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The Landsat 8 mission provides new opportunities for quantifying the distribution of above-ground carbon at
moderate spatial resolution across the globe, and in particular drylands. Furthermore, coupledwith structural in-
formation from space-based and airborne laser altimetry, Landsat 8 provides powerful capabilities for large-area,
long-term studies that quantify temporal and spatial changes in above-ground biomass and cover. With the
planned launch of ICESat-2 in 2017 and thus the potential to couple Landsat 8 and ICESat-2 data,we have unprec-
edented opportunities to address key challenges in drylands, including quantifying fuel loads, habitat quality, bio-
diversity, carbon cycling, and desertification.
In this study, we explore the strengths of Landsat 8's Operational Land Imager (OLI) in estimating vegetation
structure in a dryland ecosystem, and compare these results to Landsat 5's ThematicMapper (TM).We also dem-
onstrate the potential of OLIwhen coupledwith light detection and ranging (lidar) in estimating vegetation cover
and biomass in a dryland ecosystem. The OLI and TM predictions were similarly positive, indicating data from
these sensors may be used in tandem for long-term time-series analysis. Results indicate shrub and herbaceous
cover are well predicted with multi-temporal OLI data, and a combination of OLI and lidar derivatives improves
most of these estimates and reduces uncertainty. For example, significant improvements were made for shrub
cover (R2 = 0.64 and 0.78 using OLI only and both OLI and lidar data, respectively). Importantly, a time series
of OLI, with some improvement from lidar, provides strong estimates of herbaceous cover (68% of the variance
is explained with OLI alone). In contrast, OLI data explain roughly 59% of the variance in total shrub biomass,
however approximately 71% of the variance is explained when combined with lidar derivatives.
To estimate the potential synergies of OLI and ICESat-2 we used simulated ICESat-2 photon data to predict veg-
etation structure. In a shrubland environment with a vegetation mean height of 1 m and mean vegetation cover
of 33%, vegetation photons are able to explain nearly 50% of the variance in vegetation height. These results, and
those from a comparison site, suggest that a lower detection threshold of ICESat-2may be in the range of 30% can-
opy cover and roughly 1 m height in comparable dryland environments and these detection thresholds could be
used to combine future ICESat-2 photon data with OLI spectral data for improved vegetation structure. Overall,
the synergistic use of Landsat 8 and ICESat-2 may improve estimates of above-ground biomass and carbon stor-
age in drylands that meet these minimum thresholds, increasing our ability to monitor drylands for fuel loading
and the potential to sequester carbon.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Global drylands, which include hyper-arid, arid, semiarid, and dry-
subhumid ecosystems, are undergoing rapid population growth and
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are highly sensitive to climate change (Reynolds et al., 2007). Globally,
drylands cover over 40% of the Earth's surface providing ecosystem ser-
vices to one-third of the world population (MEA, 2005a). These ecosys-
tem services include water and soil-related services such as cultivated
croplands and rangelands. Although total biomass and soil organic car-
bon are not highly concentrated in drylands, their geographic extent re-
sults in providing a role in climate regulation through carbon
sequestration (MEA, 2005b). Yet drought and population growth,
coupled with intensified land use, can result in desertification (Geist &
ormance and potential synergies for quantifying dryland ecosystem
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Lambin, 2004) and cause considerable changes in vegetation (e.g.
D'Antonio & Vitousek, 1992) and loss of net primary production and
soil carbon (Lal, 2004, Zika & Erb, 2009). Previous studies of global dry-
lands have indicated that maintaining plant biodiversity may help mit-
igate disturbance in drylands (Maestre et al., 2012). Monitoring
vegetation cover and biomass over time and space can assess desertifi-
cation trends at the global scale, and management practices at the re-
gional or local scale (e.g. Hellden & Tottrup, 2008, Prince,
Becker-Reshef, & Rishmawi, 2009).

The long-term data record of Landsat sensors offers opportunities to
globallymonitor ecosystemand land use change in dryland systems. For
example, at the regional level dryland ecosystem studies have used
Landsat time-series analyses to assess land cover change
(Sonnenschein, Kuemmerle, Udelhoven, Stellmes, & Hostert, 2011), re-
gional woody vegetation cover (Asner, Archer, Hughes, Ansley, &
Wessman, 2003), and shifts in land management practices (Stellmes,
Udelhoven, Roder, Sonnenschein, & Hill, 2010). Challenges associated
with dryland vegetation monitoring using the Landsat spectral bands
and spatial scale, including strong soil-vegetation spectral mixing due
to the high percent bare ground and inherently sparse vegetation
cover, might be improved with Landsat 8's Operational Land Imager
(OLI). With a pushbroom configuration, OLI has at least an eight fold in-
crease in signal-to-noise ratio than previous Landsat missions, along
with spectrally narrower optical bands, potentially improving detection
of vegetation parameters in environments with strong soil and vegeta-
tion spectral mixing (Roy et al., 2014). To our knowledge, one study has
been published using OLI to assess dryland vegetation structure. In par-
ticular, OLI-derived metrics were used to estimate shrub biomass in
Tajikistan, resulting in estimates comparable to finer spatial resolution
RapidEye imagery (Zandler, Brenning, & Samimi, 2015). A gap also ex-
ists in understanding OLI's performance in dryland characterization in
comparison to previous Landsat missions, including Thematic Mapper
(TM) and Enhanced Thematic Mapper plus (ETM+), such that data
from several of thesemissions can be used together for long-term retro-
spective analyses.

Several studies have incorporated lidar (light detection and ranging)
data with optical data to improve upon spectral and spatial limitations
of Landsat TM and ETM+. For example, Garcia, Riano, Chuvieco, Salas,
& Danson (2011) mapped fuel types in Mediterranean shrubs and
trees and Ji et al. (2012) estimated above ground biomass of trees,
shrubs, and herbaceous vegetation types in Alaska. Similar work has
been explored extensively to estimate forest attributes including height
(Hudak, Lefsky, Cohen, & Berterretche, 2002, Wulder, Han, White,
Sweda, & Tsuzuki, 2007, Wulder et al., 2009, Kellndorfer et al., 2010),
cover (Chen, Vierling, Rowell, & DeFelice, 2004), productivity, (Lefsky,
Turner, Guzy, & Cohen, 2005b), and species composition (Hill &
Thomson, 2005), among others. A recent study by Pflugmacher,
Cohen, Kennedy, & Yang (2014) used Landsat and lidar to study above-
ground biomass change by back projecting attributes using the Landsat
record.

