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Abstract Drought modeling is essential to water re-

sources management and planning. In this study, Fourier

spectral analysis is used to examine the cyclic structure for

drought patterns and develop a long-term periodic model.

A case study for historical precipitation data, obtained from

the arid region of Kuwait for the period spanning from

January 1967 to December 2009, are converted to drought

measurements following the Standardized Precipitation

Index (SPI) criterion. The SPI calculations are performed

for two time scales of 12 and 24 months. The periodogram

technique used for both time scales reveals periodicities of

12, 14, 19, 26, 31, 43, 64, 103 and 258 months. It is ad-

vocated here that the 26- and 258-month periods present in

the data are attributed, respectively, to a Quasi-Biennial

Oscillation pattern and a solar cycle over which the mag-

netic polarity of the sun first reverses then reverts to its

former state. The detected periods are manipulated in the

SPI model to produce drought forecasts, which suggest that

until the end of year 2024 the climate is considered normal

to very wet. This finding may be implemented to assess

policy requirements related to water resources

management.

Keywords SPI � Periodicity � Drought risk assessment �
Arid region � Sunspots

1 Introduction

Drought is a phenomenon, which may affect areas located

in wet or dry environments, resulting in insufficient mois-

ture due to a deficit in precipitation over a given time

period (McKee et al. 1993). A thorough review of drought

definitions was conducted by Wilhite and Glantz (1985),

who classified drought into six categories based on me-

teorological, climatic, atmospheric, agricultural, hydro-

logic and water management features. The time scale over

which precipitation deficits accumulate is important to

elucidate these classifications. For example, agricultural

droughts have typically a short-time scale of 1 month when

soil moisture and rainfall cannot support crop growth and

lead to yield losses (Lakshmi et al. 2004; Liu and Hwang

2015), whereas hydrologic droughts have intermediate- and

long-time scales of 3, 6, 12 and 24 months with marked

surface and subsurface water depletion from lakes, streams,

reservoir or groundwater (Szalai et al. 2000; Van Loon

et al. 2014). Reduced surface and subsurface water levels

due to hydrologic drought increase water shortage risks,

especially when water demand increases in all major use

sectors due to population and economic growth (Bannayan

and Hoogenboom 2014).

A widely acceptable index that has been used to assess

and monitor drought characteristics quantitatively is the

Standardized Precipitation Index (SPI) (McKee et al. 1993,

1995; Mishra and Singh 2010). The SPI criterion represents

the difference of precipitation from the mean divided by

the standard deviation, where these two statistical pa-

rameters are determined from past continuous records,

ideally of at least 30 years (McKee et al. 1993). Owing to

the reason that this index is standardized, it can be used to

assess global drought impacts (e.g., Manatsa et al. 2010;

Naresh Kumar et al. 2012). For a given location, the SPI
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may also be computed for any time scale whether short,

intermediate or long by simply estimating the probability

distribution function for the time scale selected (Abar-

ghouei et al. 2011). This feature will be instrumental to

address effects of the abovementioned drought categories.

Drought forecasting is a critical component of water

resources risk management (Cebrián and Abaurrea 2012).

For Kuwait, a long-term drought model is useful to eval-

uate groundwater recharge capacities and water shortage

risks. This was justified by Almedeij (2014), who con-

structed bivariate probability distributions for drought

severity and duration using Clayton copula and frequency

analysis. Although a short-term drought assessment is vital

in many locations, it is not considered here, as the country

does not rely on rainfall to support agricultural surfaces,

rather it depends on nonconventional water resources such

as seawater desalination and wastewater treatment and

reuse. Mishra and Singh (2011) reviewed the advantages

and limitations of various drought modeling and forecast-

ing methodologies, including regression, time series,

probability, neural network and hybrid models. They sug-

gested that a long-term drought forecasting is possible by

using climate indices and a model relying on the periodic

nature of the data.

The aim of this study is to use SPI criterion to model drought

patterns determined from historical rainfall records for Kuwait

and to provide possible forecasts. The computation of SPI

values will consider long-term scales of 12 and 24 months,

generating average characteristics that are more reliable than

short-term scales. The cyclical structure for SPI values will be

examined in the frequency domain using the periodogram

technique. A sinusoidal model that employs the results from the

periodogram technique will then be developed.

