Schepen et al. 2012a; Verdon and Franks 2005;Wang
et al. 2012). Conventional statistical methods assume linear in-
teraction between predictors and output, and therefore, are not
very well able to deal with the large number of predictors.

Artificial neural networks (ANNs) can address problems
involving complex nonlinear interactions without having prior
knowledge, large number of predictors, and incomplete
datasets (Tasadduq et al. 2002). Application of ANNs in at-
mospheric science started in 1986 (Gardner and Dorling 1998;
Rumelhart and Mcclelland 1986). A comprehensive review of
the application of ANNs to hydrology can be found in the
ASCE Task committee’s report (Govindaraju 2000a; b).
However, one disadvantage is that ANN tends to converge
on local minima as the number of inputs increase. In order
to avoid this, input space reductions should still be considered
as one of the primary steps (Lin et al. 1996).

This study aims to develop a spatiotemporal monthly rain-
fall forecasting model for a group of weather stations in south-
eastern and eastern Australia (Fig. 1) by applying artificial
neural networks (ANN) to lagged climate and non-climate
predictors such as number of months, monthly long-term
mean rainfall, spatial coordinates, and altitude. This paper,
therefore, assesses the ability of ANN in conjunction
of climate regionalization to provide accurate forecasts
for monthly rainfall. As a start, the study focuses on the
spatial variations of the rainfall at the monthly time
scale and the area is divided into different sub-regions
with similar monthly rainfall patterns and intensity. A
fuzzy ranking algorithm (FRA) is applied to different
input datasets to identify significant predictors for
monthly rainfall at different spatial resolutions. Finally,
a spatiotemporal model is developed with the selected
input variables. The performance of models is compared
with statistical parameters and against average climatology
to investigate whether spatial climate regionalization can im-
prove the performance.

2 Materials and methods

2.1 Data

2.1.1 Rainfall data

Rainfall data were obtained from the Bureau of Meteorology
(BoM) from 136 high-quality weather stations from the south-
eastern and eastern Australia with monthly rainfall records
from 1879 to 2012. The area considered in this study
includes mainland Australia south of 25° S and east of
137° E, including Victoria and New South Wales
(NSW), part of South Australia (SA) and Queensland
and covering the Murray-Darling River basin. Stations
used in this study are shown in Fig. 1. There are at
least four different rainfall patterns including arid, uni-
form, summer, and winter dominant, as defined by BoM
and based on the Koppen-Geiger climate regionalization
across the study area (Kottek et al. 2006; Peel et al. 2007).

2.1.2 Climate indices

Climatic indices, used in this study, are based on past literature
on seasonal and monthly rainfall forecasting over Australia
(Table 1). These indices are mean sea surface temperature
(SST) of defined regions over Indian and Pacific Ocean, such
as Niño 3, which is the mean SSTcovering the area 5° S–5° N
and 150°–90° W over Pacific Ocean. All of these indi-
ces have been found to have high concurrent or lagged
correlations with monthly rainfall over Australia and are at
a monthly time scale.
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2.2 Method

2.2.1 Framework

The spatial complexity of the area was reduced by grouping
together stations into sub-regions with monthly rainfall

patterns. This was achieved by grouping the stations using
PCA and K-means on the monthly rainfall time series to iden-
tify three to eight sub-regions. PCA reduced the dimensions of
the monthly rainfall time series and removed correlation in the
rainfall time series. K-means clustering was used on the PC
scores describing 93 % of long-term monthly rainfall

Fig. 1 Location map indicating high-quality stations used in this study

Table 1 Commonly used atmospheric and oceanic predictors of monthly rainfall in Australia with a brief explanation of each of the predictors and
related references that have used these predictors before (van Ogtrop et al. 2011)

Predictors Definition Period Source

NINO 3 Mean SST from
5° S–5° N and 150°–90° W

1950–2012 NCEP—SST anomalies http://www.cpc.
ncep.noaa.gov/data/indices/sstoi.indices

NINO 4 Mean SST from 5° S–5° N and 160° E–150° W 1950–2012 NCEP—SST anomalies http://www.cpc.
ncep.noaa.gov/data/indices/sstoi.indices

NINO 1+2 Mean SST from 0°–10° S and 90° W–80° W 1950–2012 NCEP—SST anomalies http://www.cpc.
ncep.noaa.gov/data/indices/sstoi.indices

NINO 3.4 Mean SST from 5° S–5° N and 170°–120° W 1951–2012 NCEP—SST anomalies http://www.cpc.
ncep.noaa.gov/data/indices/sstoi.indices

Indian Ocean West Pole
(WPI)

Mean sea surface temperature anomaly over
50° E–70° E and 10° N–10° S (Saji et al. 1999)

1854–2008 NCAR, ERSST.v3 (Smith et al. 2008)

Indian Ocean East pole
(EPI)

Mean sea surface temperature anomaly over
90° E–110° E and 0° N–10° S (Saji et al. 1999)

1854–2008 NCAR, ERSST.v3 (Smith et al. 2008)

Indonesia Index (II) Mean sea surface temperature anomaly over
120° E–130° E and 0° N–10° S

(Verdon and Franks 2005)

1854–2008 NCAR, ERSST.v3 (Smith et al. 2008)

Tasman sea Index (TSI) Sea surface temperature anomalies in Tasman sea
(Murphy and Timbal 2008)

1854–2008 NCAR, ERSST.v3 (Smith et al. 2008)

Rainfall forecasting in Australia
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variations. Subsequently, a fuzzy ranking algorithm (FRA)
was applied to the lagged climatic predictors and monthly
rainfall to identify the best predictors. After these two stages
of pre-processing, climate regionalization, and identification
of important input variables, a neural network model was de-
veloped and optimized for each of the sub-regions and the
entire area. The model for the entire area is based on the
combination of sub-region prediction models. The algorithms
and analysis were developed using MATLAB 2012a and Arc
GIS 10.2.