A limitation of incorporating lidarwith Landsat is that the studies are
typically confined to the areal extent of the lidar, and thus often smaller
than an individual Landsat scene. Broader areal extents provided by
satellite-based laser altimetry are synergistic with Landsat scene sizes.
ICESat's Geoscience Laser Altimeter System (GLAS) has been used
with optical imagery in forest ecosystems to estimate forest vertical
structure and aboveground biomass (Boudreau et al., 2008, Helmer,
Lefsky, & Roberts, 2009, Nelson et al., 2009, Simard, Pinto, Fisher, &
Baccini, 2011, Lefsky et al., 2005a), degradation and deforestation,
(Margono et al., 2012, Goetz, Sun, Baccini, & Beck, 2010), and growth
rates (Dolan, Masek, Huang, & Sun, 2009). Although a previous study
in a savannah ecosystem successfully used GLAS for vegetation height
characteristics in flat terrain (Khalefa et al., 2013), GLAS's broad foot-
print and vertical resolution generally have limited applicability in dry-
land systems. As part of the US National Research Council Decadal
Survey, ICESat-2's upcoming Advanced Topographic Laser Altimeter
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System (ATLAS) will use a multi-beam, micropulse laser, based on a
NASA IIP (instrument incubator program) project (Degnan, 2002a)
and later developed into usable technology for satellite laser ranging, at-
mospheric investigations and high altitude/space-based land altimetry.
The ATLAS instrument will split a single 532 nm laser beam into 3 pairs
of beams approximately 3 km apart on the surface at a pulse repetition
rate of 10 kHz. Each pair will have a designated strong beam and weak
beam based on their relative energy densities which will help detect
surfaces of both high and low reflectivity. Based on the average satellite
velocity associated with the planned 572 km altitude orbit for ICESat-2
and the repetition rate, the laser footprints on the surface will be
displaced approximately 70 cm for each laser shot. Furthermore, each
of the 6 laser footprints from ICESat-2 will ideally have a diameter of
~14 m. The beam configuration as proposed for ICESat-2 is beneficial
for terrestrial ecosystems studies because it enables a denser spatial
sampling than what was achieved with ICESat's GLAS and the footprint
size is complementary to the size of a Landsat pixel. To achieve the
dense spatial sampling goal of better than 2 km between equatorial
ground tracks, ICESat-2 will be off-nadir pointed a maximum of 1.8 de-
grees from the reference ground track in the mid-latitudes (approxi-
mately 60S to 60 N). An additional benefit to the ecosystem
community is the nature of the measurement in the along-track direc-
tion. Because of the dense along-track spacing (70 cm) of the ICESat-2
laser shots, estimation of canopy height in areas of topographic relief
(i.e. slopesN5 degrees) should be available. Despite the hardware differ-
ences between GLAS and ATLAS, the concept of laser ranging for each of
the two systems remains the same; the travel time of each detected
photon is used to determine a range to the surface which, when com-
bined with satellite attitude and pointing information, can be
geolocated into a unique XYZ location on or near the Earth's surface.
The number of detected photons per laser shot is a function of outgoing
laser energy, detector hardware, surface reflectance, and solar back-
ground noise. Multiple photomultiplier tubes (PMT) with independent
timing channels can potentially record multiple photoelectron events
for each outgoing laser pulse (Degnan, 2002a, Degnan, 2002b). So,
given a single laser pulse, photon-counting systems using PMTs typi-
cally accumulatemany single photon ranges as reflections from surfaces
in addition to optical and electrical noise. The presence of noise presents
a new challenge to the process of extracting ground and vegetation sig-
nal photons from the collected data as there is no distinction between
signal and noise within the PMT detections.

In preparation for the ICESat-2mission, theMultiple Altimeter Beam
Experimental Lidar (MABEL) instrument was developed by NASA as a
test-bed representation, or demonstrator instrument, for ATLAS.
MABEL is a highly sensitive lidar instrument with single photon detec-
tion capability, a repetition rate of 5 kHz, low laser pulse energy and
produces both 532 nm and 1064 nm wavelengths (McGill, Markus,
Scott, & Neumann, 2013). MABEL was designed to provide a realistic
‘simulation’ of ICESat-2 conditions given the relevant atmospheric prop-
agation distance from a MABEL 20 km flight altitude and similar expec-
tation of signal to noise and detection thresholds. In addition to
providing an indication of expected signal response over specific types
of terrain and targets, and data volume requirements, the recent avail-
ability of MABEL data has also facilitated preliminary development of
new surface extraction algorithms for the photon-counting data in
preparation for ICESat-2. During 2014, MABEL completed nearly 45 h
of flights at a 20 km altitude over selected sites in Alaska and the Arctic
Ocean aswell as during the transit fromCalifornia to Fairbanks, AK. Dur-
ing theseflightsMABEL collected data over a diverse set of surface types,
reflectance, and topography and also completed many calibration exer-
cises to ensure the quality of the data. Studies exploring MABEL's data
qualities for ground and vegetation characteristics will allow more
rapid adoption of ATLAS data products once available. Importantly, the
added value of using ATLAS's ground elevation and vegetation height
data with OLI's spectral responses should be explored for potential
added value to OLI data products.
ormance and potential synergies for quantifying dryland ecosystem
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The goals of this study are multifold. First, we document OLI's ca-
pabilities to quantify vegetation in a shrub-dominated dryland eco-
system by testing the hypothesis that the narrower spectral bands
and improved signal-to-noise ratio (SNR) of OLI relative to Landsat
TM data will improve finer-level predictions of vegetation charac-
teristics (i.e. shrub and herbaceous vegetation biomass and cover).
Second, we explore the additive contribution of integrating OLI
and lidar data to improve estimates of vegetation structure, includ-
ing above-ground biomass in this shrub-dominated dryland site.
Third, we explore the potential for ATLAS-estimated MABEL data to
contribute to OLI's estimates of vegetation structure, with anticipa-
tion that Landsat 8 and ICESat-2 may have synergistic qualities
that will advance vegetation and biogeochemical sciences in dryland
ecosystems.

2. Study area

To accomplish our study goals, we investigated two semiarid vegeta-
tion sites in southwestern Idaho, located in the northern Great Basin in
thewestern U.S. These siteswere chosen because of their representative
vegetation and soil characteristics that typify dryland systems. Co-
located field plots, MABEL, airborne discrete return lidar, OLI, and TM
data were readily available for integration and testing (Fig. 1). The
first site is the Morley Nelson Snake River Birds of Prey (BoP) National
Conservation Area where we investigate OLI's capabilities and compare
to TM responses, alongwith discrete-return lidar contributions (hereaf-
ter referred to as lidar), to estimate vegetation cover and biomass. At
this site, we also explore the interaction of MABEL photon data with
the low-height vegetation and estimate relationships between MABEL
Fig. 1. Reynolds Creek Experimental Watershed (RCEW) (left) and Morley Nelson Snake Rive
western U.S. Field samples and discrete return lidar data collection sites are shown for the BoP
image is lidar-derived mean vegetation height and the background BoP image is an OLI natura
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photons and vegetation structure. We chose a second site, the Reynolds
Creek Experimental Watershed, to further extend the MABEL studies
and investigate the utility of photon signals in taller and denser vegeta-
tion cover.

