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• This study illustrates an approach to
early-warning assessment of desertifi-
cation risk.

• We used the ESAI approach to study
land vulnerability in Italian agro-forest
districts.

• Convergence in Land Vulnerability to
Degradation (LVD) was mainly ob-
served in flat districts.

• The average ESAI score converged more
rapidly in large districts in respect to
smaller districts.

• Spatial convergence in LVD is a key con-
cept in the assessment of land degrada-
tion.
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This study illustrates an approach to early-warning assessment of desertification risk inMediterranean agro-for-
est districts based on the concept of ‘spatial convergence’ in Land Vulnerability to Degradation (LVD). We inves-
tigate long-term and short-term spatial convergence in LVD across 773 agro-forest districts with different
biophysical and socioeconomic traits across Italy. We used the standard Environmental Sensitive Area Index
(ESAI) based on climate, soil, vegetation and land management attributes as a proxy for LVD. Latitude, elevation
and district size are considered as control variables. Results of the analysis show thatmore than half districts have
experienced an increase in the average ESAI score between 1960 and 2010 and present distinct spatial patterns
over three time intervals considered in the study: 1960–1990, 1990–2000 and 2000–2010. Convergence in LVD
was observed between 1960 and 1990 especially in flat and highly accessible rural districts of northern Italy. The
average ESAI score converged more rapidly in large districts in respect to smaller districts. A moderate conver-
gence in LVD was observed in southern and central Italy during 1990–2000 and 2000–2010 respectively.
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Based on our findings, spatial convergence in LVD is finally proposed as a key concept in the on-going and future
assessment of land degradation in rural areas under (increasing) anthropogenic pressure.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Increased human pressure in dry ecosystems has resulted in a signif-
icant expansion of degraded land and a measurable loss of soil quality
over the last three decades (Geeson et al., 2002; Montanarella, 2007;
Simeonakis et al., 2007). Steep topography, poor soils, low vegetation
cover, climate aridity and drought severity, negatively impact land qual-
ity, triggering soil degradation processes especially in ecologically-vul-
nerable areas (Geist and Lambin, 2004; Basso et al., 2012; Bisaro et al.,
2014). The negative influence of land degradation on local develop-
ment, economic performances and social cohesion is also documented,
mainly for emerging countries (Glenn et al., 1998), but empirical evi-
dence has been increasingly collected for the wealthiest regions in the
world (Juntti and Wilson, 2005; Salvati and Carlucci, 2013; Kelly et al.,
2015).

Land Vulnerability to Degradation (LVD) is a dynamic attribute of
the landscape (Salvati and Zitti, 2008) and determining the spatial dy-
namics observed recently at both the global and regional scale requires
a continuous monitoring to identify the most relevant contributing fac-
tors (Hill et al., 2008). Temporal dynamics and spatial heterogeneity in
land degradation drivers are rarely considered together in mitigation
and adaptation policies (Gisladottir and Stocking, 2005). By contrast, re-
sponse interventions to land degradation have been primarily devel-
oped with the final objective of reversing (or reducing) the short-term
impact of a single factor or a limited set of contributing factors
(Sommer et al., 2011). Biophysical and socioeconomic drivers of change
have been usually assessed separately (Zdruli, 2014), and therefore pol-
icy strategies have also frequently addressed the two dimensions sepa-
rately (Thomas et al., 2012).

Due to the long-term interaction between nature and man, tradi-
tional agro-forest systems dominate Mediterranean landscapes and
preserve biodiversity, natural resources, aesthetic and cultural values
(Salvati and Ferrara, 2015). Forms of sustainable agriculture were fre-
quently practiced in these districts and provided some protection
from land degradation (Biasi et al., 2015). Agro-forest systems are in-
creasingly seen as buffer zones containing soil degradation and deserti-
fication risk in vulnerable areas (Bajocco et al., 2015). Agro-forest
districts are therefore seen as an appropriate scale for assessment of
LVD in Mediterranean Europe (Salvati et al., 2015a). Past experience
shows that multidimensional analysis of landscape and socioeconomic
transformations in agro-forest systems prove to be relevant evidence
base for the development and implementation of integrated land degra-
dationmanagement strategies (Salvati and Zitti, 2009). Additionally, in-
depth understanding of complex environmental dynamics in agro-for-
est systems at the spatio-temporal scales considered in this study con-
tribute essential information for the design of sustainable land
management policies (Le Houérou, 1993).