2.2.2 Climate regionalization

Climate regionalization is the process of grouping highly cor-
related stations in terms of rainfall patterns and intensity into
the same sub-region. This has been a useful pre-processing
method in different climate studies (Gerstengarbe et al.
1999; Lund and Li 2009; Munoz-Diaz and Rodrigo 2004;
Villar et al. 2009).

The main reason for using climate regionalization for this
study is threefold: (1) it reduces spatial complexity and the
dimensionality of the original dataset, to somewhat more ho-
mogenous data in terms of geographical and climatological
characteristics (Dezfuli et al. 2010); (2) homogenous sub-
regions might be affected in a more consistent way by the
climate indices than the overall region; therefore, this allows
a finer resolution for selecting important predictors; (3) it im-
proves the prediction model and increases model accuracy.
Therefore, climate regionalization is the primary method for
identifying significant predictors at a fine spatial resolution.
However, no specific clustering method is considered optimal

in the literature for climate regionalization. Therefore, method
selection could be a subjective decision (Dezfuli 2011).

To compare rainfall time series of stations point by point,
dealing with missing data is a major issue. In this study, the
approach followed two rules: First, months with missing
values more than 25 % of stations were omitted from dataset.
This resulted in the elimination of data before 1915. Secondly,
missing values were replaced by the mean of the four closest
stations in terms of geographical distance when less than 25%
of stations have missing data.

K-means clustering is one of the methods suggested for
climate regionalization (Gong and Richman 1995; Wilson
et al. 1992). Using principal component analysis (PCA) in
conjunction with K-mean clustering can improve results
(Corte-Real et al. 1998). Therefore, PCA (Hotelling 1933;
Pearson 1901) was applied to the rainfall time series to project
the variability of the rainfall time series into fewer dimensions.
There are several methods recommended for choosing the
number of principal components that present more or less
the same information as the original data (Rogers 1990;
Rogers and McHugh 2002; Valle et al. 1999). PCs which
account for 93 % of the total temporal variations of rainfall
were selected (Johnson 1998). Therefore, dimensionality of
observations was reduced from the original 1457 monthly
rainfall time series to 50 variables.

Subsequently, K-means clustering was applied to the PC
scores with data dimensions of 136×50 (number of stations×
selected PCs). Stations with similar patterns and rainfall inten-
sity were grouped together. Dynamic time warping (DTW)
and Euclidian distance are the most common methods for
measuring similarity in time series clustering and sub-region

Add (XR) a random variable, to the inputs

Generate  fuzzy curves list and sort variables by Pc 

Select significant variable with smallest Pc Reduce the input space 
Eliminate variable i which Pci/ PcR> α

0.99<α<1

Generate fuzzy surface list and sort variables by Ps

Reduce the input space 
Eliminate variable i which Psi/ PsR> α

Select significant variable with smallest Ps 

Fig. 2 Fuzzy ranking algorithm
flow diagram
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applications (Keogh and Kasetty 2003). Because the objective
in this study is to group stations based on their real-time rain-
fall pattern similarity, Euclidian distance rather than DTWwas
used for time series distance measurements. Stations with a
higher degree of rainfall similarity at the monthly scale were
divided into several (three to eight) sub-regions.

2.2.3 Identification of significant predictors

Lagged climatic indices (listed in Table 1) from 1 to 6 months
were considered as rainfall predictors. As a result, the dataset
has hundreds of input variables and thousands of data points.
Climatic indices are usually noisy and frequently cross corre-
lated. Nonlinear modeling techniques such as neural networks
and genetic algorithms can deal with such a high dimensional
input space. The main issue in these methods is the conver-
gence on local minima as the number of inputs and data points
increases. Therefore, input variable selection and ranking
methods that seek to identify reliable predictors were consid-
ered as a primary step to improve the performance of the
model. There are several input space reduction techniques
for nonlinear systems applications such as forward selection
and backward elimination. This study chose a fuzzy ranking
algorithm (FRA), which can identify input variables that better
predict output for nonlinear methods such as genetic algo-
rithms and ANN (Lin et al. 1996).

FRA develops two stages of fuzzy curves and surfaces
between the input variables and outputs (Fig. 2). First, a ran-
dom variable is added to the dataset. The performance of each
input is compared with performance of the random variable as
an input to make sure that there is no random relation between
input and output. First and second stage fuzzy curves are de-
veloped to rank input variables, based on the idea that certain
inputs could estimate the output better than other inputs. First
stages of fuzzy surfaces are based on the assumption that two
independent inputs together can approximate the output better
than single dependent input variables. This allows correlated
inputs to be eliminated. Second stage fuzzy curves and sur-
faces are identified based on the fact that the local estimate of
the variance of the output will differ from the global variance
of the output at many points. More detailed definitions and
equations for first and second fuzzy curves and surface can be
found in Lin et al. (1996).