The BoP National Conservation Area encompasses over 2400 km2 of
the Snake River Plain ecoregion and is part of the Department of Interior
Bureau of Land Management's National Landscape Conservation Sys-
tem.Mean annual temperature is 10.7 °C andmean annual precipitation
is 23 cm in the BoP. The area is characterized by relatively flat topogra-
phy, loess soils, and basalt outcrops. In the last 30 years, the BoP has ex-
perienced considerable conversion and fragmentation of its native
sagebrush (Artemisia tridentata) communities due to climate, fire, land
use, and invasive species. Dominant shrubs includeWyoming big sage-
brush (A. tridentata subsp. wyomingensis), rabbitbrush (Chrysothamnus
ericameria), winterfat (Krascheninnikovia lanata), and shadscale
(Atriplex confertifolia). The open canopy of shrubs is interspersed with
native perennial grasses including Sandberg bluegrass (Poa secunda),
annual invasive grasses such as cheatgrass (Bromus tectorum), invasive
forbs such as mustards (Brassicaceae family, Sisymbrium altissimum
among the most common), and biological soil crusts. Over half of the
area has burned since 1980. The resulting landscape is a mosaic of
plant communities, with compositions spanning a gradient between in-
tact native shrublands, shrublands degraded by non-native plants and
wildfire, and grasslands where native plants have been fully replaced
by cheatgrass and other invasive annuals. Currently 37% or less of the
BoP retains an intact native shrubland community. Recent active man-
agement to promote native vegetation and reduce wildfire hazard has
been implemented through strategic grazing, mechanical planting of
native species, and mowing (USDI BLM 2008).
r Birds of Prey (BoP) National Conservation Area (lower right) study areas, Great Basin,
. MABEL data flight locations are shown for both RCEW and BoP. The background RCEW
l-color composite.
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Table 1
Spectral metrics from Landsat 8 OLI used at the BoP.

Metric Description

Simple Vegetation Index (SVI) NIR
Red

Normalized Difference Vegetation Index (NDVI) NIR−Red
NIRþRed

Soil Adjusted Vegetation Index (SAVI) ðNIR−RedÞ
NIRþRedþL ð1þ LÞ
L = 0.25

Modified Soil Adjusted Vegetation Index (MSAVI2) ð2NIRþ1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2NIRþ1Þ2−8ðNIR−RedÞ
p

Þ
2

Moisture Stress Index (MSI) SWIR
NIR

Moisture Stress Index 2 (MSI2) SWIR2
NIR

Normalized Difference Water Index (NDWI) NIR−SWIR
NIRþSWIR

Normalized Difference Water Index 2 (NDWI2) NIR−SWIR2
NIRþSWIR2

Table 2
Discrete return lidar metrics used at the BoP. The height in the description includes the
heights of all vegetation returns.

Metric Description

Hmin Minimum height
Hmax Maximum height
Hrange Difference between maximum and minimum heights
Hmean Average height
HMAD Median absolute deviation from median height
HAAD Mean absolute deviation from mean height
Hvar Variance of height
Hstd Standard deviation of height
Hskew Skewness of height
Hkurt Kurtosis of height
HIQR Interquartile range (IQR) of height
HCV Coefficient of variation of height
H5-H95 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of heights
Hcrr Canopy relief ratio: (Hmean − Hmin)/(Hmax − Hmin)
Htext Texture of height: Standard deviation (height N ground threshold

and height b crown threshold)
Veg_cov Percent ratio of vegetation returns and total returns
Veg_density Percent ratio of vegetation returns and ground returns
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The second study area is locatedwithin the 238 km2 Reynolds Creek
Experimental Watershed (RCEW), which is instrumented and moni-
tored by the USDAAgriculture Research Service (ARS). RCEW is approx-
imately 80 km south of Boise, in the Owyhee Mountains. Mean annual
temperature below 1500 m and above 1800 m is 7.2 °C and 3.9 °C, re-
spectively. Mean annual precipitation in the watershed is 40 cm. Vege-
tation varies by elevation, ranging from sagebrush communities in the
lower elevation to dryland forest communities dominatedwithwestern
juniper (Juniperus occidentalis), aspen (Populus tremuloides), subalpine
fir (Abies lasiocarpa) and Douglas-fir (Pseudotsuga menziesii) at higher
elevations. Shrub and grass species dominated the study site where
MABEL data were available at RCEW. These shrub communities in-
cluded low sagebrush (Artemisia arbuscula), Wyoming and mountain
big sagebrush (A. tridentata subsp. vaseyana) and bitterbrush (Purshia
tridentata). Grasses included Bluebunch wheatgrass (Pseudoroegneria
spicata), Idaho fescue (Festuca idahoensis) and cheatgrass.

3. Methods

Weused the BoP study site to exploreOLI's performance of detecting
several canopy cover types, and as a comparison to TM. A secondary
goal in the BoP was to test how OLI and lidar integration may improve
the vegetation cover and biomass estimates. We also explored relation-
ships betweenMABEL and cover estimates at BoP and hypothesized that
the lowheight and cover at BoPwould not yield a sufficiently strong sig-
nal in the MABEL photon dataset. Alternatively, the RCEW study site
provided a higher shrub cover and height environment to test the
MABEL data and explore potential relationships and associated errors.

At the BoP site,we used an imputation of the OLI and lidar integrated
model to provide a spatially-contiguousmap of vegetation cover where
MABEL data were sampled. MABEL photon datawere then compared to
the imputed vegetation cover map to identify relationships and associ-
ated error between photon signals and vegetation structure. At the
RCEW site, we used lidar data only to test MABEL photon sensitivity to
vegetation structure.

3.1. Landsat 8 OLI and Landsat 5 TM

A time-series of five OLI images from the 2013 growing season was
used from path/row 41/30 covering BoP. The image dates were April
11, June 14, June 30, October 4, and October 20. All other images during
2013were cloudy. A Landsat 5 TM time series from path/row 41/30was
also used. The 2011 image dates included July 11, July 27, August 12,
September 13, and September 29. Images from late spring and early
summer had significant cloud cover over the study area. Landsat 5 TM
data were not available after late 2011 due to the USGS ceasing routine
acquisitions. In addition, Landsat 7 ETM+ data lacked complete cover-
age over our field samples in 2013. For our comparison, we chose a
time delay (between 2011 TM and 2013 OLI data) with a robust sample
size (n = 55) in lieu of a similar timeframe (between 2013 ETM+ and
2013 OLI data) that had a lower sample size (n = 22). The OLI and TM
images were processed in Google Earth Engine to top-of-atmosphere
(TOA) reflectance. The TOA reflectance values were then used to com-
pute a series of vegetation indices at the 30 m pixel scale for each
image date (Table 1).