‘Convergence’ in a given condition or process is a regional system
modeling approach commonly applied to indicators of economic
growth or income but also used more recently to model a wider variety
of sociological and ecological phenomenon (Barro and Sala-i-Martin,
2004). The ‘convergence’ notion denotes a negative relationship be-
tween changes over time in the studied variable and the level of the
same variable at the initial observation time (Arbia and Paelinck,
2003). Convergence compares the average change over time to the
initial value for an indicator under the implicit assumption that
those units with the lowest value will change at a faster rate to
those units already near (or above) the mean. If it is assumed that
the indicator is rising across the observed units, then there should
be a negative relationship between more recent measurements and
previous measurements. Then more negative this relationship, the
more certainty that values across all units are in fact converging
around the mean.

Spatial convergence in economic, demographic and social indicators
is well documented in regional and country level assessments (Quah,
1997; Giannias et al., 1999; Manca et al., 2014), but relatively fewer
studies focus on convergence of environmental pressure, governance
and policy indicators (Iosifides and Politidis, 2005; Aldy, 2006;
Ezcurra, 2007). Notwithstanding the relative novelty of the approach,
there exists a great demand for research on spatial convergence in eco-
logical (or socio-environmental) variables as a potential evidence base
to design policies for the mitigation of land degradation processes driv-
en jointly by biophysical and socioeconomic factors (Bajocco et al.,
2015). Spatial convergence is also suggested as a possible early-warning
indicator of environmental risk in complex ecological contexts (e.g.
Neumayer, 2001).

Salvati and Zitti (2008, 2009) first applied the concept of conver-
gence to LDV and then provided empirical evidence on spatial conver-
gence in LVD at the country scale by identifying the most relevant
factors determining convergence among selected ecological and socio-
economic factors in Italy. Salvati et al. (2013) demonstrated that a
given territorial system may undergo different (or even contrasting)
patterns of land vulnerability (improvement, worsening or stability)
in the long-term, amplifying sometimes the heterogeneity in the spatial
distribution of land resources (Salvati et al., 2015a). Processes causing
spatio-temporal convergence in LVD have been hypothesized to repre-
sent a signal of desertification risk (Salvati, 2014). Convergence in LVD
may also be used as an organizing conceptwhen developing socio-envi-
ronmental scenarios for policy implementation (Thornes, 2004). Al-
though a number of candidate indicators, composite indexes and
decision support systems assessing desertification risk have been pro-
posed at both global and regional scales, early-warning approaches in-
creasingly require a reduced number of variables and simplified
analytical techniques (Salvati et al., 2011).

Meeting these requirements, spatial convergence in LVD is proposed
as a promising approach to on-going and future assessment of land deg-
radation in rural areas under (increasing) anthropogenic pressure
(Salvati and Zitti, 2009). Convergence or divergence of LVD may prove
useful in the assessment of adaption capacity of agro-forest districts to
biophysical and human pressures as well as inform specific mitigation
strategies (Briassoulis, 2011; Kelly et al., 2015; Salvati et al., 2015a). In
the present study we investigate the long-term (1960–2010) spatial
convergence of LVD in Italy using a composite index of land vulnerabil-
ity that integrates environmental and socioeconomic variables at the
scale of agro-forest districts. The national coverage of our study makes
the results potentially more interesting than a pilot study confined to
a limited test area. Analysis of areas experiencing spatial convergence
in LVD in Italy provides relevant information for the analysis of land
degradation across the northern Mediterranean and may contribute to
the evidence-based design of place-specific measures for mitigation of
desertification risk and adaptation to rapid socio-environmental chang-
es (Salvati et al., 2015b). The novelty of the approach presented in this
study lies in the integration of a widely-used land degradationmonitor-
ing system (such as the ESA) into a statisticalmodel incorporating space
and selected context variables as relevant predictors of local-scale
changes in the level of LVD. Finally, we discuss the relevance of spatial
convergence in LVD as an early-warning signal of increased desertifica-
tion risk at the local scale.
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2. Methodology

2.1. Study area

Italy is a northern Mediterranean country divided into three geo-
graphical areas (North, Centre, South) and 20 administrative regions
with a total land surface that extends 301,330 km2 (23% lowland, 42%
upland and 35% mountains). The distribution of socioeconomic and
land resource disparities across Italy reflects millennia of interplay be-
tween biophysical factors and human action that is evident in both
landscape structure and environmental quality (Salvati and Zitti,
2008). In this study, the Italian territory was partitioned into 773
Agro-forest Homogeneous Districts (AHD) defined by the Italian Na-
tional Statistical Institute using similarity criteria in climate regime, to-
pography, soil quality and land suitability to cropping, forestry or
grazing (Istat, 1958). Agro-forest districts are composed by 5–10munic-
ipalities and are considered robust geographical domains in the analysis
of spatially-disaggregated statistical data dealing with the primary sec-
tor (Salvati et al., 2015a).