First and second stages of fuzzy curves were generated for
all input variables. The performance index of the fuzzy curve
of input variables is calculated to rank the inputs based on
their ability to predict the output variables. The performance
index for fuzzy curve (Pci) of input Xi for output y is:

Pci ¼ Pyic
I þ Pvic

ð1Þ

where Pyc
i and Pvc

i are the performance indices of the first
stage and second stages of fuzzy curves for the ith input,
respectively. The first input variable is selected by a normal-
ized performance index of the fuzzy curves. To select the next
important input variables, the fuzzy surface performance in-
dex is used:

Psi; j ¼ Pyi; js
1þ Pvi; js

ð2Þ

Fig. 3 Spatial variation of the first eight PCs describes together 70 % of
long-term (temporal) rainfall variations

Rainfall forecasting in Australia



The performance index of each individual input variable is
compared with the performance index of a random variable.
Input variables that do not show better performance to predict
output than a random variable, at any stage of the algorithm,
will be eliminated from the input dataset. Where Pys

i, j and Pvs
i, j

are the performance indices of the first and second stages of
fuzzy curves for the ith input, respectively.

To investigate significant predictors, FRAwas applied with
monthly rainfall as an output variable and lagged climate in-
dices (Table 1) from 1 to 6 months as input variables. Input
variables considered in this study are SST anomalies over the
Indian (WPI, EPI, II) and Pacific Ocean (NINO 3, NINO 4,
NINO 1+2, NINO 3.4) and Tasman Sea indices (TSI) with 1–
6-month lags. Other variables used to train the model are
longitude, latitude, altitude, and number of the month.

2.2.4 Spatiotemporal rainfall forecasting model using ANN

Two different approaches were taken to develop a monthly rain-
fall forecast model using FRA selected climate input variables:

1. Determine an optimal neural network for the entire area,
this basically means there are no sub-regions.

2. Based on the climate regionalization results, determine an
optimum neural network for each sub-region. An artificial
neural network (ANN) was developed for each of the sub-
regions. As a result, if K determines the number of sub-
regions, then K ANNs are trained. A rainfall prediction
model for the entire area was subsequently developed,
based on a combination of sub-region models.

The accuracy of the forecasting based on different numbers
of sub-regions was compared to select the optimal number of
sub-regions for a forecast model for the area.

Feed forward backpropagation (FFBP) was considered as the
structure of the ANN in this study. One hidden layer is required
to approximate most of the continuous functions (Hagan and
Menhaj 1994; Reusch and Alley 2002). The Levenberg-

Marquardt training method was selected due to the efficiency
of this method in the optimization (Hagan and Menhaj 1994).

The optimal size of hidden layers and hidden neurons is
dependent on both the complexity of the forecasting problem
and the selected architecture (Reusch and Alley 2002). The
tan-sigmoid transfer function in the hidden layer and a linear
function in the output layer were used. All input variables
were normalized within a range of (−1, 1) to maximize the
efficiency of the ANN.

The number of input neurons depends on the number of
selected predictors from lagged climatic indices (Table 1) by
FRA. Setting the number of hidden neurons is a critical issue
for developing an accurate ANN. In this study, the number of
hidden layers was fixed to one; the number of hidden neurons
was increased from 6 to 50. The best number of hidden neu-
rons was selected by comparing the performance of different
models using the root mean square error (RMSE). In order to
check the accuracy of the ANN model, the dataset was ran-
domly partitioned into 70, 15, and 15 % as a training, test, and
validation dataset, respectively. The ability to make accurate
predictions of the optimal network was checked using valida-
tion set. The model structure that has the smallest average
error on the validation set is selected.

2.2.5 Model accuracy and forecast skill assessment

To select the model and the number of sub-regions that im-
prove forecast performance, common statistical parameters
such as coefficient of determination (R2), root mean square
error (RMSE), and mean absolute error (MAE) were calculat-
ed (Stanski et al. 1989).

3 Results

3.1 Spatiotemporal rainfall variability

As highlighted earlier, the majority of variance (93 %) of
monthly rainfall was explained by the first fifty PCs. The first

Celsius

b ca

Fig. 4 aDigital elevationmap of the area of the study. b and c, respectively, mean annual rainfall andAustralia maximum temperatures adopted fromBOM
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eight PCs, explaining 70.2 % of the variation were mapped
using kriging at a resolution of 1×1 km as a way to explain the
main spatial variation in the long-term pattern of monthly
rainfall (Fig. 3). Locations with higher scores in each of the
PCs have a higher contribution to the temporal variations in
monthly rainfall described by that PC. The first principal com-
ponent (PC1) accounts for 34 % of long-term monthly rainfall
variations (Fig. 3a). The first PC is uniform north to south, but
varies from west to east, with negative scores in the western
part of the area and positive scores in the eastern part (Fig. 3a).
Comparing the pattern of PC1with the long-termmean annual
rainfall (Fig. 4b) and digital elevation map (DEM) indicates
that the first PC represents the annual rainfall pattern variabil-
ity of the area (Fig. 4a). Higher elevations are an important
variable that causes extreme rainfall variations in space and
time. The East Australian Cordillera, which runs along the
eastern coastal area, has a strong influence on rainfall varia-
tions in this area. Complex interactions between wind, dis-
tance from the coastal area, higher altitudes, and their shadow
effect make the investigation of the relationship between alti-
tude and rainfall patterns hard (Goovaerts 2000).