3.2. Airborne discrete return lidar

At the BoP site, airborne discrete return lidar data were collected in
2012 and 2013 using a Leica ALS60. Both discrete return data sets had
an average point density of approximately 8 points/m2. The 2012 data
were collected over roughly 650 km2 of the Orchard Combat Training
Center within the BoP and the 2013 data were collected over roughly
90 km2 (Fig. 1). Vegetationmetrics described in Table 2 were computed
using height filtered point clouds and represented as 1 m × 1 m cells.
These 1 m rasters were then averaged to provide estimates across
Please cite this article as: Glenn, N.F., et al., Landsat 8 and ICESat-2: Perf
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30 m cell sizes (i.e. average based on 900 1-m rasters were used to pro-
vide one estimate for each 30 m cell to match the OLI pixel size).

Discrete return lidar datawere collected in 2007 for the RCEWwith a
Leica ALS50 and a point density of approximately 4 points/m2. Vegeta-
tionmetrics were computed across 3m × 3m cells using height filtered
point clouds (Glenn et al., 2011). The metrics of the 3 m rasters were
then averaged to 30 m cell sizes (i.e. average based on 100 3-m rasters
for each 30 m cell). The lidar metrics used at RCEW includedmaximum
vegetation height, mean of the maximum vegetation height, and vege-
tation cover as estimated from the 100 3-m rasters for each 30 m cell.
The vegetation cover was estimated using the samemethod as Veg_cov
in Table 2, and then the mean value was used across the 30 m cell size.
3.3. Mabel

The MABEL instrument was flown over the two study sites July 11,
2014 at a 20 km operating altitude and the data were processed to
Level2b by the ICESat-2 Project office at NASA Goddard Space Flight
Center. A transect of approximately 7.5 km and 13 km was sampled
across RCEW and BoP, respectively. The data were processed using
noise filtering and surface finding algorithms developed by the ICESat-
2 Science Definition Team (SDT). Contrary to commercial discrete re-
turn systems, ATLAS and MABEL are photon counting systems charac-
terized by low signal to noise rates. Solar background noise, in
particular, is a significant challenge in the analysis of photon-counting
laser data as there is no way to distinguish the photons reflected by a
lidar specific wavelength (i.e. signal photons) from those photons
returned from the atmosphere or scattered from adjacent targets (i.e.
ormance and potential synergies for quantifying dryland ecosystem
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noise photons); all are collected by the lidar receiver. Solar background
noise rates are a combination of the solar zenith angle and the scene re-
flectance, which is a combination of both the atmosphere and surface.
As such, effective filtering techniques must be developed to estimate
and filter out background noise. Without this process, the result is
prolonged processing time and inaccurate surface estimations. In the
ICESat-2 SDT algorithm signal photons can be isolated from noise pho-
tons based on an adaptive nearest neighbor search.

For the terrestrial ecosystem community, the ability to detect both
the canopy surface and the underlying topography is a critical task. Ac-
curate determination of local, regional and global canopy heights is a
primary contributor to many science investigations such as above-
ground biomass assessments or carbon monitoring. Although many al-
gorithms exist for extracting canopy heights and terrain frommore tra-
ditional lidar remote sensing technology, new approaches are required
for the photon counting technology. In this study, once the signal pho-
tons were identified, they were separated into ground and canopy pho-
tons using an iterative filtering method to estimate a ground surface.
Photons lying within +/−1 m of the estimated ground surface were
subsequently labeled as ground photons. Photons lying above the
ground threshold andwere clustered in nature were designated as can-
opy photons and assigned a height based on the difference of the esti-
mated ground surface and the canopy photon elevation. Photons 5 m
above the surface were considered noise and removed from the analy-
sis. The canopy photons were then assigned a vegetation height. This
process was performed for each of the eight MABEL near infrared
(NIR) channels (e.g. Channels 43–50). Channel 50 was not available
for the RCEW dataset due to data errors. The NIR channels were used
in this analysis as they have a higher signal to noise ratio and are a closer
representation of the expected number of reflected photons that ICESat-
2 will return (compared to the green MABEL channels).

Variation in the ground track of the MABEL platform resulted in dif-
fering lengths of transects across the 30 m OLI pixels. Therefore, all
MABEL photon counts used in the analysis were normalized over the
segment (e.g. length) of the MABEL flight across a 30-m pixel. If the
line segment length was less than 30 m, the data were discarded from
analysis. The MABEL metrics were developed from these normalized
photon counts and their respective classifications (e.g. ground and can-
opy) (Table 3). Metrics were computed on the statistics of the photon
heights within each segment length, resulting in standard deviation,
skewness, and kurtosis of the canopy and all (canopy and ground) pho-
tons (Table 3).

3.4. Field data

At BoP, field plots were established in 2012 and 2013 and consisted
offifty-five 60m×60mplotswith nine 1-m2 quadratswithin each plot.
The field data extended beyond the MABEL flight line but were located
within the lidar boundaries (Fig. 1). An average from the 9 quadrats was
used to estimate the vegetation parameters for each plot. Cover was es-
timated for shrubs, grasses and other herbaceous plants (herbaceous
hereafter) in each quadrat using a grid-point intercept analysis of pho-
tographs taken at nadir (see Pilliod & Arkle, 2013). Biomass was
Table 3
MABEL metrics used at BoP and RCEW.

Metric

All photon counts normalized by length
Ground photon counts normalized by length
Canopy photon counts normalized by length
Standard deviation of canopy heights
Standard deviation of all photon heights
Kurtosis of canopy height photons
Kurtosis of all photons
Skewness of canopy height photons
Skewness of all photons

Please cite this article as: Glenn, N.F., et al., Landsat 8 and ICESat-2: Perf
vegetation cover and biomass, Remote Sensing of Environment (2015), http
estimated for all vegetation in the quadrats using oven-dried weights
of destructively sampled vegetation classes. We used the following
cover and biomass field measurements to relate to the remote sensing
data: sagebrush cover, shrub (sagebrush and other shrub species such
as rabbitbrush) cover, herbaceous cover, shrub (sagebrush and other
shrub species) biomass, herbaceous biomass, and total (shrub and her-
baceous) biomass. Field cover estimates indicate that mean fractional
shrub and herbaceous cover were roughly 13% and 35%, respectively
(Table 4).