2.2. Data and variables

The Environmental Sensitive Area (ESA) scheme for the identifica-
tion and prioritization of agricultural areas that require protection can
be more broadly applied to the assessment of LVD and desertification
risk at both the regional and country scale in southern Europe (Salvati
and Zitti, 2009). The fourteen variables considered in the ESA scheme
refer to four thematic domains (soil, climate, vegetation, land-use/man-
agement) derived from official data sources and made available as spa-
tially-disaggregated continuous layers (Ferrara et al., 2012). A
geographic information system was used to operationally manage
these layers and to aggregate them into partial indicators quantifying
the contribution of each thematic domain to the composite index
(Bajocco et al., 2015). Comparable data to fully enumerate the ESA
scheme was only available at limited points in time. Therefore, this
studywill consider a 50-year time period assessing the level of land vul-
nerability at four specific points in time (1960, 1990, 2000 and 2010).

2.2.1. Soil
Soil quality is a multifaceted concept reflecting the ability of land to

sustain agricultural production and natural vegetation (Salvati et al.,
2011). By adopting the ESA scheme, four variables (soil texture, depth,
parent material and slope) were considered in the assessment of soil
quality. Soil data were derived from the European Soil Database at
1 km2 pixel resolution (Joint Research Center, JRC) and integrated
with an Italian database of soil characteristics produced by the Ministry
of Agriculture, the Ecopedological map of Italy, a Land Systemmap pro-
duced by the National Centre of Soil Cartography (CNCP), and a 20 m
Digital ElevationModel (Salvati et al., 2013). A land classification system
with scores ranging from 1 to 2 (Salvati et al., 2015b) was developed for
each studied variable and applied at the district scale with the aim to
homogenize soil variables and define vulnerability classes and thresh-
olds. The score system was derived from statistical analyses and the
fieldwork performed by previous authors (Kosmas et al., 2000; Lavado
et al., 2009; Salvati et al., 2011). For each elementary spatial unit, a
Soil Quality Index (SQI) was estimated as the geometric mean of the
scores attributed to each value of the four selected variables, ranging
from 1 (the lowest soil vulnerability) to 2 (the highest soil vulnerabili-
ty). The SQI was then calculated at 1 km2 resolution for Mediterranean
Europe (Colantoni et al., 2015).

SQI is often applied as an operational approach to analyse spatial dis-
tribution of soil quality for small areas usingdiachronic soilmappingbut
here is treated as a static status variable input to ESA due to limitations
in national data coverage (Salvati et al., 2011, 2015b). Although soil
depth can vary slightly over longer time intervals and in areas
experiencing high levels of soils erosion, the assumption of little average
change at the national scale is acceptable due to data availability and
cost implications of collecting this data at high spatial resolution
(Salvati et al., 2013).
2.2.2. Climate
Three variables were used to assess climate quality in the ESA

scheme: average annual rainfall rate, aridity index and aspect. Rainfall
and aridity index were both measured as a 10-year average for 4 time
windows (1951–1960, 1981–1990, 1991–2000, 2001–2010). Climate
variables were derived from spatially-interpolated meteorological data
collected in the National Agro-meteorological Database (BDAN) devel-
oped by the Italian Ministry of Agriculture for scientific analysis at the
country scale in Italy (Bajocco et al., 2015). The BDAN includes daily
time series of precipitation, air temperature and humidity, wind (inten-
sity and direction) and solar radiation collected from official (national
and regional) networks monitoring weather conditions over the time
period between 1951 and 2010. Meteorological data were checked
and validated prior to analysis in order to verify temporal and spatial
consistency (Colantoni et al., 2015).

Kriging and co-kriging procedures applied to monthly and annual
data on precipitation and temperature were used to regionalize the rel-
evant climate variables in the rainfall and aridity index. Ordinary kriging
was applied to the spatial distribution of annual rainfall over the inves-
tigated time period;monthly temperature regimeswere assessed using
a co-kriging procedure incorporating the effect of ancillary variables
such as elevation and distance to the coast in producing raster maps at
1 km spatial resolution (Salvati and Zitti, 2008). Grid size was chosen
based on the density and geographic distribution of gauging stations
(Colantoni et al., 2015). The aridity index was calculated as the ratio of
cumulated annual rainfalls (mm) to annual reference evapotranspira-
tion (mm). The aridity index ranges from 0 to ∞ with higher values in-
dicating wetter conditions (Incerti et al., 2007). Aspect was finally
derived from a Digital Elevation Model (DEM) made available at
20 m-cell size resolution (Salvati et al., 2015a).
2.2.3. Vegetation
The influence of changes in vegetation cover on the level of LVDwas

assessed using four variables: plant cover, fire risk, protection from soil
erosion, and vegetation drought resistance. Such indicators were ob-
tained from elaboration on CORINE (COoRdination of INformation on
the Environment) Land Cover maps produced by the Italian Institute
of Environmental Research and Protection (Ispra) for the years 1990,
2000 and 2006 and on a CORINE-like land cover map of Italy produced
by Italian Touring Club and National Research Council for 1960
(Salvati et al., 2015a).
2.2.4. Land use and management
Different forms of land use andmanagement, possibly reflecting low