The spatial variations in PC2, which represent 12.4 % of
the total variation in the long-term monthly rainfall pattern,
show a uniform west-east pattern. The spatial variability of
PC2 is mainly in the north-south direction, with positive load-
ing values in northern part and negative loading values in
southern part. The spatial pattern of this map is similar to the
spatial pattern of maximum and mean temperature in the area

(Fig. 4c). Also, the rainfall temporal variation of the area is
mostly in the north–south direction, from moist temperate
with rain in summer in the north to moist temperate with rain
in winter in the south. Furthermore, 7.3 and 5.3 % of the
temporal variations of long-term rainfall are explained by
PC3 (Fig. 3c) and PC4 (Fig. 3d), and both these PCs
and PC5 and PC6 show some spatial variation across
the area. However, these lower order PCs do not seem
to relate to any clear climate patterns. They are hard to
interpret as there are complex relationships between geo-
graphical features and large-scale climate indices with rainfall
patterns and variability. However, it seems that these PCs
mainly represent coastal fringe rainfall patterns. PC7 and
PC6 illustrate weak or similar scores over almost the entire
area, and there is no clear spatial variation patterns associated
with these PCs.

Fig. 5 Maps of location of
weather stations including
different number of climatic
zones have been determined by
similarity of rainfall patterns. The
area of the study were divided
into three (a), four (b), five (c), six
(d), seven (e), and eight (f)
different major sub-regions
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Fig. 6 Annual cycle of the monthly rainfall index for all 136 stations
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3.2 Climate regionalization

The results of the climate regionalization with three to eight
clusters are mapped in Fig. 5. The results are homogenous

from a climate and geographic perspective. Sub-regions are
geographically well distributed over the area. Each of these
maps is considered a climate definition in this study, resulting
in six definitions with different numbers of sub-regions.
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Fig. 7 Annual cycle of monthly rainfall index for three sub-regions
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Fig. 8 Annual cycle of monthly rainfall index for five sub-regions (map (c)—Fig. 9)
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Increasing the number of clusters results in more sub-
regions in the eastern and coastal part of the area.
However, the sub-regions in the central part of the study area
remain quite stable.

3.3 Spatiotemporal rainfall variability

K-means gathers together stations with similar rainfall
patterns and regimes. The different inter-annual regimes
of climate sub-regions can be further analyzed based on
a monthly rainfall index. The rainfall monthly index Ii
is calculated within each sub-region to evaluate and
compare inter-annual rainfall variations within different
sub-regions:

I i ¼ Ri

Rt
� 100 ð3Þ

Where Ii is the monthly index for the month i, Ri is total
rainfall for month i, and Rt is the total annual rainfall of
stations in the sub-region. Figure 6 shows the annual
cycle of the monthly rainfall index (Ii) for the entire
area (without climate regionalization). The monthly rainfall
index is evenly distributed across all months, with a
slightly higher monthly rainfall index during the Australian
summer.

Figure 7 shows the monthly rainfall index for each of the
sub-regions when the area is divided into three sub-regions. A
clear contrast in rainfall regimes occurs between the eastern
part (sub-region 2–3) and southern part (sub-region 1–3) as
shown in Fig. 7b, c. There is a clear contrast in the rainfall
pattern between these two areas following the Austral winter
and summer. However, Fig. 7a shows that the monthly rainfall
index for sub-region 3–3 has an approximately uniform annu-
al pattern with a slightly higher monthly rainfall index during
the Austral summer.

Visually, the difference between Ii in different sub-regions
becomes more significant, if the number of sub-regions is
increased to five (Fig. 8). There is strong austral summer
dominated regime in the northern part of the area (Fig. 8b)
and austral winter dominated rainfall regimes in southern part

Table 3 Statistical parameters
between observed and predicted
rainfall in each of the climate
regionalization definitions

Climate definition Sub-region Model structure Train Validation Test

RMSE R2 RMSE R2 RMSE R2

The entire area – 5–40–1 47.43 0.62 47.74 0.62 49.58 0.61

(1) Map a 1–3 6–49–1 41.02 0.76 46.46 0.72 44.10 0.73

2–3 7–48–1 64.78 0.68 71.29 0.64 66.88 0.67

3–3 6–46–1 31.66 0.63 31.10 0.63 32.37 0.62

(2) Map b 1–4 5–48–1 24.78 0.70 25.69 0.69 24.93 0.69

2–4 7–50–1 79.16 0.65 82.34 0.64 83.09 0.62

3–4 5–43–1 48.76 0.62 50.63 0.61 52.11 0.61

4–4 5–44–1 76.98 0.68 86.00 0.64 84.99 0.61

(3) Map c 1–5 6–42–1 23.25 0.67 23.29 0.65 23.72 0.65

2–5 7–45–1 60.16 0.67 61.49 0.62 73.45 0.61

3–5 6–41–1 36.28 0.72 38.87 0.69 37.15 0.70

4–5 6–39–1 27.72 0.77 28.34 0.75 28.90 0.76

5–5 7–47–1 63.14 0.63 70.05 0.60 68.35 0.63

(4) Map d 1–6 6–43–1 28.3 0.75 30.6 0.72 29.8 0.73

2–6 5–20–1 64.43 0.61 66.32 0.61 76 0.58

3–6 6–44–1 29.8 0.73 32 0.7 31.47 0.71

4–6 6–46–1 25.82 0.52 26 0.52 26.7 0.5

5–6 14–46–1 36.57 0.7 40.8 0.67 38.94 0.66

6–6 5–35–1 62 0.68 69.65 0.65 67.99 0.65

Table 4 Statistical parameters between observed and predicted rainfall
for test dataset

Climate definition R2 RMSE (mm) MAE (mm)

(1) Map a 0.66 44.97 29.48

(2) Map b 0.64 51.7 34.25

(3) Map c 0.64 49.78 31.3

(4) Map d 0.68 38.5 25.48

(5) The entire area 0.59 49.23 31.7

(6) The null model 0.39 60.11 38.07

M. Montazerolghaem et al.



(Fig. 8e) in this climate regionalization. By increasing number
of sub-regions to more than five, some of the sub-regions
showed similar annual cycles.