3.5. BoP analyses

A random forests analysis (Breiman, 2001) at the BoP was per-
formed with the remote sensing metrics to understand the accuracy
and error in predicting the field measurements of vegetation structure.
The intent was also to identify the relative contributions of OLI, TM, and
lidar. The RF analysis was performed using 1) OLI-only, 2) TM-only,
3) lidar-only, and 4) a combination of OLI and lidar metrics with the
field measurements. Sagebrush cover, shrub cover, herbaceous cover,
herbaceous biomass, shrub biomass, and total biomass were predicted.
The RF analysis was performed using The Salford Predictive Modeler
Software Suite (Salford Systems, San Diego CA). Each run used 1000
trees and the number of variables considered at each nodewas rounded
to the closest integer of the square root of the total number of variables
considered for each run. Variables were removed from each run based
on two relative importance score criteria: 1) a relative importance
score less than 10 and 2) if no variables had a relative importance
score of less than 10, the lowest scoring variable was removed. Models
were considered final when the removal of the lowest scoring variable
had a major impact on the overall model fit.

The random forestsmodels using the combinedOLI and lidarmetrics
were then imputed across 30 m pixels using the score function in Sal-
ford Systems (San Diego, CA). The score function uses a nearest neigh-
bor lookup approach similar to imputation in R (Crookston & Finley,
2008). The imputation was performed in order to provide a spatially-
continuous map to compare to MABEL photons across the locations of
the flights. Both OLI and lidar were used for the imputation because
the combined metrics provided the lowest error for predicting vegeta-
tion structure (discussed below).

MABELmetricswere compared to the BoP imputed vegetation cover
and biomass across 30 m cell sizes. We used a random forests analysis
for this comparison and to identify potential MABEL metrics that were
important variables. MABEL metrics were also compared using random
forests to discrete return lidar-derived vegetation height (maximum
and mean of the maximum) and vegetation cover (Table 2) at 30 m
cell sizes.

3.6. RCEW analyses

Similar to BoP, we compared discrete return lidar-derived vegeta-
tion height (maximum and mean of the maximum) and vegetation
cover toMABELmetrics across 30m cell sizes. This comparisonwas per-
formed using random forests and multiple linear regression. The latter
was used as an alternative to the random forests score analysis in
order to explore relationships with scatterplots.
Table 4
Statistics of vegetation cover and biomass based on field data (n = 55). Cover is in % and
biomass is in grams/m2.

Minimum Maximum Mean Standard deviation

Sagebrush cover 0.00 48.06 10.14 13.95
Total shrub cover 0.00 48.06 12.87 14.14
Herbaceous cover 0.00 97.29 37.14 25.37
Herbaceous biomass 31.13 485.23 143.32 82.17
Total shrub biomass 0.00 954.39 208.38 252.40
Total biomass 36.83 1116.83 351.64 279.15

ormance and potential synergies for quantifying dryland ecosystem
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4. Results

4.1. OLI, TM, lidar, OLI + lidar

Based on the random forest analyses, the use of OLI variables alone
explained between 62 and 68% of the variance associatedwith cover es-
timates at BoP (Table 5). At least three OLI variables, including a combi-
nation of spectral data from two to three OLI acquisition dates, provided
the highest explanation of variance for each cover type (sagebrush,
shrub, and herbaceous cover). The MSAVI2 and SVI were consistently
identified as variables of importance for all cover estimates. Themodels
had a lower explanatory power for shrub and total biomass (e.g. ap-
proximate R2 = 0.58) and used MSAVI2, SVI, and NDVI from multiple
OLI acquisition dates. In comparison to shrub and total biomass, herba-
ceous biomass was more poorly explained with OLI data (R2 = 0.53).
The predictive power and estimated errors of TM-based indices were
similar to the OLI-based indices. Sagebrush cover and shrub biomass
were strongly predicted by TM (R2 = 0.73 and R2 = 0.64, respectively)
and the RMSE was 1% and 11 g/m2 lower than the OLI predictions, re-
spectively. Other differences between OLI and TM occurred in
predicting shrub (R2 = 0.64 and 0.60, respectively) and herbaceous
cover (R2 = 0.68 and 0.54, respectively) and herbaceous biomass
(R2 = 0.53 and 0.29, respectively). The MSAVI2 and NDWI2 were
used inmost of the TMpredictionswith the exception of shrub and her-
baceous cover and herbaceous cover and total biomass, respectively;
while the MSI2 was used in all TM predictions except herbaceous bio-
mass. However, the SVI and NDVI were not common predictors in the
TM data as compared to the OLI predictions.

When discrete return lidar data were used to create similar predic-
tions, the sagebrush and shrub cover models explained a higher per-
centage of variance than the OLI models, while the herbaceous cover
and biomass were poorly predicted (Table 5). The discrete return lidar
metrics of vegetation cover and derivatives of vegetation height were
the strongest predictors. Herbaceous cover was poorly predicted with
lidar with less than 10% of the variance explained. Using both the OLI
and lidar data together increased the model predictions in all cover
and biomass types, ranging from R2 of 0.65 (herbaceous biomass) to
R2 of 0.83 (sagebrush cover) (Table 5). Combining lidar and OLI data
also decreased the errors associated with the predictions over using
spectral data alone. For example, an approximate 2–3% decrease in pre-
diction errorwas found for all cover estimateswhenOLI and discrete re-
turn lidar were used together instead of OLI alone. Likewise, biomass
error was reduced by 7 to 27 g/m2 by using both OLI and lidar variables
as predictors. As a comparison, when TM data were used with lidar,
sagebrush cover estimates increased to R2 of 0.90 (RMSE of 4.4%; data
Table 5
Random forests results for OLI, TM, discrete return lidar, and combined OLI and lidar at BoP. RM
TM variables are labeled by Julian date and metric from Table 1. The lidar variables are labeled

OLI TM

R2 RMSE Variables R2 RMSE Variables

Sagebrush
cover

0.62 8.47 L8_165_MSAVI2, L8_165_NDVI,
L8_165_SVI, L8_293_MSAVI2

0.73 7.18 L5_208_ND
L5_272_MS

Shrub cover 0.64 8.40 L8_181_SVI, L8_277_SVI,
L8_293_MSAVI2

0.60 8.85 L5_224_MS
L5_272_ND

Herbaceous
cover

0.68 14.03 L8_181_MSI2, L8_181_NDWI2,
L8_277_SVI

0.54 16.74 L5_208_MS
L5_272_MS

Herbaceous
biomass

0.53 55.97 L8_181_MSAVI2,
L8_181_NDWI2, L8_181_SAVI

0.29 68.72 L5_256_MS
L5_256_ND
L5_272_MS

Shrub
biomass

0.59 160.93 L8_165_NDVI, L8_165_SAVI,
L8_277_SVI, L8_293_MSAVI2

0.64 149.84 L5_192_SA
L5_272_MS

Total
biomass

0.58 179.97 L8_165_NDVI, L8_277_SVI,
L8_293_MSAVI2

0.57 181.95 L5_256_MS
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not shown) and shrub biomass estimates increased to R2 of 0.74
(RMSE of 127 g/m2; data not shown). The OLI and lidar random forests
modelswere then imputed across the area covered by theMABELflights
for the MABEL analysis.