1.1 Case study

The climate of Kuwait is arid, where rainstorms are in-

frequent with short duration but torrential. The average

depth of annual evaporation is high, approaching a value of

4000 mm, while the annual depth of rainfall is low, varying

from 35 to 242 mm. Summer (winter) temperatures reach

an average daily high of 43 �C (15 �C) and an average

daily low of 23 �C (5 �C). Summer temperatures can even

be higher when hot winds blow from the desert. Winter

temperatures are classified as mild but occasionally be-

come cold when northerly or north-westerly winds bring

cold air from the north.

Kuwait’s arid environment causes water shortage prob-

lems. Essentially, the only existing conventional water re-

source is fresh groundwater with relatively limited

quantities. The limited groundwater quantities are due to the

few areas of actual surface water runoff and accumulation, as

evaporation always exceeds available precipitation. Fresh

groundwater is found in depressions of Rawdatain and Umm

Al-Aish located in the northern area of Kuwait (Kwarteng

et al. 2000). Freshwater from Rawdatain is reserved, with a

portion marketed as bottled mineral water, and water from

Umm Al-Aish was contaminated following a massive crude

oil spill by the retreating Iraqi army during the 1990 Gulf

War (Mukhopadhyay et al. 2008). Nonconventional water

resources have become essential to overcome existing water

shortage problems in the country (Alhumoud et al. 2003).

Two alternative approaches, seawater desalination and

wastewater treatment and reuse, have been applied. How-

ever, these approaches come with relatively high water

production costs, and seawater desalination, which relies on

multi-stage flash, causes environmental issues (Darwish and

Al Awadhi 2009).

Monthly total rainfall data for Kuwait are used in this

study to perform a drought analysis that will facilitate fresh

groundwater monitoring activities. Owing to the relatively

small land area, the average data for monthly total rainfall

collected over the urban catchments of Kuwait from the

weather stations shown in Fig. 1 are nearly equivalent

(Almedeij 2012). These rainfall data are presented

graphically in Fig. 2 showing small differences of ±3 mm.

Accordingly, rainfall data collected for a point estimate can

be considered spatially representative. The monthly total

rainfall data from the weather station at Kuwait Interna-

tional Airport, which has the longest range of rainfall

records among the other stations, can be employed here for

the analysis. The data are plotted in Fig. 3 for the period

January 1967 to December 2009, with 516 monthly ob-

servations. It should be noted that data measurements for

August 1990 to June 1991 were not recorded at the weather

station because of the Iraqi invasion of Kuwait. To main-

tain time period continuity, this lack of information has

been handled here by considering the seasonal mean pro-

duced by adding the value for the same month of the years

before and after and then dividing this value by two.

2 SPI calculation and results

The SPI index is equivalent to the Z-score often used in

statistics. However, in many cases, the distribution of

rainfall measurements is considered skewed. Thom (1958)

found that the gamma distribution fits rainfall data more

appropriately. The probability density function for the

gamma distribution g(x) is defined as

g xð Þ ¼ 1

bC að Þ x
a�1e�x=b ð1Þ

Stoch Environ Res Risk Assess

123



where a[ 0 is the shape parameter, b[ 0 is the scale

parameter, and x is the rainfall measurement. The gamma

function C(a) shown in the above equation is defined as

C að Þ ¼
Z1

0

ya�1e�ydy ð2Þ

Fitting the gamma distribution to rainfall data involves

estimating a and b. Edwards and McKee (1997) recom-

mended estimating these parameters using Thom’s (1958)

maximum likelihood approximation to obtain

â ¼ 1

4A
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

r !
ð3Þ

b̂ ¼ �x

â
ð4Þ

where

A ¼ ln �xð Þ �
P

ln xð Þ
n

ð5Þ

n is the number of rainfall measurements, and �x is the mean

of x.