3.4 Identification of significant input variables

There are six climate regionalization definitions for the area
(Fig. 5) based on the number of sub-regions. Table 2 indicates
the ranked input variables for each sub-region in these six
climate regionalizations and for the entire area. In this table,
climate regionalization (1) is related to map (a) in Fig. 5,
where the area is divided into three sub-regions. Different
significant predictors are found for long-term monthly rainfall
for each of sub-regions. For example, significant predictors
for sub-region 1–3 (Fig. 5-map a) are 4-month-lagged TSI
and 3-month-lagged NINO 3. On the other hand, significant
input variables for sub-region 2–3 in the same climate region-
alization (Fig. 7—map (a)) are 2-month-lagged EPI, 1-month-
lagged WPI, and 4-month-lagged Niño 4. In the same climate
regionalization, significant input variables for sub-region 3 are
NINO 1+2 and NINO 3with 6- and 1-month lag, respectively.
The same type of variation occurred across all different cli-
mate regionalization definitions. For the entire area, 6-month-
lagged NINO 1+2 was found as the most important predictor.
The main outcome here is that this confirms earlier research
that there is significant spatial variation in climate predictors
across Australia (Kirono et al. 2010).

Subsequently, these identified inputs are used to develop a
forecasting model using an artificial neural network. A fore-
cast model was developed for climate regionalization defini-
tions for which FRA found at least one significant input var-
iable for all sub-regions. Therefore, a forecasting model was
developed for the first four climate definitions. For climate
regionalization definitions five and six as in sub-region 7
and sub-region 4 and 5, respectively, none of inputs could
satisfy the FRA criteria and these were therefore omitted from
the modeling part.

3.5 Modeling results

This covers the comparison between the result of the entire
area and the climate regionalizations with different numbers of
clusters.

The performance and structure of the optimized models is
described in Table 3, which presents the coefficient of
determination (R2) and RMSE between observed and
predicted rainfall for the training, validation, and test datasets.
For each network, the optimized structure was selected based
on model performance described by a lower RMSE and a
higher R2. Performance of models improved using climate
regionalization. The best result was obtained for climate re-
gionalization 4 with six sub-regions having the lowest RMSE
(38.5) and highest R2 (0.68) (Table 4). The second best result
was obtained for climate regionalization 1 with three sub-

TSI(-4)
NINO 3(-3)
RMSE=44.1
R^2=0.73

EPI (-2)
WPI(-1), 
NINO4(-4)
RMSE=66.88
R^2=0.67

NINO 1+2 (-6)
NINO 3.4 (-1)
RMSE=32.37
R^2=0.62

NINO 3.4 (-5)
RMSE=24.9
R^2=0.69

NINO4(-2)
RMSE=52.11
R^2=0.61

WPI(-1), 
NINO4(-4)
RMSE=84.99
R^2=0.61

NINO 1+2 (-6)
NINO 1+2 (-3)
NINO 1+2 (-1)
RMSE=83.09
R^2=0.62

NINO 1+2 (-4)
NINO 3.4 (-1) 
RMSE=23.72
R^2=0.65

NINO 1+2 (-3)
NINO 1+2 (-6)
II (-2)
RMSE=73.45
R^2=0.61

NINO 1+2 (-6)
NINO 4 (-1) 
RMSE=37
R^2=0.7

EPI (-2)
NINO 1+2 (-1) 
RMSE=28.9
R^2=0.76

NINO 1+2 (-5) 
TSI (-1)
NINO 3.4 (-2)
RMSE=68.35
R^2=0.63

NINO 1+2 (-3)
NINO 1+2 (-6)
RMSE=29.8
R^2=0.73

EPI (-2)
RMSE=76
R^2=0.58

NINO 1+2 (-3)
NINO 3.4 (-1)
RMSE=31.47
R^2=0.71

NINO 1+2 (-6)
NINO 3.4 (-1)
RMSE=26.7
R^2=0.5

NINO 1+2 (-5)
EPI (-2)
NINO 3.4 (-2)
NINO 4 (-4)
NINO 3.4 (-3)
EPI (-6)
NINO 3.4 (-4)
II (-3)
II (-2)
RMSE=38.94
R^2=0.66

NINO 3.4 (-5)
RMSE=67.99
R^2=0.65

Fig. 9 Maps of four selected climate definitions with a three sub-regions, b four sub-regions, c five sub-regions, d six sub-regions. Significant predictors
and performance of model for each sub-region are indicated
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regions, compared to a forecast for the entire area (Table 4).
Model performances can also be compared to the null model
(mean rainfall of each station/each month), which indicates a
lower R2 (0.39) and higher RMSE (60.11). This indicates that
ANN models perform better than the null model. Finally, box
plots of monthly rainfall prediction residuals for all the
models, based on the validation dataset, are shown in
Fig. 10. It is clear that the null model always under predicts
the actual rainfall, while the ANN models have more equal
under and over predictions, with an overall a lower RMSE.

