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The SMOS (Soil Moisture and Ocean Salinity) mission provides surface soil moisture (SM) maps at a mean reso-
lution of ~50 km. However, agricultural applications (irrigation, crop monitoring) and some hydrological appli-
cations (floods andmodeling of small basins) require higher resolution SM information. In order to overcome this
spatial mismatch, a disaggregation algorithm called Disaggregation based on Physical And Theoretical scale
Change (DISPATCH) combines higher-resolution data from optical/thermal sensors with the SM retrieved from
microwave sensors like SMOS, producing higher-resolution SM as the output. A DISPATCH-based processor has
been implemented for the whole globe (emerged lands) in the Centre Aval de Traitement des Données SMOS
(CATDS), the French data processing center for SMOS Level 3 products. This new CATDS Level-4 Disaggregation
processor (C4DIS) generates SMmaps at 1 km resolution. This paper provides an overview of the C4DIS architec-
ture, algorithms and output products. Differences with the original DISPATCH prototype are explained andmajor
processing parameters are presented. The C4DIS SM product is compared against L3 and in situ SM data during a
one year period over the Murrumbidgee catchment and the Yanco area (Australia), and during a four and a half
year period over the Little Washita and theWalnut Gulch watersheds (USA). The four validation areas represent
highly contrasting climate regions with different landscape properties. According to this analysis, the C4DIS SM
product improves the spatio-temporal correlation with in situmeasurements in the semi-arid regions with sub-
stantial SM spatial variability mainly driven by precipitation and irrigation. In sub-humid regions like the Little
Washita watershed, the performance of the algorithm is poor except for summer, as result of the weak
moisture-evaporation coupling. Disaggregated products do not succeed to have and additional benefit in the
Walnut Gulch watershed, which is also semi-arid but with well-drained soils that are likely to cancel the spatial
contrast needed by DISPATCH. Although further validation studies are still needed to better assess the perfor-
mance of DISPATCH in a range of surface and atmospheric conditions, the new C4DIS product is expected to pro-
vide satisfying results over regions having medium to high SM spatial variability.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Soil moisture (SM) is an essential component of thewater cycle that
impacts infiltration, runoff and evaporation processes. In addition, it
modulates the energy exchange as well as the carbon exchange at the
land surface (Daly & Porporato, 2005). SM has influence over a range
of spatial scales: the climatic (Douville, 2004; Laio, Porporato, Ridolfi,
& Rodríguez-Fernández, 2002), the meteorological (Dirmeyer, 2000;
Drusch, 2007), the hydrological (Chen, Crow, Starks, & Moriasi, 2011;
Draper, Reichle, De Lannoy, & Liu, 2012), the parcel and the local scale
(Guérif & Duke, 2000).
ro).
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Current satellite missions provide surface SM observations at large
scales on a global basis. Passive microwave L-band observations are
widely used for surface SM retrievals, but in practice they constrain
the resolution of the retrievals to 30–60 km (Kerr & Njoku, 1990;
Njoku & Entekhabi, 1996; Schmugge, 1998) with current technology.
The Soil Moisture Ocean Salinity (SMOS) mission, launched in Novem-
ber 2009, incorporates an interferometric radiometer at L-band
(1.4 GHz) and provides SMwith a resolution of 30–55 km and a sensing
depth of 3–5 cm (Kerr et al., 2001, 2010). SMOS Level 2 (L2) and Level 3
(L3) SM products have been validated extensively on a regular basis
since the beginning of the mission (Al Bitar et al., 2012; Delwart et al.,
2008) and they have been assessed as suitable for hydro-climate appli-
cations (Lievens et al., 2015; Wanders, Bierkens, de Jong, de Roo, &
Karssenberg, 2014). However, most hydro-agricultural applications
need SM measurements of sub-kilometer spatial resolution with a still
re product at 1km resolution: Processor overview and first validation
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representative temporal coverage (Walker & Houser, 2004). We should
strive to provide a high resolution (HR) SMproduct thatwould enhance
the knowledge of the hydrological processes at local scale.

Different satellite-based approaches have been proposed to retrieve
SM. One of themost popular is the use of active sensors like the synthet-
ic aperture radars (SAR) (ERS, ALOS, Sentinel 1) or scatterometers
(ASCAT). These instruments provide observations with a variety of spa-
tial and time resolutions but they are influenced to a great extent by the
scattering produced by vegetation structure and surface roughness,
among other factors. Unlike active sensors, passive instruments are
much less sensitive to scattering but provide surface SM estimations
at coarse resolutions (N40 km). C- and X-band radiometers like
AMSR-E and WindSat have shown good results (Mladenova et al.,
2011), but because of the frequency used, their sensing depth is shallow
(~1 cm) and vegetation becomes rapidly opaque. In contrast, L-band ra-
diometer acquisitions from SMOS provide SM estimations for a much
wider range of vegetation conditions, with a sensing depth of around
5 cm and a revisit time of ~3 days. However, the spatial resolution pro-
vided is also coarse (35–55 km) as mentioned previously. The main
strategies to work around this issue while maintaining the benefits of
L-band consist of merging the L-band acquisitions with HR ancillary
data, namely radar and optical observations.

Over the past decade, various methods have been proposed to com-
bine active and passive sensors to produce HR SM (Das, Entekhabi, &
Njoku, 2011; Narayan, Lakshmi, & Jackson, 2006; Zhan, Houser,
Walker, & Crow, 2006). The NASA Soil Moisture Active Passive (SMAP)
mission, launched in 2015, intended to combine L-band brightness tem-
peratures (TB) andHR L-band radar backscatter data (Entekhabi, Njoku,
O'Neill, Kellogg, Crow, Edelstein, et al., 2010). Despite the radar failure in
July 2015, related previous studies showed that SM could have been de-
livered at 9 km and even 3 km resolution (Das et al., 2014).

Optical sensors (visible/near-infrared/thermal-infrared) can achieve
finer spatial resolutions. However, the quality of their observations is crit-
ically compromised by the presence of clouds. Examples of optical sensors
include the Landsat instruments and the Advanced Spaceborne Thermal
Emission and Reflection radiometer (ASTER),with data at ~100m resolu-
tion, and the MODerate resolution Imaging Spectroradiometer (MODIS),
with data at ~1 km resolution. Such data include soil temperature and
vegetation cover information, which are variables linked to soil water
content (Fang et al., 2013). The relationship between land surface tem-
perature (LST) and normalized difference vegetation index (NDVI) was
first formalized in the 90s with the triangle (Carlson, 2007; Carlson,
Gillies, & Perry, 1994) and the trapezoid (Moran, Clarke, Inoue, & Vidal,
1994) approaches.

Most of the methods for deriving HR SM from the synergy between
optical andmicrowave observations are based on the triangle/trapezoid
approaches. Chauhan, Miller, and Ardanuy (2003) stated that the rela-
tionship between LST, NDVI and SM can be formulated as a regression
formula specific to the region and climatic conditions. Later, Piles et al.
(2011) included SMOS TBs in the equation, which reduced the bias
but slightly degraded the spatio-temporal correlation between the ob-
tained HR SM and the in situ measurements. These empirical methods
need local calibration of the regression coefficients at low resolution
(LR) before applying them to the HR ancillary data. On the contrary,
semi-physical methods replace the polynomial function by physically-
basedmodels that use evaporation as a proxy variable for SMvariability.
Merlin, Walker, Chehbouni, and Kerr (2008) linked the SM to the soil
evaporative efficiency (SEE), defined as the ratio of actual to potential
soil evaporation. Kim and Hogue (2012) established a linear relation-
ship between the soil evaporative fraction of Jiang and Islam (2003)
and SM. Both approaches improved the satellite SM spatial variability
and showed better correspondence with ground measurements in the
area of study (SMEX04).