4.2. Mabel

The capacity of MABEL to predict vegetation structure was tested at
both the BoP and RCEW sites. Random forestswas used to explore inter-
actions between predictor and target variables. At the BoP site, there
was little to no relationship found between MABEL photon metrics
and imputed vegetation biomass and cover. The strongest relationships
were in the prediction of shrub cover and vegetation height, with R2

values ranging from 0.12 to 0.18. For example, we found that imputed
shrub cover was best modeled using MABEL metrics of canopy photon
counts normalized by length, skewness and kurtosis of canopy photon
heights, and standard deviation and kurtosis of all photon heights
(R2 = 0.12; RMSE = 11%). In comparison, the mean of the maximum
height derived directly from discrete return lidar was best modeled
usingMABELmetrics of photon counts normalized by length and kurto-
sis of canopy photon heights (R2=0.18; RMSE=0.06m). Both of these
relationshipswere foundusing theMABEL Channel 43; however similar
relationships were found in Channel 50.

We found a stronger relationship between discrete return lidar and
MABEL datasets at RCEW using random forests. In particular, we
found that MABEL canopy photon counts normalized by length and
standard deviation of all photon heights from Channel 43 explained
roughly 49% (RMSE = 0.34 m) of the variance of the mean of the max-
imum vegetation height from lidar. Reasonably strong predictions were
also made using Channel 49, explaining 35% (RMSE = 0.33 m) of the
variance of the mean of the maximum vegetation height using MABEL
canopy photon counts normalized by length and all photon counts nor-
malized by length. MABEL canopy photon counts normalized by length
and standard deviation of all photon heights from Channel 43 explained
roughly 25% (RMSE = 16.2%) of the variance of the mean vegetation
cover from lidar. While Channels 43 and 49 are both NIR channels,
they are spaced on average 40m apart. This offset, alongwith normaliz-
ing the photon counts across the 30m pixels, results in different ground
areas sampled and thus the likely cause in variation in explanatory
power between channels.

Based on the variables identified in random forests, we used the can-
opy photon count normalized by length and standard deviation of all
photon heights from Channel 43 to develop amultiple linear regression
model to predict the lidar mean of the maximum height (Fig. 2). This
model had a R2 = 0.493 (Adjusted R2 = 0.489; p-value b 0.001)
SE is in units of % for cover predictions and grams/m2 for biomass predictions. The OLI and
by metric from Table 2. N = 55.

Lidar OLI + lidar

R2 RMSE Variables R2 RMSE Variables

VI, L5_256_MSAVI2,
I2, L5_272_NDWI2

0.74 7.00 Veg_cov 0.83 5.63 L8_165_SVI,
Veg_cov

I, L5_272_MSI2,
WI2

0.75 6.90 Hstd,
Veg_cov

0.78 6.51 HAAD, H90,
L8_101_MSI2,
Veg_cov

I2, L5_224_MSI,
I2

0.08 23.00 HCV,
Hkurt,
Hskew

0.73 12.76 L8_181_MSI2,
Veg_cov

AVI2,
WI2,
AVI2

0.42 63.00 H10, Hcrr 0.65 48.39 H10,
L8_181_MSAVI2

VI, L5_256_MSAVI2,
I2, L5_272_NDWI2

0.56 165.00 H90,
Veg_cov

0.71 133.61 H90,
L8_293_MSAVI2,
L8_277_SVI

AVI2, L5_272_MSI2 0.58 178.94 Hcrr, H90,
Veg_cov

0.66 157.08 H90, Oct20_MSI2,
Veg_cov
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Fig. 3.Multiple linear regression ofMABEL canopy photon count normalized by length and
standard deviation of all photon heights from Channel 43 to predict mean cover of lidar
across 30 m.
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(RMSE=0.29m), similar and as expected to the random forests regres-
sion. However, the explained variance in mean height jumped to 63%
when one large outlier (a MABEL predicted mean height of 3.46 m)
was kept in the analysis (data not shown). Likewise we used the Chan-
nel 43MABEL canopy photon count normalized by length and standard
deviation of all photon heights to model the mean vegetation cover of
lidar across 30 m, resulting in a R2 = 0.244 (Adjusted R2 = 0.236; p-
value b0.001) and RMSE of 16.4% (Fig. 3).

5. Discussion

5.1. OLI and TM vegetation cover and biomass comparison

OLI-based prediction of dryland vegetation characteristics per-
formed quite strongly, with both cover and biomass predictions
performing on par (or better) with using discrete return lidar data-
based prediction alone (Table 5). The coefficient of determination (R2)
for OLI-based vegetation cover prediction was at least 0.62 for all
cover types, and with RMSE values between 8.5 and 14%. Biomass esti-
mates all exhibited an R2 of at least 0.53. Of notable interest is that in all
cases, the top OLI-based model to describe vegetation cover fractions
and biomass included vegetation indices calculated from multiple ac-
quisition dates. This finding is in agreement with similar results by
(Shoshany & Svoray, 2002), who mapped cover of different plant func-
tional types using Landsat TM images acquired across three distinct
time periods in a similar short-stature Mediterranean shrubland and
dwarf-shrubland ecosystem. Shoshany and Svoray (2002) concluded
that differential phenological transitions allowed vegetation from mul-
tiple functional groups to be unmixed from each other and from the
background soil. This suggests that changing phenological conditions
among the vegetation functional groups (shrubs, forbs, and grasses) in
the current studymay have allowed for sub-pixel discrimination of veg-
etation cover types relative to the unchanging soil background. The
MSAVI2 and SVI were used as predictors in all cover and biomass esti-
mations with the exception of herbaceous cover and herbaceous bio-
mass, respectively.