Similar to the predictor analysis (FRA), the ANN results
indicate strong spatial variability in the performance of the
models, with some regions clearly performing better. For ex-
ample, in climate regionalization (1) (Fig. 9a), internal sub-
regions and on the Victorian south coast tend to perform better

than in sub-region 2–3 covering east coastal area. Comparing
the result of modeling for different climate regionalization is
however difficult as different predictors are used for each sub-
region Fig. 10.

A multiple comparison of the predicted values of the
models for the test dataset was run to test the hypothesis that
the means of model prediction values are significantly differ-
ent, against the alternative that they are the same (with 95 %
level of significance). Table 5 shows the results of multiple
comparisons of the predicted values of the models for the test
dataset. Table 5 includes one row per comparison and five
columns; columns 1–2 are the indices of the two samples
being compared. Columns 3–5 are a lower bound, estimate,
and upper bound for each pair of models difference. For ex-
ample, the first row of Table 5 indicates that the differences of

Fig. 10 Box plots of monthly rainfall prediction error to compare the different models

M. Montazerolghaem et al.



the mean of predicted results of model 1 and 2 are estimated to
be −8.07, and a 95 % confidence interval (CI) for this differ-
ence is [−8.53, −7.60]. This interval does not contain 0. This
indicated that means ofModel 1 andModel 2 predicted values
for test dataset are different. The only confidence interval in
Table 5 including 0 was in case of comparing Model 1 (Map
(a)) and Model 5 (the model for the entire area). This shows
that the means of these two models are not significantly dif-
ferent. Figure 11 displays the estimated means of predicted
values of each models (Tables 4 and 5) with comparison

intervals around them. Red points indicate models that
are not significantly different and blue points are signif-
icantly different (with 95 % of level of significant).
Conclusion of the results of multiple comparisons, pre-
sented in Table 5 and Fig. 11, is that the model results are
significantly different except Map (a) and the model for the
entire area.

3.6 Spatiotemporal analysis and validation of forecast skill

Box plots of the monthly rainfall and model error (observed
value minus predicted value) are shown in Fig. 12 for six sub-
regions in climate regionalization 4. Comparing the distribu-
tion of forecast values to the distribution of the error values
shows that regions and times (months) with higher variability
of rainfall have a higher absolute error, suggesting a level of
randomness in the rainfall variability, which is not well ex-
plained by the climate-based predictors. Model error is mostly
negative which shows that model is predicting less than ex-
pected rainfall.

Table 6 shows statistical parameters of model performance
of climate definition 4, as the best performance, in seasonal
time scale for each sub-region in each season. There is a rela-
tionship between the amount of rainfall and the absolute error
in space and time. Variations in total rainfall between sub-
regions take into account by calculating normalized RMSE
values (NRMSE) for each sub-region over a season which is
the ratio of RMSE to the mean monthly rainfall of the corre-
sponding season (Table 6). The smallest NRMSE (0.45) was
obtained during winter in sub-region 1–6. The smallest
NRMSE indicates better performance of the model. The

Table 5 Multiple comparison test for the means of the predicted value
of the models for the test dataset

Model Model Lower bound Estimate Upper bound P value

1 2 −8.53 −8.07 −7.60 9.78e-10

1 3 −2.6 −2.18 −1.74 1.2139e-05

1 4 2.99 3.42 3.84 8.9582e-06

1 5 −0.67 −0.24 0.18 0.0023

1 6 6.45 6.88 7.3 8.9502e-06

2 3 5.42 5.88 6.35 3.0232e-10

2 4 11.04 11.49 11.95 0

2 5 7.365 7.82 8.28 1.8687e-194

2 6 14.49 14.95 15.41 1.8687e-194

3 4 5.173 5.605 6.03 0.00045

3 5 1.49 1.94 2.37 0.00032

3 6 8.62 9.064 9.503 0

4 5 −4.09 −3.66 −3.24 0.0034 e-06

4 6 3.034 3.45 3.88 0.000483

5 6 6.696 7.12 7.55 0

Fig. 11 Multiple comparison of
the mean predicted values of the
models. Red points indicate
models that are not significantly
different, and blue points are
significantly different (with 95 %
of level of significant)
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model error changed in space and time, whereby a higher
amount of rainfall resulted in a higher corresponding error
(Table 6). The model produced for sub-region 2–6, re-
sulted in higher RMSE in summer and autumn (100 and
56.94 mm/month), compared to the same area in winter
and spring (42.2 and 44.03 mm/month), on account of
higher rainfall in the summer. Sub-region 4–6 with less
rainfall in comparison to other sub-regions, especially during
winter and spring has the smallest RMSE. In sub-region 2–6
with higher rainfall during summer (DJA), higher RMSE was
obtained.

3.7 Forecast validation

To check the ability of model to forecast rainfall, data from
2010 to 2011 for all stations were separated for specific vali-
dation. Models were developed using the remaining data for
each sub-region. This period is a La Niña period (2010–2011),
with record-breaking rainfall over Australia. Figure 13
shows the rainfall forecast for selected stations for each
sub-region. Table 7 shows the statistical parameters of
the model forecast for monthly rainfall over 2010–2011 for
some random stations.