or high anthropogenic environmental pressure that influence the level
of land vulnerability to degradation, were assessed with respect to pop-
ulation density, demographic growth and land-use intensity. Although
indirectly connected with desertification risk in the Mediterranean
basin, these variables provides a joint assessment of the local socioeco-
nomic context and anthropogenic land use management impact
(Salvati et al., 2011; Salvati, 2014). Population density (inhabitants/
km2) was calculated for 1961, 1991, 2001 and 2011 on the basis of the
primary data from the Italian National Census of Population and House-
holds (Salvati and Zitti, 2008). Annual population growth rate was de-
rived from the same dataset and computed separately for 1951–1961,
1981–1991, 1991–2001 and 2001–2011 time intervals (Salvati et al.,
2015a). A proxy of land-use intensity was then derived from the four
land-use maps mentioned above after a vulnerability score was
assigned to each land-use class according to Kosmas et al. (2000).
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2.3. Building ESA partial indicators over time

For each point in time, the primary variables assessing climate, veg-
etation and land-use/management were transformed into vulnerability
indicators using a generalized score system based on the estimated de-
gree of correlation with LVD (Salvati and Zitti, 2009). We applied the
scores proposed by Salvati and Zitti (2008) and ranging between 1
(the lowest contribution to LVD) and 2 (the highest contribution to
LVD). This score system follows standard benchmarks proposed by
Kosmas et al. (2000); Geeson et al. (2002); Simeonakis et al. (2007);
Lavado Contador et al. (2009); Salvati and Carlucci (2013) and Salvati
(2014). Partial indicators of climate, vegetation and land-use/manage-
ment quality were calculated as the geometric mean of the respective
vulnerability indicators' scores for each i-th spatial domain. According
to the adopted score system, the partial indicators of climate (Climate
Quality Index, CQI), vegetation (Vegetation Quality Index, VQI) and
land-use/management (Land Management Quality Index, MQI) range
between 1 and 2, with larger scores indicating higher land vulnerability
(Ferrara et al., 2012). The three partial indicators were spatially overlaid
with the SQI illustrated in Section 2.2.1. using a Geographic Information
System (Bajocco et al., 2015).

2.4. A multidimensional metric of land vulnerability

Following the original formulation proposed by Geeson et al. (2002)
and also considering Karamesouti et al. (2015) and references therein,
we calculated the ESA composite index (ESAI) for each i-th spatial do-
main (agro-forest districts) and j-th year (1960, 1990, 2000, 2010) as
the geometric mean of the four quality indicators (CQI, VQI, MQI, SQI).
Based on the score's range defined for each partial indicator, the ESAI as-
sumes values ranging between 1 (the lowest level of LVD) and 2 (the
highest level of LVD). Outcomes of the ESA scheme have been exten-
sively validated at several sites in southern Europe (Kosmas et al.,
2000; Basso et al., 2012; Ferrara et al., 2012; Bajocco et al., 2015).
Lavado Contador et al. (2009) conducted a regional assessment similar-
ly based on heterogeneous geographical datasets with different data
quality and spatial resolution and found the ESA schemeas a reliable de-
cision support system for land degradation processes. Ferrara et al.
(2012) documented the stability of the ESA index over different tempo-
ral and spatial conditions, evaluating the sensitivity to changes in the
primary indicators as well as in the composite index. Results of the sen-
sitivity analysis indicate that the ESAI is not affected by spatial and tem-
poral heterogeneity in the underlying indicators. Finally, Salvati et al.
(2015b) have identified a number of significant correlations between
the ESAI and a vast set of soil degradation indicators in Italy. Despite
its acknowledged importance as a tool for monitoring land degradation
(Salvati and Zitti, 2009), the ESA scheme also presents some shortcom-
ings since the input variables are oriented towards the description of
basic biophysical and socioeconomic attributes of a given area without
a formal specification of other socio-political and cultural factors possi-
bly influencing the process of land degradation (Salvati et al., 2015a).
However considering the availability of comparable input variables
Table 1
Variables considered in the present study including measurement scale and data source.

Acronym Variable name Measurement scale

ESAI Environmentally Sensitive Area Index Average score ranging fro
CQI Climate Quality Index Average score ranging fro
SQI Soil Quality Index Average score ranging fro
VQI Vegetation Quality Index Average score ranging fro
MQI Land-use/management Quality Index Score ranging from 1 to 2
Lat Latitude (north-south gradient) 0: northern and central I
Ele Elevation m
Area District's surface area km2

a European Environment Agency.
b Corine Land Cover.
c Italian National Institute of Statistics.
over time and space, the basic specification of the ESA model was con-
sidered acceptable for the purposes of the study to investigate diachron-
ic land degradation over a large area and longer timeframe (Salvati and
Zitti, 2008).