The semi-physical methods have three important advantages with
respect to the purely empirical methods: (i) the mean SM is preserved
across the merging process (which justifies calling it ‘disaggregation’
Please cite this article as: Molero, B., et al., SMOS disaggregated soil moistu
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or ‘downscaling’), (ii) a physical link is established for HR between SM
and the evaporation/evapotranspiration rate and (iii) no local calibra-
tion or fit is needed. These are key factors in developing a robust and
global operational algorithm for HR SM.

Recent studies by Merlin et al. (2012); Merlin et al. (2013) have im-
proved the evaporation rate calculation and the evaporation-SM link of
Merlin et al. (2008). TheDISaggregation based on Physical And Theoret-
ical scale Change (DISPATCH) algorithm estimates SEE at high-
resolution from soil temperature and vegetation data for modeling the
spatial variations inside the microwave SM observation. In Merlin
et al. (2012), DISPATCH included corrections for the microwave sensor
weighting function and grid oversampling and provided an estimate
of the uncertainty in the output disaggregated data. Later, Merlin et al.
(2013) demonstrated that the linear approximation of the SEE\\SM
link model is suitable for kilometer scales and included soil tem-
perature corrections for elevation effects. Both studies were con-
ducted under semi-arid conditions, in a 500 × 100 km study area
within the Murrumbidgee river catchment, in southeastern
Australia, and in a 60 × 60 km study area east of Lleida in Catalunya,
Spain. They showed that DISPATCH improves the spatio-temporal
correlation with in situmeasurements, but that the accuracy of dis-
aggregated products is highly dependant on the SM-evaporation
coupling. The downscaled resolution of 1 km (Merlin, Al Bitar,
Walker, & Kerr, 2009; Merlin et al., 2013) and the combination of
satellite data from different time stamps in DISPATCH
(Malbéteau, Merlin, Molero, Rüdiger, & Bacon, 2016; Merlin et al.,
2012) have been considered as a good trade-off between spatial
representativeness and overall accuracy, given the current status
of the algorithm.

Recently, a new Level-4 (L4) processor (C4DIS) based on DISPATCH
has been implemented in the Centre Aval de Traitement des Données
SMOS (CATDS), the French ground segment for SMOS Level-3 and
Level-4 data. The aim is to disaggregate the SMOS CATDS Level-3 (L3)
1-day SMmaps to produce maps of SM at 1 km resolution for any part
of the globe on an operational basis. The ancillary temperature and veg-
etation data are retrieved from the MODIS mission.

This paper seeks (i) to provide an overview of the C4DIS architec-
ture, processing algorithms, output products, strengths andweaknesses
and (ii) to derive the first conclusions on the performance of the C4DIS
product depending on the climatic and landscape conditions. To do so,
we evaluate the C4DIS product against in situ data from the Murrum-
bidgee catchment and two additional contrasting networks. Former
versions of DISPATCH have so far been evaluated mostly in semi-arid
conditions (Malbéteau et al., 2016; Merlin et al., 2012, 2013). The Mur-
rumbidgee network belongs to these previous studies, and it is included
here to serve as a reference for the current version of DISPATCH and the
C4DIS processor and for the other validation areas. The two other in
situ networks considered in this study are located in the Little
Washita watershed in Oklahoma, USA, which exhibits sub-humid
conditions, and the Walnut Gulch watershed in Arizona, USA,
which exhibits semi-arid to arid conditions. Their relief, soil prop-
erties and land use differ from the Murrumbidgee's. The L4 disag-
gregated SM product is evaluated using in situ 0–5 cm and in situ
0–8 cm measurements taken at the same time as SMOS overpasses
(around 6 am, 6 pm) during the period 01/06/2010 to 31/05/2011
for the Australian network and 01/06/2010 to 31/12/2014 for the
USA networks. These networks have been providing ground SM
data in a continuous basis and have contributed to the validation
of different satellite missions, SMOS among them (Cosh, Jackson,
Bindlish, & Prueger, 2004; Jackson et al., 2010, 2012; Leroux et al.,
2013; Peischl et al., 2012).

It is important to note that the DISPATCH algorithmwill continue to
evolve. Validation activities on the Level-4 processor C4DIS will provide
valuable information for the improvement of the algorithm and pro-
cessing chain. This current study is conducted on the products of the
first version of the C4DIS processor.
re product at 1km resolution: Processor overview and first validation
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2. Input data collection

2.1. In situ measurements

Three validation networkswere selected for this work, theMurrum-
bidgee Soil Moisture Monitoring Network (MB) in Australia (Smith
et al., 2012) and two different USDA (United Stated Department of Ag-
riculture) networks: Little Washita (LW) in Oklahoma (Cosh, Jackson,
Starks, & Heathman, 2006) and Walnut Gulch (WG) in Arizona (Cosh,
Jackson, Moran, & Bindlish, 2008). They exhibit contrasted types of cli-
mate, soil properties, land use and spatial extension.

The MB network covers a large extension (82,000 km2) in southern
New South Wales. Its climate ranges from semi-arid in the west (aver-
age annual precipitation of 300 mm), to humid in the east (annual pre-
cipitation of 1900 mm at the Snowy Mountains). The MB has been
studied in previous DISPATCH campaigns (Malbéteau et al., 2016;
Merlin et al., 2012). It is included here for different reasons: it permits
to confront results with previous versions of the algorithm, it contains
within the Yanco area,which gathers the nominal landscape and climat-
ic conditions for DISPATCH (flat, semi-arid with low vegetation), and it
shows a variety of climate, soil and land use cases that can reveal the
usefulness of disaggregation.

The MB consists in 38 validation stations: 18 of them provide SM in-
tegrated over the first 8 cmof soil (Campbell Scientificwater content re-
flectometers) and the rest provide SM integrated over the first 5 cm of
soil (Stevens Hydra Probe). The stations are situated in four areas: 7 sta-
tions in the limits of the catchment near to regional centers; 5 stations in
Adelong Creek (145 km2), a grazing area with steep slopes; 13 stations
in Kyeamba creek (600 km2), a catchment with gentle slopes and graz-
ing and dairy land use; and finally, 13 stations in the Yanco region
(3000 km2).

Yanco soils are mainly silty-loam. The climate is semi-arid with an
average annual rainfall of about 400mm, withmost of the precipitation
occurring in winter and spring. The land use is divided into irrigation
and dry land cropping and pastures. This area has been extensively
monitored since 2001 (Smith et al., 2012) and has been used in a variety
of satellite validation campaigns (Mladenova et al., 2011; Panciera et al.,
2014; Peischl et al., 2012).

The USDA networks have been operating since 2002 and they have
been used in the validation of Advanced Microwave Scanning
Radiometer-Earth Observing System (AMSR-E) products (Jackson
et al., 2010), Aquarius (Bindlish, 2015), ASCAT (Leroux et al., 2013)
and SMOS products (Jackson et al., 2012). The probes are installed at a
depth of 5 cm, with an effective measurement depth between 3 and
7 cm (Stevens Hydra Probe).

LW is located in southwest Oklahoma and covers an area of about
610 km2. The climate is sub-humid with an average annual rainfall of
750 mm. Summers are hot and relatively dry while winters are short
and temperate. Autumn and spring are when most of the precipitation
occurs (Allen & Naney, 1991). The land use is mainly rangeland and
crops that include winter wheat and some corn and grasses. Soils in-
clude a wide range of textures, with large regions of sands, loams and
clays. The topography is moderately rolling with few hills.
Table 1
Main characteristics of validation areas.