TM-based predictions performed comparablywith OLI for determin-
ing vegetation characteristics of all metrics examined in this study, with
the exception of the herbaceous classes. The TM-based coefficient of
variation of herbaceous biomass (R2 of 0.29 compared to 0.53 for OLI),
as well as the lower capability of TM in explaining variance in herba-
ceous cover, are likely a result of the two year time gap between field/
OLI data and the TM imagery. Herbaceous growth is variable from
year to year dependent upon climate, whereas shrub growth (especially
Fig. 2.Multiple linear regression ofMABEL canopy photon count normalized by length and
standard deviation of all photon heights from Channel 43 to predict the mean of the
maximum vegetation height of lidar across 30 m.
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for sagebrush) is less pronounced. The result that TM modestly
outperformed OLI in explaining variance in sagebrush cover and shrub
biomass is difficult to explain, though the seasonal timing of the images
of TM relative to OLImay have contributed. The TM images ranged from
July to end of September; whereas the OLI images ranged from April to
the end of October. As a result, OLI datamay have beenmore influenced
by the larger range in image solar zenith angle. Interestingly, many of
the multi-date predictors in both OLI and TM were dominated by
MSAVI2 but the TM-based predictions relied more heavily on MSI2
and NDWI2, whereas OLI-based predictions often included SVI. How-
ever, even in cases where similar indices were employed, a true cross-
comparison to understand the reasons for the relative strengths of OLI
and TM performance is difficult. For example OLI's NIR band has a
narrower bandwidth than TM, and the shift towards longer wave-
lengths (0.85–0.88 μm for OLI compared to 0.76–0.90 μmof TM)will re-
sult in differences in the vegetation indices we used in this study,
including the SVI and MSAVI2. Likewise, the OLI SWIR2 band ranges
from 2.11–2.29 μm in comparison to TM's SWIR2 ranging from 2.08–
2.35 μm (the SWIR2 band is used in the MSI2 and NDWI2 indices). De-
spite these differences, the fact that TM and OLI performed similarly for
predicting most of the vegetation characteristics in this study bodes
well for comparing new OLI-based estimates to retrospective analyses
using TM data.

5.2. OLI- and discrete return lidar-based vegetation cover and biomass
prediction

Cover predictions based on discrete return lidar alone outperformed
OLI-only predictions for both sagebrush and shrub cover, exhibiting
slightly higher R2 values and lower RMSE values (Table 5). However,
lidar-only based prediction of herbaceous coverwas inferior to that pre-
dicted by the OLI-only model. When combining both OLI and lidar met-
rics for vegetation cover prediction, the R2 and RMSE of the combined
model were better than or equal to when either OLI or lidar metrics
were used in isolation. Of particular note was the ability for the com-
bined model to predict sagebrush shrub cover, which was predicted
with an R2 of 0.83 and RMSE of only 5.6%. This compares favorably
with previous work that used terrestrial laser scanning (TLS) (Vierling,
Xu, Eitel, & Oldow, 2012) and hyperspectral and lidar (Mitchell,
Shrestha, Spaete, & Glenn, 2015) to estimate sagebrush cover in similar
ecosystems. Vierling et al. (2012) found that they could estimate sage-
brush cover with an R2 of 0.51 and an RMSE of 7.0% by using TLS with
a point density of hundreds of lidar returns m−2. Mitchell et al. (2015)
estimated cover using hyperspectral and discrete return lidar with
ormance and potential synergies for quantifying dryland ecosystem
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58% of the variance explained and RMSE =7.4%. Their estimates are
from sites with an elevation and precipitation gradient resulting in a
range of shrub cover and heights, and mixed communities, whereas
our BoP site is relatively small in scale and homogeneous. Our results
from OLI and lidar need to be tested across similar gradients to deter-
mine if prediction strength and accuracy would decrease accordingly.
Overall, the improvements of using a combined lidar + OLI model for
cover estimation of shrubs highlights the advantage of using structural
and spectral data for this functional group of vegetation.

Accurate prediction of vegetation biomass in short-stature ecosys-
tems, even when combining passive and active remote sensing data, is
challenging. Because area-wide biomass prediction relates to overall
vegetation volume, it is important to be able to characterize both the
density (i.e. the 2-D cover) and the height of the vegetation. In forested
ecosystems, although biomass prediction using passive optical sensors
nearly always results in a significantly higher relative error than when
using lidar sensors, using a fusion of these two data types typically re-
sults in more accurate forest biomass models by ~10% (Zolkos, Goetz,
& Dubayah, 2013).

In the case of low-stature ecosystems such as those investigated
here, however, there is a very high potential for passive+ lidar data fu-
sion to provide additional predictive power for biomass. This is due to
the often observed phenomenon that airborne lidar typically underesti-
mates the true height of vegetation that exhibits a discontinuous or
sparse canopy top, such as the case with many shrub (Streutker &
Glenn, 2006) and conifer tree species. It is not uncommon for airborne
discrete return lidar to underestimate shrub canopy height by
+/−0.30 m (Glenn et al., 2011, Mitchell et al., 2011). Because this un-
derestimation is a significant proportion of the total canopy height of
most shrubs at the BoP study area, we expected that the OLI-basedmet-
ricswould improve remotely sensed shrub biomass predictions. Indeed,
this was the case in our study, as the R2 increased from 0.56 and 0.59
when using lidar- or OLI-based metrics in isolation, respectively, to
0.71 in the combined OLI-lidar model. Similarly, the shrub biomass
RMSE decreased from 161 to 165 g/m2 to 133 g/m2 under the combined
model. In comparison, a study using very high density TLS to predict
biomass of similarly small shrubs in arctic tundra within small
(0.64 m2) field plots resulted in an RMSE of 117–119 g (Greaves et al.,
2015).

5.3. Relationships with MABEL data and implications for spaceborne lidar
assessment of drylands

As an orbiting sensor, the prospect of utilizing ICESat-2 data to pro-
vide useful information for measuring and monitoring the structure of
global terrestrial ecosystems is tantalizing. Dryland ecosystems present
a particularly steep challenge to utilizing ICESat-2 data due to their short
stature and sparse cover. Indeed, MABEL data were of limited utility in
the relatively short-stature BoP study site, with metrics describing at
best only 12% of the variance in shrub cover and 18% of the variance in
vegetation height.

However, at the RCEW site characterized by taller and a higher den-
sity of shrubs, models using MABEL-derived metrics described 49% of
the variance in the mean maximum height (RMSE = 0.34 m). The
MABEL-derived metrics performed more poorly with estimating the
mean vegetation cover at RCEW (25% of variance explained with a
RMSE = 16%). The fact that MABEL-derived metrics showed marked
improvement in deriving height metrics at the RCEW site may indicate
that this site has vegetation tall enough to overcome the noise floor of
current ATLAS/MABEL algorithms. The improvement may also be due
to the larger range of vegetation heights present within RCEW. The veg-
etation “noise floor” is defined by signal photons being segregated into
those that occur within +/−1 m of the predicted ground elevation
(ground), and those signal photons that occur above the 1 m buffer
(canopy). As a result, this study may reveal the functional lower limit
to vegetation height prediction using MABEL, and may indicate the
Please cite this article as: Glenn, N.F., et al., Landsat 8 and ICESat-2: Perf
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lower limit of the ATLAS sensor to be launched aboard ICESat-2. This
finding is consistent with recent work showing that simulated ATLAS
returns at the taiga-tundra ecotone of Siberia could not resolve above-
ground biomass as fine as 10 kg ha−1 (Montesano et al., 2015). Al-
though the taiga-tundra ecotone has many important vegetation
structural and functional differences fromour current study site, the rel-
atively sparse shrubs and dwarf trees that grow along this ecotone do
have some commonalities with the system studied here.