4 Discussion

A clear outcome of this study is that model performance for
rainfall forecasts with a 1-month lead time for south-eastern
and eastern Australia can be improved by using climate re-
gionalization (Tables 3, 4 and Fig. 9). The number of sub-
regions considered in the clustering plays an important role
in the results of FRA and the performance of models. By
changing the number of clusters, even though some sub-
regions seem unaffected, the results of FRA and consequently
model performance are quite different (Fig. 9). For example,
in Fig. 9, sub-region 1 in map a, b, and c is approximately
located in a similar location with differences for some of the
stations; however, the results of the FRA in map a, b, and c are
[NINO 3 (−3), TSI (−4)], [NINO 3.4 (−5)], [NINO 1+2 (−4)],
[NINO 3.4 (−1)], respectively. This may be a drawback of
FRAwhereby the distribution of the sampling dataset has an
influence on the outcome of the method (Hou et al. 2007).

The results support the notion that Australian rainfall is
more sensitive to the variation of the central and western
Pacific Ocean SST anomalies compared to the eastern
Pacific Ocean SST anomalies (Wang and Hendon 2007), as
NINO 1+2, NINO 3, and NINO 3.4 were selected more

Table 6 Statistical parameters
between observed and predicted
rainfall for each season in climate
definition 4

Location Season RMSE

(mm)

R2 NRMSE Mean rainfall
(mm)

Standard
deviation

Sub-region 1–6 DJA 29.1 0.6 0.91 31.7 31.7521

MAM 29.6 0.7 0.71 41.4 32.93

JJA 28.48 0.8 0.45 61.99 32.6246

SON 28.54 0.8 0.56 50.88 31.9016

Sub-region 2–6 DJA 100 0.63 0.83 121.1 115.914

MAM 56.94 0.56 0.94 60.4 61.29

JJA 42.2 0.45 1.1 37.9 42.4949

SON 44.03 0.67 0.72 60.7 47.959

Sub-region 3–6 DJA 31.83 0.58 0.9 35 34.8746

MAM 31.62 0.66 0.75 41 34.5231

JJA 28.8 0.81 0.48 59.2 32.7669

SON 28.9 0.77 0.56 51.1 32.5657

Sub-region 4–6 DJA 31.67 0.45 1.22 25.76 34.4208

MAM 26.48 0.48 1.138 23.25 28.6820

JJA 18.51 0.69 0.71 25.77 21.1780

SON 28.9 0.77 0.56 51.1 25.4063

Sub-region 5–6 DJA 42.7 0.78 0.61 69.7 61.7054

MAM 32.92 0.73 0.75 43.69 47.5069

JJA 24.29 0.74 0.67 35.95 31.5903

SON 29.35 0.78 0.61 47.89 41.1653

Sub-region 6–6 DJA 61.64 0.6 0.83 73.75 63.9337

MAM 68.5 0.64 0.79 89.31 76.4021

JJA 67.68 0.71 0.66 101.36 76.6017

SON 58.19 0.71 0.64 89.99 62.4090
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frequently, compared to NINO 4. The best result was obtained
from climate regionalization 4 (Fig. 9d) with six sub-regions
in comparison to other models and the null model (Table 4).
The model’s errors are different in time and space following
the rainfall patterns (Table 6). The model results, as for the
FRA results, varied depending on the number of clusters in-
cluded. Monthly rainfall forecast models still retain the ten-
dency to produce high prediction error, but as identified here,
the error is higher in particular regions, especially for sub-
regions and seasons with higher rainfall.

Previous studies investigating relationships between cli-
mate indices and rainfall for the development of rainfall fore-
cast models used common boundaries within Australia with-
out considering the similarity in rainfall patterns and regimes
(Anwar et al. 2008; Drosdowsky 2002; Drosdowsky and
Chambers 2001; Kirono et al. 2010; McIntosh et al. 2007;

Stone and Auliciems 1992). Comparison of the findings be-
tween the current study and these studies is difficult due to the
different time and space scales considered. However, the
results of the current study are comparable to two recent
studies by Kirono et al. (2010) and Schepen et al.(2012a).

Kirono et al. (2010) investigated the relationship between
12 atmospheric predictors for rainfall over the south-eastern
Australia and showed how this relationship changed in each
season. It was observed that south-eastern Australian spring
rainfall is strongly correlated with climate indices. The rela-
tionship between lagged climate indices and spring (SON)
rainfall was significant through south-eastern Australia but
not consistently for other seasons. NINO 4 [sea surface tem-
perature (SST) in western Pacific] and thermocline (2nd EOF
of 20 °C isotherm of Pacific Ocean) were the best predictor for
spring rainfall over the south-eastern and eastern part of
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Fig. 13 Rainfall prediction for selected stations over the period of 2010–2011
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Australia based on Kirono’s results. Also, spring rainfall is
lagged correlated with SOI, NINO 3, II, IOW (index of west
pole), and SST1 (the first principal component of SSTover the
Indian and Pacific Ocean). In summer time, significant pre-
dictors are SOI (Southern Oscillation Index), thermocline,
NINO 3, NINO 4, and SST1. In autumn and winter,
thermocline was identified as the most important indicator.
In the current study, important predictors for monthly
rainfall over a year selected for specific area using FRA.
This makes comparison of this study with Kirono et al.
(2010) difficult. Although, selected predictors in the current
study show up as being promising in their study as well. For
example, SST indices over Pacific Ocean (NINO 1+2, NINO
3.4 and NINO 4) were selected predictors in the current study
and in the area with uniform regime of rainfall and summer
regime, SST indices from Indian Ocean were selected as im-
portant predictors.