Murrumbidgee

Extension 82,000 km2

Climate Semi-arid (west) to humid (east)
Annual precipitation 300–1900 mm

Main precipitation periods Relatively constant at the basin scale

Soils Clayey (west) to sandy (east)
Topography Diverse, mountains in the east

Please cite this article as: Molero, B., et al., SMOS disaggregated soil moistu
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WG occupies an area of 148 km2 in southeastern Arizona. The cli-
mate is semi-arid, with an average annual rainfall of 324 mm, lower
than in the Yanco region. Most of the rains occur in the form of small
scale high-intensity thunderstorms during the summer months as part
of the North American Monsoon System (Cosh et al., 2008). Soils are
mainly sands and gravel with good drainage. Desert shrubs and short
grasses dominate the landscape. The topography is considered as rolling
with significant rock cover. Although the climate class of WG is defined
semi-arid as the Yanco area, the contrasting landscape and precipitation
conditions make WG an interesting validation area (Table 1).

It is important to outline that the area extent covered by the net-
works is different so it may have an impact on the validation process:
the MB comprises multiple SMOS pixels through sparse stations and
more dense localized sites, the Yanco region covers approximately one
SMOS pixel, and the LW andWG cover around 1/4 and 1/16 of the sur-
face of one SMOS pixel. This does not affect the C4DIS processor, which
handles input larger surfaces, but it may affect the validation process
since the smaller networks may not be representative of the ~40 km
surface.

2.2. SMOS soil moisture data

The SMOS satellitewas launched inNovember 2009. SMOShas glob-
al coverage with a revisit period of 3 days at the equator, with all
together in the same line, if possible overpass at 6:00 am and
descending (D) overpass 6:00 pm local solar time. The SMOS
instrument is a passive 2D interferometer operating at L band
(1.4 GHz) (Kerr et al., 2001, 2010). The spatial resolution ranges from
35 to 55 km, depending on the incident angle. The goal is to retrieve
SM (first 5 cm) with a target accuracy of 0.04 m3/m3 (Kerr et al., 2012).

The C4DIS processor disaggregates the SM provided by the SMOS
Level-3 1-day global SM product (MIR CLF31A/D). In this paper, the ver-
sion 2.72 (in 220 reprocessingmode RE02) product is used. Level-3 (L3)
products are presented in NetCDF format on the EASE (Equal Area Scal-
able Earth) grid, with a grid spacing of ~25 × 25 km.

The L3 SM products are directly computed from the SMOS Level-1
products at the CATDS. The core of the algorithm for retrieving SM
from brightness temperatures is derived from the L2 retrieval algorithm
(Kerr et al., 2012; Wigneron et al., 2007). In both processing chains, SM
is derived from the combination of multiangular observations. While
the L2 chain considers only the multiangular observations of the same
day and orbit (ascending/descending), the L3 chain uses several over-
passes (3 at most) over a 7-day window. This results in more coverage
and robustness for the L3 products (Al-Yaari et al., 2014). Details on
the L3 processing algorithm can be found in the Algorithm Theoretical
Baseline Document (Kerr et al., 2013) and in the L3 data product de-
scription (Kerr et al., 2014).

2.3. MODIS temperature and vegetation data

TheC4DIS processor uses three ancillary products at 1 kmresolution.
Two of them are derived fromMODIS acquisitions: LST and NDVI. These
are necessary elements for the SEE calculation inside DISPATCH.
Yanco LW WG

3000 km2 610 km2 148 km2

Semi-arid Sub-humid Semi-arid to arid
400 mm 750 mm 324 mm

Winter, spring Autumn, spring
Summer
(intense, localized)

Silty-loam Sands, loams and clays Sands and gravel
Flat Moderate rolling Rolling

re product at 1km resolution: Processor overview and first validation
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The LST datasets are extracted from in the same line, if possible
MODIS/Terra LST and emissivity daily L3 global 1-km grid products
(MOD11A1) and version-5 MODIS/Aqua LST and emissivity daily L3
global 1-km grid products (MYD11A1). The NDVI dataset is extracted
from the version-5 MODIS/Terra vegetation indices 16-day Level-3
global 1-km grid product (MOD13A2).

The MODIS products are retrieved from the NASA Land Processes
Distributed Active Archive Center (LP DAAC). They are presented in si-
nusoidal projection at 1 km resolution (Solano, Didan, Jacobson, &
Huete, 2010; Wan, 1999, 2006). The disaggregation approach requires
the NDVI dataset acquired within the last 15 days and the LST datasets
of the day before, the same day and the day after. The MODIS products
are available between 1 and 9 days after the acquisition day.

2.4. Digital elevation model

The C4DIS processor requires elevation information, which is ex-
tracted from the GTOPO30 Digital Elevation Model (DEM) product
available in the WGS84 sphere at 30-arc sec resolution. The GTOPO30
product is distributed by the U.S. Geological Survey's EROS Data Center
(USGS, https://lta.cr.usgs.gov/GTOPO30).

3. The CATDS level-4 disaggregation (C4DIS) processor

The CATDS Level-4 (L4) Disaggregation (C4DIS) processor is the first
operational version of the DISPATCH algorithm. The C4DIS processor se-
lects the best algorithm and parameter configuration according to past
DISPATCH studies and the latest research (Merlin, Al Bitar, Walker, &
Kerr, 2010; Merlin, Chehbouni, Boulet, & Kerr, 2006; Merlin et al.,
2009; Merlin, Rüdiger, Richaume, Al Bitar, Mialon, Walker and Kerr,
2010; Merlin et al., 2012; Merlin et al., 2013). It also makes possible to
obtain disaggregated SM on a global and daily basis (under the assump-
tion of no cloud-covered scenes and availability of input data). The
C4DIS products have beenmarked as ‘scientific’products because the al-
gorithm is still evolving: their accesswill be granted on demand for spe-
cific areas of the world. In this and the following sections, we describe
both the DISPATCH prototype and the C4DIS processor.

3.1. DISPATCH algorithm

DISPATCH relies on a SEE term to model the spatial variability over
the low-resolution (LR) SMOS pixel. The first step is to account for the
SEE term at HR, described as a linear function of soil temperature:

SEEHR ¼ Ts;max–Ts;HR
� �

= Ts;max–Ts;min
� � ð1Þ

Soil (Ts,HR) and vegetation (Tv,HR) temperatures are derived from LST
and NDVI datasets as in Merlin et al. (2012), where the surface temper-
ature is partitioned into its soil and vegetation components according to
the trapezoid method of Moran et al. (1994). Soil temperature is calcu-
lated as follows:

Ts;HR ¼ TMODIS−fv;HRTv;HR
� �

= 1− fv;HR
� � ð2Þ

with TMODIS being the MODIS LST and fv the MODIS-derived fractional
vegetation cover. Here, the fractional vegetation cover is calculated as:

fv;HR ¼ NDVIMODIS–NDVIsð Þ= NDVIv–NDVIsð Þ ð3Þ

withNDVIMODIS being theMODISNDVI, NDVIs theNDVI for bare soil (set
to 0.15), and NDVIv the NDVI for full-cover vegetation (set to 0.90).