2.5. Statistical analysis

An average ESAI figure was computed for each agro-forest district
and study year, and the corresponding annual rate of change over
time was calculated for each relevant time interval: 1960–1990, 1990–
2000, 2000–2010. Three types of statistical models were run with the
objective to verify convergence over time in the spatial pattern of LVD
at the district scale in Italy:

(i) Ordinary Least Squares (OLS) model based on three separate
specifications: linear, square and cubic; measuring convergence
between the rate of change over time in LVD measured as
ΔESAI and the initial level of the target variable measured as
the initial mean value of ESAI for the spatial unit,

(ii) OLS model measuring the rate of change over time in LVD and a
set of predictors including the initial level of the target variable
and a vector of contextual variables, and

(iii) a spatial regression model considering the initial level of the tar-
get variable, a vector of contextual variables and space location as
predictors.

2.5.1. Convergence analysis
The OLS models mentioned above were estimated as follows:

ΔESAI j1− j0;ið Þ ¼ b0 þ b1 � ESAI j0;ið Þ þ e ð1Þ

ΔESAI j1− j0;ið Þ ¼ b0 þ b1 � ESAI j0;ið Þ þ b2 � ESAI j0;ið Þ2 þ e ð2Þ

ΔESAI j1− j0;ið Þ ¼ b0 þ b1 � ESAI j0;ið Þ þ b2 � ESAI j0;ið Þ2 þ b3 � ESAI j0;ið Þ3

þ e ð3Þ

where ESAI(j0,i) is the estimated level of LVD for the year j0 and the i-th
spatial domain,ΔESAI(j1-j0, i) is the per cent change in the ESAI score ob-
served over a given time interval, and e is the error term. Significance
was assessed at p b 0.01 based on the results of a Fisher-Snedecor F
test under the null hypothesis of non-correlation between the depen-
dent variable and the predictor(s). Results report all variables entered
in eachmodel with significant coefficients (Salvati and Zitti, 2008). Pos-
itive and negative coefficients indicate a tendency of LVD to diverge or
to converge respectively (Salvati and Zitti, 2009).

2.5.2. Modeling convergence in the ESAI with contextual attributes
Amultiple linear regressionmodel was run to identify the territorial

predictors most associated with changes in the level of LVD separately
for each time interval. Four predictors were considered (Table 1): the
initial level of the target variable (ESAI), the average elevation of each
Data source

m 1 to 2 Elaboration on CQI, SQI, VQI, MQI
m 1 to 2 Italian agro-meteorological database
m 1 to 2 Joint Research Centre (Ispra)/EEAa

m 1 to 2 Elaboration on CLCb maps
Elaboration on pop. census/CLC maps

taly districts; 1: southern Italy districts ISTATc territorial statistics
ISTAT Atlas of Italian municipalities
Elaboration on ISTAT (1958)
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district (Ele), a dummy variable (Lat) classifying districts based on the
geographical position in Italy with ‘0’ given for districts situated in
northern and central Italy and ‘1’ for districts situated in southern
Italy, and district's surface area (Area). Model's outcomes are reported
using regression coefficients and tests of significance for each variable
aswell as an overall Fisher-Snedecor's F-statistic testing for the null-hy-
pothesis of non-significant model and a Student's t-statistic testing for
the null hypothesis of non-significant regression coefficient. A Durbin-
Fig. 1. Spatial distribution of the average ESAI s
Watson statistic testing for the null hypothesis of serially uncorrelated
errors was applied separately to regression residuals.

2.6. Exploring spatial convergence in the ESAI with a Geographically
Weighted Regression

A GeographicallyWeighted Regression (GWR) model (Fotheringham
et al., 2002) was finally used to identify spatio-temporal convergence in
core by agro-forest district in Italy by year.
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LVD taking into account the initial level of the ESAI, the four predictors
mentioned above (ESAI, Ele, Lat, Area) and space. The specification of a
basic GWR model for the i-th spatial domain is:

y ið Þ ¼ x ið Þ � b ið Þ þ e ið Þ ð4Þ

where y(i) is the dependent variable, x(i) is the row vector of predictors,
b(i) is the column vector of regression coefficients, and e(i) is the random
error, all estimates being calculated at location i. Regression parameters
were estimated at each agro-forest district by weighted least squares
and may vary in space. We used a bi-square nearest neighbour kernel
function modeling socioeconomic processes that are non-stationary in
space (Manca et al., 2014) to derive the spatial distribution of locally-
weighted regression parameters based onmodel (4). The highestweights
were attributed to the observations close to the i-th location.