The mean vegetation cover and height where the MABEL flights
were collected at RCEW was 33% and 0.64 m (height range of roughly
0 to 5 m), respectively. These estimates were made with lidar collected
roughly 7 years before theMABEL data and estimated across 3m pixels.
Applying an error bound to underestimated heights (+/−0.30 m;
Mitchell et al., 2011) indicates thatmean heights are near 1m in this re-
gion. While vegetation heights and cover likely increased over the past
7 years, these values provide a lower limit of the sensitivity of MABEL
photons in dryland communities. In contrast, for the BoP the 30 m im-
putation estimated mean shrub cover was 8%, the lidar-derived 1 m
vegetation cover was lower than 5% and the maximum vegetation
heights ranged from 0 to 1.3 m with a mean value of 0.07 m. Applying
a +/−0.30 m error height bound indicates mean vegetation heights
are less than 0.40 m. These results demonstrate the dominance of
grasses in the MABEL flight area of the BoP. Thus, from both the BoP
and RCEW sites, we conclude that lower limits of the MABEL canopy
photon detection is at minimum 30% vegetation cover and 1 m vegeta-
tion height.

5.4. Impact of results to land management in dryland ecosystems

Deriving more accurate estimates of both plant cover and biomass
across large landscapes in dryland ecosystems may be critical to a
suite of resource management and conservation objectives. This is par-
ticularly true in landscapes such as the northern Great Basin (where our
study sites are located), much of which is rapidly transitioning from na-
tive shrub-steppe to nonnative, annual-grassland communities
(Bradley, 2010). This conversion is occurring in large part due to
changes in the historical fire regimes, as cheatgrass and other nonnative
herbaceous species promote more frequent fire and quickly establish
and dominate after fire (Balch, Bradley, D'Antonio, & Gomez-Dans,
2013, Brooks et al., 2004). This “annual grass-fire regime” prevents rees-
tablishment of native shrubs and bunchgrasses, most of which are not
adapted to shortfire-return intervals and don't competewell with inva-
sive annual plant species. The consequences of this conversion include
loss of biodiversity (e.g., Anderson & Inouye, 2001, Ostoja & Schupp,
2009), changes in above-ground and below-ground carbon pools
(e.g., Rau et al., 2011), changes in soil water availability (e.g., Prater,
Obrist, Arnone, & DeLucia, 2006), and altered fine fuel loadings that re-
sult in highly dynamic fire regimes (D'Antonio & Vitousek, 1992).

Although the required level of accuracy for estimates of vegetation
characteristics depends largely on the intended application, recent re-
search developments and trends in resourcemanagement data require-
ments point to ever increasing demands for greater levels of accuracy.
For example, local and landscape scale estimates of sagebrush height
and shrub cover are used to determine highly specific habitat require-
ments for sagebrush-dependent species, including the imperiled
greater sage grouse (Stiver et al., 2015). Because field vegetation moni-
toring protocols are often based on discontinuous line transect field
monitoring methods, one strong benefit of our approach is the fact
that our results contribute to making spatially contiguous maps for
use in management. Since the lidar data improved Landsat-based esti-
mates, it is possible that this broad-scale structural information may
lend further improvement to regional- and continental-scale vegetation
products (such as LANDFIRE; see sagebrush example in Homer,
Aldridge, Meyer, and Schell (2012)). In another example, predictions
for wildfire danger and fire behavior typically rely on accurate informa-
tion for fuel loadings by class (e.g., herbaceous versus woody fuels) as
ormance and potential synergies for quantifying dryland ecosystem
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well as the cover and continuity of fuel-beds and their related moisture
content, factors that affect rate of fire spread, fire-line intensity, and
flame length (Anderson, 1982, Jolly, 2007). In the Great Basin, native
shrublands continue to shift from relatively discontinuous shrub-
bunchgrass cover with variable biomass distribution, to more continu-
ous, non-native, herbaceous fuelbeds that lose fuel moisture quickly.
More accurate estimates of highly variable vegetation cover and bio-
mass can contribute to the development of custom fuel models that
contain specific fuel loading and moisture estimates, and are used in
fire behavior models to help determine appropriate fire suppression re-
sponse (e.g., Parresol, Scott, Andreu, Prichard, & Kurth, 2012). Deriving
more accurate estimates of such fuel characteristics (beyond that
contained in commonly used fuel models) may also be critical to obtain
accurate estimates of greenhouse gas and other emissions fromwildfire
(Weise &Wright, 2014). In afinal example, spatially contiguousmaps of
vegetation type and cover are currently being used in the northern
Great Basin to identify areas of restoration for species of concern in
preparation for potential siting of utilities. Land managers are increas-
ingly asking for improved estimates of vegetation characteristics, as
the restoration funding is tied to the level of vegetation health as
assessed by vegetation type, cover, and biomass.

The relative performance of MABEL-based metrics in deriving vege-
tation characteristics at our two study sites indicates that futurework to
combine MABEL and/or ATLAS data with Landsat 8 OLI data is war-
ranted andmay result in unique products for drylandmanagement. Be-
cause ATLAS is designed as a profiling lidar collecting along-track
measurements using three pairs of lasers, it is likely that its utility in de-
tecting useful vegetation cover and biomass parameters will increase as
vegetationdensity increases from the relatively sparse level found at the
RCEW site up to some maximum density yet to be determined (i.e.
where the density of the vegetation obscures lidar ground-finding
such that retrieving reliable vegetation height information becomes dif-
ficult). OLI's time-series spectral data are likely to extendATLAS's capac-
ity in dryland systems. As a result, future studies to examine synergies
between MABEL/ATLAS and OLI data across a more continuous range
of vegetation cover and height are likely to reveal thresholds where
these two datasets can offer synergistic benefits. For example, because
grasslands are experiencing woody encroachment by shrubs (and
shrublands are experiencing encroachment by tree species)worldwide,
understanding the height and cover thresholds at which these
encroaching woody plants can be detected using ATLAS may provide
new insights to how combined passive/active remote sensingmodeling
approaches can quantify woody encroachment dynamics. Similarly,
quantifying the replacement of native plant communities (that often
have heterogeneous height and cover characteristics) by contiguous
stands of non-native species (such as homogeneous canopies of cheat-
grass, in the Western United States) may be improved using the com-
bined modeling approaches between passive and active remote
sensing data demonstrated here and in an increasingly broader array
of work (e.g., Zolkos et al., 2013) worldwide.
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