Fig. 1 Weather stations in

urban areas of Kuwait
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Fig. 2 Seasonal mean of

monthly total rainfall collected

from different weather stations
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Integrating g(x) with respect to x and inserting estimates

of a and b yields the cumulative distribution G(x) expres-

sion for a given month and time scale

G xð Þ ¼
Zx

0

g xð Þdx ¼ 1

b̂âC âð Þ

Zx

0

xâ�1e
�x

b̂dx ð6Þ

Assuming t ¼ x=b̂, this cumulative distribution becomes

G xð Þ ¼ 1

C âð Þ

Zx

0

tâ�1e�tdt ð7Þ

As the gamma function is undefined for x = 0, and

rainfall data may contain no measurements, the cumulative

distribution may be conveniently expressed as

H xð Þ ¼ q� 1� qð ÞG xð Þ ð8Þ

where q represents the probability of a value of zero. That

is, if m denotes the number of zero measurements recorded

in a rainfall time series, Thom (1958) states that q can be

estimated from m/n. The cumulative distribution H(x) is

then transformed into standard normal random variable

Z employing the approximate conversion provided by

Abramowitz and Stegun (2012) as

Z ¼ SPI ¼ � t � c0 þ c1t þ c2t2

1þ d1t þ d2t2 þ d3t3

� �
for

0 \ H xð Þ� 0:5

ð9Þ

Z ¼ SPI ¼ þ t � c0 þ c1t þ c2t2

1þ d1t þ d2t2 þ d3t3

� �
for

0:5 \ H xð Þ\1:0

ð10Þ

where

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

HðxÞ2

 !vuut for 0 \ H xð Þ� 0:5 ð11Þ

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

1:0� HðxÞ2

 !vuut for 0:5 \ H xð Þ\1:0 ð12Þ

The coefficients in Eqs. (9) and (10) are equal to

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 =

1.432788, d2 = 0.189269 and d3 = 0.001308.

The above criterion is used here to estimate SPI values

for Kuwait rainfall data. Figure 4 shows the results pre-

sented as probability distribution functions for the time

scales of 12 and 24 months. Here, the SPI values are re-

ferred to as SPI12 and SPI24. It is seen that the probability

distributions are close to normal based on Anderson–Dar-

ling normality test, which produced minor statistics that do

not reject the normality hypothesis for the p value at the

0.05 significance level. SPI classifications with regard to

dry and wet events and the percentage available in each

category in the time scales selected for Kuwait data are

shown in Table 1. The SPI values are arbitrarily divided

here into categories ranging from extremely wet (relative to

the mean and standard deviation of the data) to extreme

drought. The percentage available in the theoretical stan-

dard normal distribution is also presented for a comparison

with the categories for Kuwait data.

The temporal behavior of SPI values is presented in

Fig. 5. It is evident that drought intensities are highly

variable and become less than -1.0 and greater than 1.0 on

several occasions. These variations are attributable to the
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seasonal nature of rainfall data. It is worth mentioning that

the characteristics of the four seasons of Spring, Summer,

Autumn and Winter are not distinct in the arid environment

of Kuwait, which can rather be classified into rainy and dry

months. Figure 3 shows that rainy months in Kuwait

typically include November, December, January, February,

March and April. Drought patterns appear largely after

these months and grow worse during summer, i.e., June,

July and August. However, on a larger scale, dividing the

rainfall data in Fig. 3 into three distinct equal time intervals

of 172 months shows that the middle interval has lower

rainfall levels than the others; total rainfall levels from the

first to the third interval accumulate to 1870, 1420 and

2160 mm, respectively. One long-term drought clearly

presented in the SPI24 series endures for approximately

10 years from December 1982 (month number 192) to

January 1993 (month number 313). This drought event

resulted from the low rainfall levels for the second time

interval.

Figure 5 also shows no obvious long-term trend com-

ponent. This can be tested by fitting a linear regression

trend to the data, producing slope and intercept values

nearly equal to zero. Validating this observation though

requires the review of a sufficiently wider historical rainfall

data series that is not available from this weather station.

Such testing could determine whether a phenomenon such

as climate change affects drought severity or frequency in

the area.

2.1 Model development

The SPI data can be used to model drought variability.

Generally, time series data are represented with a decom-

position model of additive type composed of deterministic

and stochastic components. The deterministic component

accounts for trend and periodic features and can be for-

mulated in a manner that supports exact predictions. The

trend shows a long movement of the variable lasting over

the entire time of observations, while the periodic part

shows oscillating movement repetitive over a specific time

interval. The stochastic component of time series data can

never be estimated precisely, as it is formed by random

effects. Although stochastic components are deemed suf-

ficiently stationary in simple time series models, in most

commonly considered situations, they present complex

statistical correlations.