3. Results

Spatio-temporal changes in the distribution of the average ESAI
score in the Italian agro-forest districts are shown in Fig. 1. The observed
variations in the ESAI suggest that the environmental conditions con-
tributing to LVD worsen throughout Italy over the study period. Nearly
half Italian districts showed an increase in the average ESAI score over
all investigated time periods. The largest rates of growth in the ESAI
score were observed in the Po valley (northern Italy), along the Adriatic
coast (central Italy), and in some districts of Apulia and Sicily, southern
Italy. Identifying a ‘critical’ level of land vulnerability to degradation, the
average ESAI score in southern Italy was nearly 1.4 in 2010 (Basso et al.,
2012). Soil and vegetation quality contributed the most to the spatial
distribution of the ESAI score (Fig. 2). SQI and VQI showed, on average,
the highest scores (respectively 1.53 and 1.47) on a vulnerability scale
ranging from 1 to 2. VQI scores increased in Italy by 3% between 1960
(1.47) and 2010 (1.50). The CQI showed the largest increase across
the country (+7%) with the average score moving from 1.09 in 1960
to nearly 1.20 in 2010. Finally, MQI was relatively stable over time
(1.31 for 1960 and 1.30 for 2010).
Fig. 2. Spatial distribution of the average ESA scores of the four partial indicators (
3.1. Convergence analysis

The relationship between state and changes in the level of LVD ob-
served in each agro-forest district is illustrated in Table 2.We run linear,
square and cubic models of convergence to investigate the relationship
between change in the average ESAI over three time intervals (1960–
1990, 1990–2000, 2000–2010) and the respective ESAI score at the be-
ginning of the studied time interval (1960, 1990, 2000). A square con-
vergence pattern was observed for 1960–1990 with moderately high
adjusted-R2 and a significant Spearman non-parametric correlation co-
efficient. The rate of change in LVD increased with the level of land vul-
nerability up to a peak estimated ESAI = 1.4 while decreasing in
districts classified at high initial ESAI score. Convergence patterns be-
tween the investigated variables were non-significant in the subse-
quent time intervals (1990–2000 and 2000–2010).
3.2.Modeling convergence in the level of the ESAIwith contextual attributes

Amultiple regression analysis estimating convergence in the level of
LVDwas run separately for each time interval including 4 predictor var-
iables (Table 3). A moderately significant convergence pattern was
found over 1960–1990 (adjusted R2= 0.26). Elevation is themost rele-
vant variable associated to convergence in the LVD. This result indicates
that flat areas are more sensitive to rapid increases in the ESAI with re-
spect to hilly and mountainous districts. Weak signals of convergence
were observed for the time period between 1990 and 2000 (adjusted
R2 = 0.10) with the average ESAI score, latitude and elevation affecting
negatively LVD. The ESAI coefficient was not significant during 2000–
2010, indicating lack of convergence in the spatial pattern of LVD. Lati-
tude and elevation were the only significant variables producing a
model with adjusted R2 = 0.17. LVD in northern Italian districts grew
much more rapidly in respect to southern Italy. Moreover, LVD in-
creased much more rapidly in upland and mountain districts than in
flat areas, indicating a distinct spatial pattern from what was observed
in the preceding time intervals.
CQI, VQI, MQI, SQI) in Italy at the beginning and the end of the study period.



Table 2
First-, second- and third-order polynomial regression for the convergence analysis of change in the average ESAI score at the spatial level of agro-forest districts by time interval in Italy
(⁎significance at p b 0.05).

Variable 1960–1990 1990–2000 2000–2010

Linear Square Cubic Linear Square Cubic Linear Square Cubic

Intercept 0.12 −13.17 −41.64 0.17 −4.85 74.33 0.26 3.86 19.98
ESAI −0.13 19.39 82.08 −0.09 7.33 −168.02 0.15 5.46 −41.05
ESAI2 −7.11 −53.04 −2.74 126.49 1.96 28.10
ESAI3 11.21 −31.69 −6.39
Adj-R2 0.01 0.10⁎ 0.10 0.002 0.01 0.02 0.00 0.01 0.01
Spearman ρ 0.18⁎ −0.01 −0.09
n 773
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3.3. Exploring spatial convergence in the level of land vulnerability to deg-
radation with a Geographically Weighted Regression

The results of the GWR models (Fig. 2) outline convergence in LVD
between 1960 and 1990 (adjusted R2 = 0.41) with the highest R2 ob-
served in northern and central Italy. The impact of the (negative) ESAI
coefficient on model's structure is particularly evident in north-eastern
Italy. The impact of district's surface area and latitude is also higher in
north-eastern districts than elsewhere in Italy. The GWR model for
1990–2000 results in a weaker relationship (adjusted R2 = 0.22) with
the highest local-R2 concentrated in southern Italian districts. A nega-
tive ESAI coefficient was also observed in southern Italy. Elevation and
latitude are additional variables influencing changes in LVD in southern
Italy. Finally, the GWR model for 2000–2010 resulted in a relatively
weak relationship (adjusted R2 = 0.27) with the highest R2 observed
in central Italy. Negative ESAI coefficients were observed in central
Italy in this time period with elevation and district size influencing neg-
atively the dependent variable in the same spatial unit (Fig. 3).