The vegetation temperature Tv,HR is calculated according to the
“hourglass” approach (Moran et al., 1994), as a function of the position
of the HR pixel in the LST-fv space, and the soil (Ts,min, Ts,max) and vege-
tation (Tv,min, Tv,max) temperature end-members (Merlin et al., 2012).
Please cite this article as: Molero, B., et al., SMOS disaggregated soil moistu
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Given the minimum andmaximum LST values of the scene TMODIS,min

and TMODIS,max, and the fv values associated to the same pixels, fv,Tmin and
fv,Tmax, the following approximations hold (Merlin et al., 2013):

I). Tv,min = TMODIS,min

II). When the vegetation portion is low at TMODIS,min (fv,Tmin b 0.5),
then Ts,min = TMODIS,min

III). When the vegetation portion is considerable at TMODIS,min

(fv,Tmin N = 0.5), then Ts,min is set to the minimum value of the
Ts,HR derived from Eq. (2), with Tv,HR = Tv,min and fv,HR b 0.5

IV). When the vegetation portion is low at TMODIS,max (fv,Tmax b 0.5),
then Ts,max = TMODIS,max and Tv,max is set to the maximum value
of the Tv,HR derived from Eq. (2), with Ts,HR= Ts,max and fv,HR ≥ 0.5

V). When the vegetation portion is considerable at TMODIS,max

(fv,Tmax N = 0.5), then Tv,max = TMODIS,max and Ts,max is set to
the maximum value of the Ts,HR derived from Eq. (2), with
Tv,HR = Tv,max and fv,HR b 0.5

Note that LST has been preliminary corrected for elevation effects
(decrease of air temperature with altitude) by using the DEM informa-
tion at HR (Merlin et al., 2013):

TMODIS ¼ TMODIS�ori þ γ HHR–HLRð Þ ð4Þ

with TMODIS being the topography-corrected LST used in the previous
equations, TMODIS-ori the original MODIS LST, γ (°C m−1) the mean
lapse rate (set to 0.006 °C m−1), HHR the altitude of the MODIS pixel
and HLR the mean altitude within the LR pixel.

In a second step, the semi-empirical linear model of Budyko (1956)
andManabe (1969) is used to link the surface SM (0–5 cm) and the SEE
terms. According to Merlin et al. (2013), the linear model is a good ap-
proximation for kilometer scales so the SEE for each HR pixel can be
written as:

SEEHR ¼ SMHR=SMp ð5Þ

where SMp is a parameter estimated at LR at each execution from daily
SM and SEE observations as follows:

SMp ¼ SMLR=SEELR ð6Þ

with SMLR the radiometer-sensed SMand SEELR the average of the SEEHR
values inside the LR pixel.

The disaggregation is finished by applying a first order Taylor series
to the SM-SEE model at each HR pixel (downscaling relationship). The
corresponding disaggregated SM is:

SMHR ¼ SMLR þ SM’ SEELRð Þ � SEEHR−SEELRð Þ ð7Þ

with SM’(SEELR) the partial derivative of SM relative to SEE at LR (SMp).

3.2. DISPATCH operational implementation

Following themethodology introduced inMerlin et al. (2012), C4DIS
executes DISPATCH on a set of possible combinations of input datasets,
producing multiple HR outputs that are averaged together into a single
final disaggregated SM field (SM_HR). The rationale behind this is to ac-
count for the uncertainty of the approach and to reduce independent
random errors (Malbéteau et al., 2016; Merlin et al., 2012). The input
ensemble is formed by 4 downsampled instances of the original L3 SM
dataset and up to 6 LST datasets corresponding to 3 consecutive days
of MODIS acquisitions (Aqua and Terra overpasses). This means that
each SM_HR output comes from the composition of up to 24
DISPATCH outputs (up to 24 input SM-LST possible pairs).

SMOS original datasets are downsampled in order to work at the ra-
diometer resolution. SMOS L3 products are provided on a 25 km grid,
which can be up to half of the original SMOS resolution (35–50 km).
re product at 1km resolution: Processor overview and first validation
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Fig. 1. Simplistic representation of the relation between the SMOS subsampled grids (at
0.4°) and the re-projected ancillary data at 0.01°. The extent of the re-projected ancillary
image (LST, NDVI, etc.) matches the intersection of the four SMOS grids. The
disaggregation is only applied in this overlapping zone.
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The four SM datasets are derived from the original SMmap by sampling
the data at 50 km and are assumed to be independent. This is not totally
true, since grid cells depend on the surrounding cells from a radiometric
perspective, but helps to potentially reduce (and provide an estimate
of) random errors in the SM_HR data. Regarding the selection of 6
MODIS LST datasets from 3 consecutive days, it is assumed that SM
fields are spatially stable for periods of at least 1 day around the SMOS
overpass time. This 3-day derived product with daily estimated SMp is
referred as the ‘sm1k3d’ product in Malbéteau et al. (2016) and is the
one built by the C4DIS processor. The 3-day product has much better
temporal coverage than its 1-day counterpart (‘sm1k1d’), but the un-
certainty associated to the methodology is expected to be higher since
the temporal stability assumption can be often violated by precipitation
and irrigation events.

There is no dedicated dataset in the C4DIS product that specifies ex-
plicitly whether the 3-days stability condition is respected or not. In the
future, this will be achievable with the use of ancillary precipitation in-
formation, for example. Meanwhile, in addition to the SM_HR dataset,
two more datasets are produced as indicators of the aggregation of the
DISPATCH ensemble: the STD dataset, which is the standard deviation
of the up to 24 disaggregated SM fields, and the COUNT dataset, which
is the size of the ensemble. The aggregation is conducted if at least 3
SM fields are generated, so the COUNT values range from 3 to 24. In
this paper, we study the STD and the COUNT datasets as potential
sources of information for a future quality control flag (Section 5.5).

Finally, the current version of DISPATCH filters out any LST pixel
values that have associated QC flags different from 0 and 17, which cor-
respond tomaximumLST quality (error b 1K) andmaximumemissivity
error of 0.01 and 0.02 respectively (Solano et al., 2010; Wan, 2006).
Areas with more than 1/3 of their surface covered by clouds are also
discarded. Differences between the operational and the prototype ver-
sions of DISPATCH are summarized in Table 2.
3.3. Pre-processor

The C4DIS pre-processor prepares the input ensemble that is re-
quired byDISPATCH. The pre-processor uses theMODIS sinusoidal tiling
system as the execution reference, meaning that the processor is exe-
cuted for the SMOS and ancillary data contained within each MODIS
tile bounds. More information about the grid can be found in http://
modis-land.gsfc.nasa.gov/MODLAND_grid.html. The SMOS and ancil-
lary data inside the tile bounds are selected and re-projected to an
equal-spaced lat-lon WGS84 grid. Considering that ancillary products
are presented in different datums and grids, the choice of the WGS84
projection minimizes the total number of resampling operations.

The pre-processor is divided into modules for file format transfor-
mation, dataset extraction, re-projection and re-gridding. As explained
in the previous section, DISPATCH requires 4 subsampled instances of
Table 2
Main differences between the DISPATCH operational implementation in the C4DIS processor a

C4DIS processor Merl

SEE model Linear
(Budyko, 1956; Manabe, 1969)

Line
(Bud

Calculation of Tv “Hourglass” approach
(Moran et al., 1994)

“Hou
(Mo

Calculation of temperature end-members
(Ts,min, Ts,max, Tv,min, Tv,max)

Estimated by a simpler approach based
on the combination of LST and fv

Estim
the c

Input SM data SMOS L3 SM SMO
Input LST data “sm1k3d” mode

(3 × 2 input LST datasets)
“sm1
(1 ×

Input DEM data GTOPO30 GTO
LST filtering Yes, QC flags 0 and 17 Yes,
Cloud-free threshold 0.67 0.90
Sea-free threshold 0.90 0.90
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SMOS data and up to 6 LST datasets. As a consequence, the re-
projection and re-gridding are sensible operations that deserve being
explained in detail.