Although visual inspections for the given range of SPI12

and SPI24 data for Kuwait suggests an absence of trends

with only periodic deterministic component, statistical in-

ferences may be used to provide verification. This analysis

can be accomplished using a single series of annual total

rainfall from which both SPI datasets are directly derived.

The claim to be tested is that a linear relation exists be-

tween the annual rainfall and time at a significance level of

a = 0.05 As shown in Fig. 6, the p-value for the slope of

the fitted linear relation is 0.499. This means that there is a

0.499 probability of obtaining a slope estimate that is ex-

treme or more extreme than that obtained if the null hy-

pothesis of no linear relation was true. As the p-value is

greater than the level of significance, the null hypothesis of

no linear relation is accepted.
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Fig. 4 SPI data plotted as probability distribution functions. The

dashed curve represents the theoretical cumulative distribution, and

the solid curve is the fitted empirical cumulative distribution. AD

corresponds to the Anderson–Darling statistic

Table 1 SPI values and classifications

Class SPI valuea Percentage in category (%)

SNDb SPI12 SPI24

Extremely wet [2.0 2.28 0.78 0.39

Very wet 1.5 to 1.99 4.40 7.75 8.33

Moderately wet 1.0 to 1.49 9.19 8.72 10.27

Normal 0.99 to -0.99 68.26 67.64 63.57

Moderate drought -1.0 to -1.49 9.19 6.40 10.27

Severe drought -1.5 to -1.99 4.40 6.00 6.98

Extreme drought \-2.0 2.28 2.71 0.19

a SPI categories adopted from Bordi et al. (2001)
b Standard normal distribution
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The patterns for SPI12 and SPI24 data can be examined

by plotting a periodogram, which is a Fourier transform of

the autocovariance function representing an unsmoothed

spectral plot used to examine the cyclical structure of the

frequency domain (Brockwell and Davis 2002). This

technique is used to reduce measurement noise effects and

thus to detect which frequencies for the range of time have

the most influence on the data pattern. Typically, a large

peak value in a periodogram corresponds with a period that

is strongly represented in the time series. For example, a

typical periodogram for monthly averaged temperature

data can show a period of 12 months, implying that

6 months of the year exhibit considerably lower tem-

peratures than the other 6 months.

Figure 7 presents periodograms for the two SPI datasets.

Both periodograms show periods such as of 19, 26, 31, 43,

64, 103 and 258 months. However, the SPI12 periodogram

also accounts for shorter periods of 12 and 14 months. It is

worth obtaining the periodogram for the rainfall data as in

Fig. 8. It is evident that the periods identified in the rainfall

pattern are similar to those found in both SPI datasets, with

magnitudes of 12, 18, 26, 30, 42, 64, 103 and 258 months.

Overall, the existence of those periods suggests unclear

climate variations. However, the 12-month period can

certainly be related to a seasonal variation pattern typically

observed in climatological data. It can also be noted that

the 26-month period is attributed to well-known Quasi-

Biennial Oscillation (QBO) patterns in zonal winds, a
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dominant natural oscillation in the equatorial lower

stratosphere (Almedeij and Al-Ruwaih 2006). The QBO

involves a reversal of wind directions; that is, the

prevailing wind direction is easterly for one year and then

westerly for the following year (Angell and Korshover

1964).
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The 258-month period is similar to a fundamental solar

cycle with an average duration of 22 years, over which the

magnetic polarity of the sun first reverses then reverts to its

former state. When Newell et al. (1989) matched this solar

cycle and temperature cycle, they found that the alternate

peaks of the 11-year sunspot cycle correspond to alternate

upward and downward swings of temperatures, suggesting

that cooling takes place during one phase of solar magnetic

polarity and warming during the other. Mitchell et al.

(1979) reported that the 22-year solar periodicity mod-

ulates terrestrial drought-inducing mechanisms that en-

courage and discourage the development of major

continental droughts.