4. Discussion

This paper investigates spatio-temporal convergence as a composite
index of land vulnerability to degradation to serve as an evidence base
for on-going and future assessment of desertification risk.We run an ex-
ploratory data analysis on indicators derived from a comprehensive
dataset evaluating environmental and socioeconomic dynamics of
N700 homogeneous agro-forest districts over 50 years (1960–2010).
Evidence for spatial convergence of LVD in Italy reflects a latent increase
in desertification risk, at least in defined socioeconomic contexts and
time periods, as observed in the agro-forest districts situated in north-
ern and central Italy between 1960 and 1990.
Table 3
Multiple regression models for convergence in the average ESAI score by time interval in the a

Variables Beta Std. err. B

1960–1990: adjusted R2 = 0.26, F(4768) = 70.2, p b 0.0001
Intercept 0.69
Lat 0.1129 0.0352 0.01
Ele −0.6080 0.0367 −0.10
ESAI −0.2911 0.0412 −0.47
Area 0.0788 0.0314 0.00

1990–2000: adjusted R2 = 0.10, F(4768) = 22.7, p b 0.0001
Intercept 0.81
Lat 0.3470 0.0380 0.09
Ele −0.1842 0.0469 −0.05
ESAI −0.2882 0.0508 −0.58
Area −0.0347 0.0348 −0.00

2000–2010: adjusted R2 = 0.17, F(4768) = 39.7, p b 0.0001
Intercept 0.10
Lat −0.3833 0.0382 −0.11
Ele −0.1597 0.0452 −0.05
ESAI 0.0048 0.0501 0.01
Area −0.0733 0.0333 −0.01
Our findings suggest that convergence in LVD depends on a limited
set of factors contributing to land degradation. These factors may repre-
sent a target for specific (formal) responses against desertification (e.g.
environmental and agro-environmental policies, developmental poli-
cies and, more generally, an integrated strategy for sustainablemanage-
ment of vulnerable land). Convergence analysis provides a rich
information base suitable (i) to identify long-term trends in LVD
(Montanarella, 2007), (ii) to develop reliable projections of future
trends in land degradation risk (Onate and Peco, 2005) and, finally,
(iii) to design efficient mitigation strategies (Thomas et al., 2012).

The findings of our study indicate that land surface exposed to deg-
radation processes has increased heterogeneously during the studied
time interval as a result of distinct patterns of convergence in the level
of land vulnerability to degradation between Italian regions. In other
words, convergence processes have progressively consolidated the en-
vironmental gap between highly vulnerable areas from less vulnerable
areas (Bajocco et al., 2015). The spatially-heterogeneous increase in
LVD observed in Italy reflects the complex interplay of local develop-
ment factors, latent transformations in the socioeconomic context and
ecological conditions changing over time (Safriel, 2009;
Giménez-Morera et al., 2010; Yang et al., 2013). Agro-forest districts
in northern and central Italy have shared a high or moderately high
land quality exposed to a relatively high anthropogenic environmental
pressure. Southern Italy districts have shown, on average, a lower-qual-
ity natural capital (climate, soil, vegetation) with higher spatial hetero-
geneity in respect to the agro-forest districts situated in northern and
central Italy. The territorial conditions at the start of this analysis act
as relevant factors in determining a lack of convergence in LVD and, pos-
sibly, a moderate or negligible increase in the level of land vulnerability
at the district scale (Simeonakis et al., 2007; Lavado Contador et al.,
2009; Karamesouti et al., 2015; Salvati and Ferrara, 2015).
gro-forest districts of Italy.

Std. err. t(768) p-Level

30 0.0893 7.7596 0.0000
96 0.0061 3.2064 0.0014
88 0.0066 −16.5833 0.0000
08 0.0666 −7.0697 0.0000
68 0.0027 2.5056 0.0124

87 0.1404 5.8326 0.0000
31 0.0102 9.1240 0.0000
08 0.0129 −3.9259 0.0001
29 0.1027 −5.6741 0.0000
46 0.0046 −0.9971 0.3190

62 0.1569 0.6770 0.4986
95 0.0119 −10.0388 0.0000
12 0.0145 −3.5333 0.0004
10 0.1146 0.0958 0.9237
13 0.0051 −2.1984 0.0282



Fig. 3. Geographically Weighted Regression models for convergence in the average ESAI score in Italy by time interval.
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In this sense, distinct spatial patterns of convergence are the result of
different drivers of land degradation in northern and southern Italian
districts (Salvati et al., 2013). Salvati (2014) showed how socioeconom-
ic drivers of change prevail in northern and central Italy with place-spe-
cific increases in the level of land vulnerability more rarely driven by
biophysical factors (Salvati, 2014). Joint biophysical and socioeconomic
factors are more frequently involved in land degradation processes in
southern regions than elsewhere in Italy (Bajocco et al., 2015).