The pre-processor outputs are re-projected to the sameWGS84 pro-
jection, but resampled to different resolutions: SMOS subsampled ras-
ters are provided on 0.4° grids while ancillary raster data are provided
on a 0.01° grid. The SMOS 0.4° grids are derived from an original global
grid at 0.2° by sliding a 0.4° window over it, so that the pixel centers are
coincident. Based on this, the SM values become representative of the
double of the original grid resolution 0.2°, which approximately
matches the average SMOS resolution. The disaggregation is only per-
formed in the intersection area between the 4 SMOS grids and the ancil-
lary data grid (Fig. 1).
3.4. Post-processor

The C4DIS post-processor transforms the DISPATCH outputs into the
CATDS format. It includes two significant transformations that impact
the disaggregated data. First, in the case that DISPATCH generates neg-
ative SM values (which is mathematically possible), the post-
processor clips them to 0 to respect physical meaning. Second, since
the outputs of DISPATCH are presented in local time and day, the
post-processor assigns to them the corresponding UTC time and day
to keep consistency with other SMOS products.
3.5. Assumptions and applicability domains of the algorithm

The application requirements of the C4DIS processor are directly
inherited from DISPATCH. The following considerations must be taken
into account:
nd the previous prototype versions.

in et al. (2013) Merlin et al. (2012)

ar
yko, 1956; Manabe, 1969)

Non-linear
(Noilhan & Planton, 1989)

rglass” approach
ran et al., 1994)

“Hourglass” approach
(Moran et al., 1994)

ated by a simpler approach based on
ombination of LST and fv

Estimated by plotting MODIS LST against
MODIS albedo and NDVI within the LR pixel
(Merlin, Duchemin, et al., 2010)

S L2 SM SMOS L2 SM
k1d” mode
2 input LST datasets)

“sm1k3d” mode
(3 × 2 input LST datasets)

PO30 Not implemented
QC flags 0 and 17 No

0.90
Not implemented
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Fig. 2. Year averages of SMOS L3 and L4 disaggregated products (ascending orbit) for part
of the USA and for the period 06/2013 to 05/2014. The L4 figure includes only the tiles
(08,05) and (09,05), joined together. The black circles correspond, from left to right, to
the location of Walnut Gulch and Little Washita validation networks.
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- Cloud free conditions: soil temperature can only been retrieved from
optical sensors if clouds are not present. C4DIS products show data
gaps associated with clouds.

- Low vegetation cover: The LST-NDVI trapezoid describes a zone of
values where no useful disaggregated data can be produced since
LST is mainly controlled by vegetation transpiration, with no sensi-
tivity to surface SM (Merlin et al., 2013). Sites with partial fractional
vegetation cover at the 1 km resolution are desired.

- Moisture-driven evapotranspiration: the disaggregation relies on the
dependence established between LST, evapotranspiration and SM.
Some climates exhibit low dependency between those variables.
Typically, climates characterized as energy-limited, like humid cli-
mates, exhibit a weaker moisture-evaporation coupling.

- Medium to high spatial variability: theMODIS-derived SEE is comput-
ed with a polygon method that relies on LST and reflectance end-
members (Moran et al., 1994). In the current version, DISPATCH is
contextual and thus heterogeneous scenes with meaningful dry-
wet contrast are needed in order to ensure good end-members accu-
racy (Merlin, Al Bitar, Walker and Kerr, 2010). Note that LST end-
members could be estimated using available meteorological data
(Moran et al., 1994) independently from the surface (wet/dry) con-
ditions observed at the 1 km resolution within the LR pixel (Stefan,
Merlin, Er-Raki, Escorihuela, & Khabba, 2015).

- Accuracy of the SMp parameter: the SMp parameter is calculated at LR
scale by using a linear relationship that has been studied as suitable
for kilometer scales (Merlin et al., 2013). It is based on the assump-
tion that the sub-pixel variability of SMp atHR is negligible. Soil char-
acteristics (texture, porosity, etc.) may impact the relationship
between SEE and SM and thus SMp. Hence, the current versions of
C4DIS and DISPATCH should perform better in areas with homoge-
neous soil characteristicswhere the intra-pixel spatial SM variability
is mainly due to forcing agents, namely precipitation and irrigation.

- Mismatch of overpass times: the C4DIS processor uses MODIS LST
datasets at 6 different timestamps. This is based on the assumption
that the SM pattern is maintained over a period of 3 days, with no
rain events occurring in between.

- Mismatch of sensing depths: SMOS L-band SM estimations are repre-
sentative of the soil first 5 cm content, whileMODIS temperature ac-
quisitions are representative of the soil skin layer. DISPATCH
assumes that the soil skin temperature is correlated with the soil
evaporation process occurring in the 0–5 cm of soil (Merlin, Al
Bitar, Walker and Kerr, 2010).

3.6. Global product description

- Coverage, grid and resolution. C4DIS products are presented in a reg-
ular lat-lon grid at 0.01° resolution. The projection is divided in a
tiled grid that follows the MODIS sinusoidal tiling system, meaning
that the C4DIS tiles are centered at MODIS tiles and follow the
same name convention in (h,v) coordinates. Due to reprojection,
the tiles present different size. C4DIS products can be generated for
all emerged lands (tiles with more than 50% of land), but since
they are tagged as ‘scientific’ products, the tiles of interest have to
be delivered on demand. For this study, the following tiles have
been produced: (29,12) and (30,12) for the validation over the MB,
(09,05) for LW and (08,05) for WG. Fig. 2 and Fig. 3 show annual
averages of C4DIS products for the selected tiles. The extension and
border of the tiles are easily distinguishable.

- Availability and timeliness. The delivering of C4DIS products is deter-
mined by the availability and timeliness of the input datasets. The
limiting dataset is the MODIS MOD13A2 product (NDVI), which is
valid for a period of 15 days starting at its date of acquisition
(DoA) but can be delivered some days later. In consequence, C4DIS
products for dates DoA to DoA + 15 are produced at date
Please cite this article as: Molero, B., et al., SMOS disaggregated soil moistu
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DoA + 25. In other words, each 16 days the C4DIS products for ac-
quisition dates between 25 to 10 days before are delivered.

- Datasets and quality control. We cannot provide a full-proof quality
flag given the current status of the processor and the algorithm. Nev-
ertheless, the output COUNT and STD datasets can help to assess the
quality of the SM_HR dataset. Combining these datasets with addi-
tional ancillary data like precipitation or MODIS/SMOS quality
flags, may help to build a quality control dataset in the future.