Schepen et al. (2012a) developed forecasts using a single
predictor Bayesian model averaging (BMA) and validated the
forecasting ability of each predictor over Australia. The selec-
tion of predictors was based on the ability to forecast seasonal
rainfall in different regions. The result of their study indicated
that there is strong evidence supporting using NINO 4 and
NINO 3.4; although NINO 1+2, which was selected as a
predictor for the entire area and for most of sub-regions in
the current study, was not considered in Schepen’s analysis.
Higher forecast skill scores from their study were obtained by
using NINO 3.4 in most seasons.

The relationship and impact of the Pacific Ocean-
atmospheric circulation relative to the Indian Ocean circula-
tion are a challenge for Australian climate studies (Ashok et al.
2003b; Meyers et al. 2007). Schepen et al. (2012a) discovered
that DMI (WPI-EPI) is able to predict rainfall in south-eastern
Australia in Sep-Oct-Nov and Oct-Nov-Dec. Also, they found

that NINO 4 and NINO 3 provide strong season predictability
in these seasons. They were suggested further analysis to
check the independency of DMI form Indian Ocean and
NINO indices. As the structure of FRA is based on removing
the correlated and dependent variables to the first significant
predictor method (Hou et al. 2007), this method can address
independent predictors selection requirement. In the current
study, the area representing uniform rainfall patterns and sum-
mer regime has predictors from both Indian and Pacific Ocean
which will be due to different activation times of Pacific and
Indian Oceans events. Climate indices used for all sub-regions
as predictors (input of FRA) were fixed; therefore, the pattern
of rainfall (output) in each sub-region plays an important role
in FRA step. This shows that there is an interaction between
rainfall regime and active time of Indian and Pacific Ocean
(Zhao and Hendon 2009). For example, in the coastal area in
the east with a mixed uniform and summer rainfall regime
sub-region 2 (Fig. 9a), selected predictors are from climate
indices over both Indian and Pacific Ocean that are EPI
(−2), WPI (−1), and NINO 4 (−4), in comparison to selected
predictors for sub-region 1, with winter rainfall regime, that
are NINO 3 (−3) and TSI (−4).

Schepen et al. (2012a) indicated that forecast skill score
was low using 1-month-lag TSI as predictor, apart from west-
ern Australia. In the current study, TSI was only a predictor in
the southern part of the area with a 4-month lag. Wang et al.
(2012) developed a BJP model based using several predictors
for the entire Australia territory. Selection of predictors in this
study was based on the best forecast skill score over Australia.
Wang et al. (2012) examined the contributions from the
Pacific, Indian, and extratropical groups. The forecast skill
score was low for the first half of the year, and for
second part of the year, a more positive forecast skill
score was achieved (higher is better). Overall, they
found Pacific SST indices resulted in higher skill score
model. Indian and extratropical groups also produced
useful and sometimes distinct skill. The difference with
this study and the method employed here is that multi-
ple predictors were ranked as the predictors for each
sub-region with the similar rainfall patterns and thenmodels
were developed based on selected predictors. The outcome is
that the model in our study is working differently for each
season in each sub-region.

Further development of the model is underway to produce
different lead times (a week, a season, and a year ahead) for
predicting rainfall. As important input variables varied for
similar sub-regions by changing the number of clusters
(Fig. 9), finding a robust method for identification predictors
is a further aim for future model development. The result of
climate regionalization by K-means is relatively coarse. In
addition, changing the size of sub-regions resulted in a
changed performance of the model in some regions. A flexible
clustering method (for example, fuzzy clustering) for

Table 7 Statistical parameters for performances of model for random
stations (2010–2011)

Station ID Sub-region RMSE MAE R2

89033 1 31.3 22.7 0.78

23721 1 24 19.3 0.88

84016 6 40.39 35.77 0.74

39040 2 145.6 86.07 0.5

46037 4 42.07 30.60 0.48

69006 6 62.71 41.57 0.51

61014 5 47.62 33.37 0.68

38024 4 71.63 36.51 0.43

17031 4 20.15 16.21 0.53

78078 1 27.01 21.73 0.71

44026 5 36.13 25.54 0.70

49023 4 47.44 26.43 0.50

46042 4 40.72 27.41 0.56

Rainfall forecasting in Australia



grouping stations together which gives more freedom to
change the size of the sub-regions will also be considered in
future study.

5 Conclusions

This study attempted to predict monthly rainfall for stations in
South-eastern and eastern part of Australia using lagged cli-
matic indices. The performance of model for forecasting 1-
month lead time rainfall for south-eastern and eastern
Australia improved with using climate regionalization. The
number of sub-regions played an important role in the result
of the predictor selection using FRA and the performance of
model. The best result was achieved when the area was divid-
ed to six sub-regions. The model residuals vary in time and
space, which follows the rainfall patterns. In general, higher
residuals are correlated with higher rainfalls, suggesting some
level of smoothing by the model. In general, it may be con-
cluded that climate regionalization improved the accuracy of
spatiotemporal monthly model and could be considered for
other time scales and other climatological and meteorological
studies.
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