The patterns for the SPI datasets can be estimated from

the detected periods. In general, time-based data with a

periodic sinusoidal component of known wavelength can

be modeled using Fourier series, which can be expressed

for multiple periods as

s tð Þ ¼
X1
n¼1

Xk

i¼1

Rn;i cos 2npfit þ hn;i

� �
ð13Þ

where

Rn;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n;i þ b2
n;i

q

hn;i ¼ tan�1 � bn;i

an;i

� �

an;i ¼ 2fi

ZLiþ1
fi

Li

f ðxÞ cos 2npfitð Þdx

bn;i ¼ 2fi

ZLiþ1
fi

Li

f ðxÞ sin 2npfitð Þdx

where s is the periodic sinusoidal component of SPI; R is

the amplitude of variation; f is the frequency equal to the

inverse of the period; h is the phase angle; and k is the total

number of periodicities. The term (2npft ? h) is measured

in radians. As determined from the data, the k value is

equal to seven and five for SPI12 and SPI24, respectively,

and f values may be set by their periodic nature, i.e., for

SPI12, f1 = 1/12, f2 = 1/14, f3 = 1/19… cycles per month.

The phase angle, h, is needed to adjust the model so that

the cosine function crosses the mean, which is equal to zero

for the data at the appropriate time t. The difficulty is to

determine analytically the function f(x) in Fourier coeffi-

cients. However, due to the presence of existing random-

ness, a more simple procedure may be followed by

determining hn,i and Rn,i by means of numerical opti-

mization. As the above equation cannot be solved

analytically, it is more convenient to reduce the number of

fitting coefficients. This is achieved by testing a number of

s(t) models each obtained by assuming a different value of

n. Following the Fourier procedure, larger n values produce

higher degrees of model accuracy. In this case, however,

greater accuracy would produce a more complex model

form, as numerous periods are detected in the data. Thus,

for simplicity, n = 1 is used. Following the above proce-

dure, a model s(t) for each SPI dataset can be developed in

Fig. 5, with coefficients shown in Table 2. Here, in this

figure, it is seen that the model fits the data with some

variations that represent a remaining stochastic time series

component.

The accuracy of the two models is evaluated in Fig. 9,

which plots SPI12 and SPI24 datasets against corre-

sponding generated values. Here, the solid line represents

the condition of perfect agreement, and the dashed lines

represent discrepancy values of DSPI = ; 1. The per-

centages of data for SPI12 and SPI24 falling within these

discrepancy values are 82.36 and 84.50 %, respectively.

Given that conditions used to derive the model remain

the same, drought forecasts can be performed. The span

of a period can tell, to some extent, how far in time the

model can provide forecasts. Because the longest period

employed in the model is of 258 months (21.5 years),

forecasts can possibly be provided from January 2010

until December 2030 as in Fig. 10. According to the

classifications defined in Table 1, average SPI values for

January 2014 (month number 565) to December 2024

(month number 696) are considered normal to very wet.

The implication is that the model can be used to

produce potential drought forecasts in order to assess

critical policy requirements related to water resources

management.

Table 2 Estimated coefficients for s(t) models with n = 1

i fi SPI12 SPI24

(1/month) Rn,i hn,i Rn,i hn,i

1 1/12 -0.11 0.31 0.00 0.00

2 1/14 -0.10 3.50 0.00 0.00

3 1/19 -0.23 -1.38 -0.14 -0.31

4 1/26 0.31 3.54 0.10 2.54

5 1/31 -0.37 1.63 0.28 2.92

6 1/43 0.36 3.47 0.29 2.70

7 1/64 -0.34 4.31 -0.38 3.29

8 1/103 0.35 3.96 0.44 3.71

9 1/258 0.70 3.31 0.98 3.17
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3 Conclusions

This study has found that the examined SPI datasets for

Kuwait have no trend, but only obvious periodic patterns.

Finding a trend would justify whether a phenomenon such

as climate change affects drought severity or frequency in

the area. The periodogram technique revealed distinct pe-

riods, some of which are similar to those found in QBO and

solar activity patterns. This similarity indicates a possible

connection of droughts with persistent phenomena that can

be exploited to produce a long-term drought model. The

developed sinusoidal models for SPI12 and SPI24 were

able to describe the data patterns with some discrepancies

representing a remaining stochastic time series component.

A wider range of data would thus be necessary to verify the

accuracy of the revealed periods, unhide any other ones,

and detect a possible trend in order to enhance the per-

formance of the developed models.
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