As introduced in Section 3.2, the COUNT field determines the
number of SM–LST combinations used by DISPATCH to produce one
output. Low COUNT values indicate missing input data as result of
diverse reasons: SMOS RFI contamination, MODIS cloudy scenes,
failures in the SMOS/MODIS acquisitions delivering, etc. SM_HR
fields generated when low COUNT values are present do not profit
from the reduction in independent random errors as result of
averaging. The STD field contains the per-pixel standard deviation
of the up to 24 disaggregated datasets with respect to the averaged
output SM_HR. Low values of STD are desirable since they reveal
temporal persistency of both temperature and moisture variables.
High values may indicate external forcing agents (precipitation and
irrigation) within the 3-days window.
4. Analysis methodology

Our analysis involves two main approaches: qualitative assessment
of disaggregated SMmaps and statistical evaluation. The statistical eval-
uation consists on comparing the L3 SMOS product (LR) and the L4
product (HR) against the in situ SM by using standard statistical metrics
(e.g. correlation, bias, etc.). This can be accomplished in the spatial or in
the time domain. We base the statistical evaluation on the assumption
that the 1 km pixel is more representative of the in situ measurement
than the whole LR pixel.
re product at 1km resolution: Processor overview and first validation
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Fig. 3. Year averages of SMOS L3 and L4 disaggregated products (ascending orbit) for part
of Australia and for the period 06/2010 to 05/2011. The L4 figure includes part of the tiles
(29,12) and (30,12), joined together. The dotted line depicts the boundary of theMurrum-
bidgee catchment. The presence of clouds affects the L4 and not the L3 products,
preventing the first one to show lower average values of SM.
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In order to assess the relative spatial performance of both L3 and L4
products at HR, we directly compare the station measurements to the
satellite retrievals, without aggregating them at LR. In the subsequent
sections, MB refers to the whole Murrumbidgee network, including
Yanco area. Yanco only refers to the 12 stations contained in this region.

4.1. Data preparation

We filter L3 and L4 SM time series for radio frequency interference
(RFI) by removing pixels having more than 10% RFI probability. The
RFI information is extracted from the same CLF31A/D product and
accounts for the percentage of brightness temperatures acquisitions af-
fected by RFI presence (Kerr et al., 2013; Oliva et al., 2012). In addition,
regarding the in situ data,we only keep the SM values at the SMOS over-
pass times. Finally, we filter the three SM time series (in situ, L3 and L4)
for common dates with valid SM values (N0.0 m3/m3).

4.2. Analysis of the temporal and spatial variability of the in situ SM

As expected for any data disaggregation approach, the application of
DISPATCH is relevant when the SM spatial variability at the downscaled
resolution is larger than the output uncertainty. Since the current
version of DISPATCH relies on the spatial contrast of LST and SM of
the scene, a preliminary study on the spatial SM variability of the valida-
tion areas is desired. In homogeneous SM landscapes, the output uncer-
tainty is likely to be greater than the spatial gain provided at HR by
disaggregation.

Similarly, it is desirable that the evaluation include in situ time series
spanning the full range of SM conditions and seasonal changes. In other
words, the temporal standard deviation (σ) should be large enough so
that all the states of the SM variable are represented and no selection
bias is present. Additionally, stations exhibiting very different temporal
σ may suggest landscape spatial heterogeneity: soil characteristics like
texture, vegetation and topography affect the dry-down process, gener-
ating different extreme values in time.

Based upon the considerations discussed above, the evaluation of
the performance of the C4DIS products should include a preliminary as-
sessment of the spatial and temporal SM variability of the validation
networks. The performance of DISPATCH outputs over MB and Yanco
has been identified as rather satisfactory in recent studies (Malbéteau
et al., 2016; Merlin et al., 2012), which makes them good references
for spatial and temporal σ.
Please cite this article as: Molero, B., et al., SMOS disaggregated soil moistu
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4.3. Classical metrics

Given the spatialmismatchbetween in situ and satellite estimations and
the spatial scarcity of ground stations, most classical satellite validation
campaigns only evaluate the temporal dimension, by means of metrics
like correlation (R), root mean square error (RMSE) and bias (B) (Albergel
et al., 2012; Albergel, Brocca, Wagner, de Rosnay, & Calvet, 2013;
Entekhabi, Reichle, Koster, & Crow, 2010; Al Bitar et al., 2012). In this
study, we use similar temporal analysis but we also include an evaluation
in the spatial domain sincedisaggregation techniques aimatproducingbet-
ter spatial representation. The spatial statistical analysis consists of comput-
ing the metrics between the satellite and in situ values for each day, then,
deriving the average of each metric for the whole period. We deliberately
establish a minimum of 5 points per day to compute the metrics.

Herein, instead of the RMSE, we use as error metric the standard de-
viation of the error (Eq. (8)) (Mood, Graybill, & Boes, 1974; Salkind,
2010),which is a non-biased estimation of the error and so it is not com-
promised by the bias in the mean and amplitude of the time series that
affects the RMSE. The relationship between both metrics is written in
Eqs. (9) and (10). Since we already use multiple terms to refer to differ-
ent standard deviationmeasures and datasets in this paper (σ, STD), we
will refer to this metric as unbiased-RMSE or ubRMSE (Entekhabi,
Reichle, et al., 2010). Given that the 1 kmpixels are in general heteroge-
neous and that the ground data also present measurement uncer-
tainties, the term ‘error’ has been replaced by ‘difference’ in these
metrics, i.e. RMSD and ubRMSD.

ubRMSD ¼ √ E SMsatellite–E SMsatellitef gð Þ– SMinsitu–E SMinsituf gð Þ½ �2
n o

ð8Þ

RMSD ¼ √ E SMsatellite–SMinsituð Þ2
n o

ð9Þ

ubRMSD ¼ √ ðRMSD2–B2Þ ð10Þ
where E{·} is the expectation operator, SMsatellite and SMinsitu the satel-
lite and the in situ SM time series.

We include one additional metric to assess the efficiency gained in
spatial representativeness: the slope (S) of the regression line between
in situ and satellite estimates:

S ¼ R � σsatellite=σ insitu ð11Þ

with σsatellite and σinsitu being the standard deviations of satellite and in
situ SM, respectively. The S metric can help to understand how much
better the SM redistribution is represented after the disaggregation
process. Whereas aggregation systematically decreases the σsatellite,
disaggregation specifically aims to improve the spatial representa-
tion of satellite SM by increasing the σsatellite at the level of σinsitu,
while keeping a significant R. Mathematically speaking, R is the
slope of the standardized regression line, and S is scaled by the σ
values of both data ensembles (Rodgers & Nicewander, 1988).
Since the σinsitu is fixed, S is more sensitive than R to changes in
σsatellite. In summary, an increase in random uncertainties (larger
ubRMSD, smaller R) in disaggregated SM might be acceptable if S is
closer to 1. Note that the random uncertainties in satellite SM can
be significantly reduced via the techniques of data assimilation in
land surface models, but the systematic errors associated with the
mismatch between data resolution and model application scale are
more difficult to take into account at HR (Merlin et al., 2006).

Finally, themetrics here (S, R, ubRMSD, B) assume that a linear rela-
tionship exists between the two datasets compared. This means that
they cannot replace the visual assessment of the data. In the general
case, both SMOS L3 and disaggregated SM may exhibit non-linear be-
havior with respect to in situ SM.
re product at 1km resolution: Processor overview and first validation
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Table 3
List of performance metrics used in this
study, from (Merlin et al., 2015).

Gain(S) ……......... GEFFI

Gain(R) …….......... GACCU

Gain(B) ……......... GROBU

Gain(ubRMSD).... GubRMSD
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4.4. Relative performance metrics

Comparing the improvement/degradation in statistics for different
cases of study (networks, filtering, time period, etc.) may be difficult:
we propose as solution to calculate their relative gains as introduced
inMerlin et al. (2015). Briefly, the gain is ameasure of the improvement
in the statistics obtained for the L4-in situ pair with respect to the L3-in
situ pair. The gain can range from −1 to 1, where positive values indi-
cate disaggregated data having better correspondence with in situ
than LR data. In this study, we keep the nomenclature of Merlin et al.
(2015) and we add a new gain term for the ubRMSD (see Table 3).
The gains are calculated as in Eq. (12) for in S and R metrics, and as in
Eq. (13) for B and ubRMSD.