Salvati and Zitti (2009) demonstrated that spatially-diverging
trends in LVD reflect socioeconomic processes that tend to consolidate
regional disparities in the quality of soil, vegetation and climate capitals.
For example, anthropogenic pressures and socioeconomic transforma-
tions in the northern Mediterranean region have impacted coastal and
flat areas more intensively than economically-marginal and mountain-
ous land (Salvati and Zitti, 2008). Soil salinization and compaction are
examples of degradation processes typical of coastal areas with a nega-
tive impact caused by population growth, urban sprawl, crop intensifi-
cation and poor water management (Giménez-Morera et al., 2010;
Biasi et al., 2015; Kelly et al., 2015). By contrast, the decrease of workers
in the primary sector and the abandonment of agricultural land may
trigger wildfire risk and soil erosion in economically-marginal and re-
mote districts of northern and central Italy (Le Houérou, 1993;
Iosifides and Politidis, 2005; Salvati and Carlucci, 2013; Bisaro et al.,
2014).

Salvati (2014) suggests that the implementation of regional- and
local-scale policies identifying land degradation processes benefit from
a multi-temporal assessment of relevant socio-ecological variables and
monitoring the short-term evolution of local agricultural systems.
Based on this assumption, a comprehensive, regional-scale strategy for
mitigation of and adaptation to the increased land degradation risk in
the Mediterranean basin is increasingly required to consider the differ-
ent socioeconomic attributes of a number of target areas together
(Sommer et al., 2011), assuming spatial heterogeneity at the local
scale as a relevant predictor of land degradation risk (Basso et al.,
2012). For example, it was demonstrated that the increased spatial het-
erogeneity in the ESAI is closely related with the formation or
consolidation of land degradation hotspots (Bajocco et al., 2015). Land
degradation hotspots require specific land protectionmeasures that tar-
get the relevant factors shaping spatial heterogeneity and the level of
land degradation (Salvati et al., 2015a). However, methodologies iden-
tifying current hotspots or predicting the spatial distribution of future
hotspots are relatively scarce or specifically designed for local-scale
studies (Zdruli, 2014). Our approach may fill this gap identifying LVD-
converging or diverging areas and assessing the intensity of conver-
gence or divergence at the country scale and help to identify and clari-
fying the role of factors driving the observed changes. Adaptation
policies especially benefit from a such monitoring approach
(Briassoulis, 2011); for example, strategies promoting adaptation to in-
creased levels of desertification risk may be specifically prioritized and
adopted in areas with a more rapid convergence in LVD with respect
to the neighbouring districts. In this sense, spatial convergence in LVD
can be regarded as an early-warning indicator of desertification risk.

5. Conclusions

Understanding factors responsible for spatial convergence in LVD re-
quires a multidisciplinary approach capable to (re)connect the recent
landscape dynamics of local agro-forest systems to a comprehensive
analysis of sustainable development, socio-ecological changes and the
conservation of renewable land resources at the regional scale
(Akhtar-Schuster et al., 2011). The methodology illustrated in this
paper provides an informative tool for on-going and future assessment
of (changing) environmental conditions at homogeneous spatial units,
such as agro-forest systems or other relevant analysis domains at the
local scale (Gisladottir and Stocking, 2005). In this sense, our findings
potentially could provide an evidence base to plan and implement ded-
icated conservation policies for agro-forest systems experiencing land-
scape transformations. This study also demonstrates the relevance and
importance of freely-available, updated and high-resolution data
sources for environmental monitoring and risk surveillance. The pro-
posed methodology in this study allows for disaggregation of the com-
ponent factors used in an ESA analysis and this is desirable for policy
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development, targeting and programme design. Data availability and
access remain a primary concern in monitoring and assessing LVD and
a continuous effort from official sources is needed to produce appropri-
ate diachronic layers with the highest spatial precision and comparabil-
ity, limit the impact of data inaccuracies and between-source
differences, and ensure public access to these vital information to in-
form local and regional mitigation and adaptation strategies. Finally,
further investigation is required to clarify the importance of joint chang-
es in economic and environmental factors determining convergence in
land vulnerability to degradation.
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