GX ¼ − j1−XL4j−j1−XL3jð Þ= j1−XL4j þ j1−XL3jð Þ ð12Þ

GX ¼ − jXL4j−jXL3jð Þ= jXL4j þ jXL3jð Þ ð13Þ

where X designates the metric (S, R, B, ubRMSD), XL4 the value of the
metric when disaggregated SM is compared against in situ, and XL3 the
value of the metric when L3 SM is compared against in situ.
Fig. 4. Distribution of spatial and temporal standard deviations and SM values for the in situ sa
times. Number of bins of the histograms is 40. The median of the distributions is depicted in d
shown (right-down graph) for readability and it reaches 47% of the samples.

Please cite this article as: Molero, B., et al., SMOS disaggregated soil moistu
results, Remote Sensing of Environment (2016), http://dx.doi.org/10.1016/j
5. Results and discussion

This study seeks to provide a first assessment on the applicability
of the DISPATCH-based processor under different climatic and
landscape conditions. It also attempts to provide statistical guidelines
on the a priori suitability of a geographical area for the production
of meaningful C4DIS fields. The analysis spans the 01/06/2010 to
31/05/2011 period for the MB network and Yanco area and the
01/06/2010 to 31/12/2014 period for the LW and WG networks.
The SMOS data collected during the commissioning phase (until
31/05/2010) is discarded.

5.1. Preliminary analysis

In order to predict the performance of the processor, we conduct a
statistical analysis on the in situ SM data. We derive conclusions about
their temporal and spatial variabilities by looking at their distribution
of SM values and their distribution of ‘spatial σ’ and ‘temporal σ’. The
‘spatial σ’ (upper row in Fig. 4) is the standard deviation of the SM dis-
tribution on each day. The ‘temporalσ’ (middle row) is the standard de-
viation of the SM series of each station.

As stated in Section 4.2, we consider the in situ SM distribution char-
acteristics of MB and Yanco networks as reference in the present study.
The spatialσ plot shows narrower distributions for LW andWG, and the
mean value is much lower for the latter (0.03 m3/m3). This means that
the spatial variability at LW and WG seen at the satellite overpass
times is lower than in the reference cases, so we expect poorer perfor-
mances in the spatial domain.

In the temporal domain (middle row of Fig. 4), the mean variabil-
ity of LW andWG networks is lower than that of the Australian cases.
mples of Yanco, MB, LW andWG (1st to 4th columns respectively) at the SMOS overpass
ashed line and the mean in solid line. The WG soil moisture maximum percentage is not

re product at 1km resolution: Processor overview and first validation
.rse.2016.02.045

http://dx.doi.org/10.1016/j.rse.2016.02.045


Fig. 5.Maps of L3 SM (CLF31D) and L4 disaggregated SM for MB watershed on 22/11/2010 for the SMOS descending overpass.
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The SM distribution of WG (lower-right figure) shows a very strong
peak near zero that accounts for almost the half of the samples.
Under these conditions, we expect WG to be the network with
worst temporal performance of C4DIS products, while LW should be-
have similarly to MB and Yanco. It is important to mention that LW
andWG only represent a portion of a SMOS pixel and the in situ sam-
ples only concern some HR pixels in space, so the distributions
depicted here serve only as approximation.

5.2. Qualitative examples

The qualitative inspection of disaggregated SM maps for MB, Yanco,
LW andWG, shows that the L4 product is able to reveal spatial entities
like small and sparse water bodies.
Fig. 6. Maps of L3 SM (CLF31A) and L4 disaggregated SM for LW (left column) and WG (righ
correspond to watershed boundaries. In the left column, the bold dotted line in the middle o
surrounding lakes.
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Figs. 5 and 6 contain sample outputs of the C4DIS processor on
cloud-free days for the four areas. In the MB picture (Fig. 5), the Mur-
rumbidgee river is revealed thanks to disaggregation, while the south-
eastern region is empty due to clouds and the SMOS non-retrieved
pixels over themountains. In Fig. 6, disaggregation does not help reveal
the Little Washita river course but it does with the surrounding lakes.
The processor fails to display any spatial pattern inside the WG water-
shed. These maps are in agreement with the evaluation in the previous
section.

Yanco maps are a good example of the usefulness and relevance of
the C4DIS products when the algorithm assumptions are met. Fig. 7
shows the Yanco area with the limits of the Coleambally Irrigation
Area (CIA) units superimposed. At a first glance, the L4 SMmap reveals
the farms that are actually irrigated, while original SM map do not.
t column) watersheds on 02/05/2011 and 01/05/2011 respectively. Solid black contours
f the watershed correspond to the Little Washita river and the bold dotted contours to
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Fig. 7. Maps of L3 SM (CLF31D) and L4 disaggregated SM for Yanco area on 22/11/2010.
Black lines represent the contours of Coleambally irrigated farms.
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Finally, we show in Fig. 8 a series of C4DIS disaggregated outputs be-
tween the 4th and the 18th day of 2011. We can identify in detail the
areas affected by the floods that affected the states of New South
Wales and Victoria on those days. Likewise, we see how the dry-down
process is faster in some small areas than in others (west of Yanco).
Fig. 8.Maps of L4 disaggregated SM for MB on the first days of January 2011, showing the prog
contains the date and the SMOS overpass (‘A’ for ascending, ‘D’ for descending).
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5.3. Spatial evaluation

In this section, the L4 and L3 SM products are compared at HR on a
daily basis against the in situmeasurements.

Table 4 shows daily statistics averaged over the periods of analysis.
When comparing the statistics obtained for L3 and L4 products in MB
and Yanco networks, it is noted an important enhancement of the S
and the R values, ranging between 0.24–0.32 and 0.09–0.17, respective-
ly. Results are consistent with the conditions of the area, especially
those of Yanco (semi-arid climate with SM spatial heterogeneity domi-
nated by irrigation). Spatial B is maintained while ubRMSD increases
(around 0.02 m3/m3) which can be explained by the added uncertainty
when combining data from different sources.

LW andWG statistics are much poorer than MB ones: R and S never
exceed 0.11. The reasons for that can be found in both the algorithmand
the conditions of the validation area. First, the L3 statistics (R and S) are
much worse in the American than in the Australian networks, which
may entail uncertainty present in the LR product that is propagated to
the L4 product. Second, according to the preliminary statistical analysis
(Section 5.1), the spatialσ distribution ofWG is narrower and span over
lower values than those of the Australian networks. The spatial variabil-
ity cannot explain however the poor statistics of LW, since here the
mean spatial σ is similar to the Australian ones (0.07 m3/m3 for Yanco,
0.06m3/m3 forMB and LW). Another important aspect to take into con-
sideration is themismatch between the validation extent and the SMOS
resolution. LW andWG cover only part of the surface of one SMOS pixel
(~1/4 and ~1/12 of its equivalent surface, respectively), so the distribu-
tion of spatial σ may not be representative of the surface perceived by
DISPATCH. All this suggests that a qualitative analysis of the area is
strongly recommended.

The LW watershed has rolling relief and a variety of soil textures
and vegetation types, which are not considered in the soil tempera-
ture equations of DISPATCH. Moreover, its extension is around 4
times smaller than the Yanco area: we can think that a higher hetero-
geneity within the 1 km pixel would hamper R and S statistics as
ression of floods that affected New SouthWales and Victoria states. The title of each image
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Table 4
Spatial statistics of Yanco andMB for the period 01/06/2010 to 31/05/2011 and of LWandWG for the period 01/06/2010 to 31/12/2014. ‘L3’ refers to the comparison between L3 SMand in
situ SMand ‘L4’ refers to the comparison of L4 disaggregated SMand in situ SM. ‘A’ stands for ascending orbit and ‘D’ for descending orbit. All the values are expressed inm3/m3, except for R
and Number of days, which are unitless.

Yanco MB LW WG

L3 L4 L3 L4 L3 L4 L3 L4

S A 0.064 0.309 0.086 0.403 0.003 0.047 0.004 0.110
D 0.080 0.378 0.195 0.430 0.031 0.046 0.017 0.111

R A 0.201 0.316 0.156 0.288 0.030 0.064 0.015 0.102
D 0.194 0.363 0.251 0.335 0.115 0.057 0.042 0.111

B A 0.018 0.021 0.031 0.035 0.023 0.016 0.031 0.026
D 0.006 0.011 0.016 0.020 0.023 0.012 0.029 0.026

ubRMSD A 0.072 0.094 0.082 0.103 0.063 0.076 0.030 0.037
D 0.077 0.091 0.080 0.100 0.062 0.076 0.033 0.040

Nb A 74 100 573 552
Days D 66 95 557 545
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well. Most importantly, LW climate is defined as sub-humid, so we
can expect the link moisture-evaporation to be weak. Concerning
WG, the soils are of fast infiltration (sands and gravels), which re-
duces the apparent SM spatial contrast at the satellite overpass
times, a necessary condition for an accurate computation of the
DISPATCH SMp parameter.

The comparison of the results here with previous versions of the
algorithm can shed light on the pertinence of the choices made in
the algorithm since Merlin et al., 2012. Regarding the most recent
study, similar spatial statistics for MB and Yanco can be found in
Malbéteau et al., 2016, which proves that the performance of the
processor is coherent with that of the prototype algorithm. The re-
maining differences are originated by two factors. First, in our aim
to assess the qualities of the entire C4DIS processor, we use as LR
SM reference the original SMOS CLF31A/D product, while
Malbéteau et al., 2016 employed a reprojected form of the same
product used by DISPATCH, which was a reasonable choice from
the algorithm point of view. Second, the C4DIS post-processor
clips to zero the negative values produced by DISPATCH, a
module that was not still implemented at the time of Malbéteau
et al., 2016.

Another two former validation campaigns of DISPATCH
showed better correspondence with in situ measurements, but
they were accomplished for specific areas with known high-
evaporative demand and for no more than a dozen of dates. For
the Murrumbidgee catchment and AACES-I campaign (Merlin
et al., 2012), and the Catalunya campaign (Merlin et al., 2013),
summer 2010 and 2011 respectively, the correlation values
were close to the double of those obtained for MB in this study.
However, the AACES-based study also reported negative values
for those dates with very dry homogeneous SM scenes. This
Table 5
Temporal statistics of Yanco and for the period 01/06/2010 to 31/05/2011, and of LW andWG fo
situ SMand ‘L4’ refers to the comparison of L4 disaggregated SMand in situ SM. In the second col
in m3/m3, except for R and Number of points, which are unitless, and RFI percentage, which is

Yanco MB

L3 L4 L3

S A 0.368 0.489 0.363
D 0.333 0.465 0.383

R A 0.432 0.370 0.321
D 0.369 0.356 0.361

B A 0.019 0.023 0.033
D 0.004 0.014 0.020

ubRMSD A 0.090 0.120 0.105
D 0.095 0.118 0.095

RFI perc. A 0.000 – 0.248
D 0.000 – 0.000

Nb points A 754 754
D 723 723
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confirms our hypothesis for WG, were the large number of ‘flat’
SM scenes is probably behind the unsatisfactory statistics. In the
same article of 2012, the AACES-II results (winter), allowed to
presum that the weak evaporation-SM coupling was behind neg-
ative R values. Our statistics for LW seem to confirm this point,
but since the mean R is higher, it suggests that the algorithm
might be useful for some periods of the year.

5.4. Temporal evaluation

For the temporal analysis, we consider the same period and datasets
as in Section 5.3. We compute statistics on the concatenation of all the
SM series within a network. Table 5 displays temporal statistics for the
four validation networks. Regarding Yanco and MB, the S metric is bet-
ter for theHR SMproduct (between 0.12 and 0.18 higher),which is con-
sistent with the spatial evaluation results. R is slightly degraded in
Yanco while maintained in MB. This, and the increase in ubRMSD, can
be explained by the temporal uncertainty induced by the processor
when considering as inputs observations acquired in different days
and times. These results are consistent with previous validation studies
of DISPATCH: Merlin et al., 2013 showed that the temporal S could in-
crease between 0.15 to 0.25 after disaggregation, while R being main-
tained or increased and ubRMSE increased.

In the case of LW, the disaggregated SM (L4) has a slightly better S
when compared to in situ SM than does L3 SM for both orbits (improve-
ment of +0.06 for A orbit and of +0.03 for D orbit). The same evalua-
tion holds for WG (improvement of +0.05 and of +0.08 for A and D
orbits respectively). Like in the Yanco case, disaggregation slightly de-
grades R and ubRMSD for both SMOS orbits, showing again the increase
of random uncertainties attributed to the models and data used by
DISPATCH.
r the period 01/06/2010 to 31/12/2014. ‘L3’ refers to the comparison between L3 SM and in
umn, ‘A’ stands for ascending orbit and ‘D’ for descending orbit. All the values are expressed
in %.

LW WG

L4 L3 L4 L3 L4

0.538 0.406 0.463 0.490 0.544
0.542 0.415 0.441 0.381 0.458
0.377 0.468 0.434 0.468 0.436
0.368 0.460 0.410 0.352 0.366
0.027 0.023 0.017 0.031 0.026
0.019 0.025 0.014 0.030 0.026
0.118 0.078 0.088 0.044 0.051
0.118 0.077 0.088 0.052 0.056
– 1.893 – 1.958 –
– 1.893 – 1.562 –

1429 9027
1409 9337
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Fig. 9. Scatterplots of original L3 SM (1st row) and L4 disaggregatedSM(2nd row) versus in situmeasurements for both A andDorbits. The samples here correspond to theperiods 06/2010
to 05/2011 for MB and Yanco, and 06/2010 to 12/2014 for LW and WG. Dashed line represents the 1:1 slope and the solid line corresponds to the linear regression line (S statistic).
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According to our preliminary analysis on in situ temporal σ and SM
samples, WG should at least behave differently with respect to the
other networks (much narrower distribution of SM values, skewed to
the dry section of the range and lowerσ variability). However, no signif-
icant differences are found in the temporal statistics.

Differences can be appreciated more easily through qualitative in-
spection of scatter plots (Fig. 9). In Yanco and MB plots, the increase
in ubRMSD is observed in the more dispersed cloud of points, although
the distribution appears slightly closer and more symmetric around the
1:1 line. In the case of LW, we can see that for drier SM conditions
(b0.15m3/m3), disaggregated values are closer to in situ values and be-
come equally distributed around the 1:1 line. Since LW climate is sub-
humid, evapotranspiration processes aremainly energy-driven; howev-
er, we can expect them to bemoisture-driven during periodswith lower
water availability and higher temperatures like summer. This is con-
firmed in Fig. 10, which shows the scatter plot for LWsummers. Regard-
ingWG, the scatter plots show nomajor differences between L3 and L4
data. This is consistent with the very low spatial and temporal in situ σ:
DISPATCH is operating at the limit of its nominal range at 1 km resolu-
tion and the amount of information obtained is not more important
than the uncertainty introduced. It outlines also the importance of qual-
itative assessments: although LW and WG show similar global spatial
and temporal statistics, C4DIS disaggregated fields, which are not of in-
terest in WG, are valuable in the case of LW summers.
Fig. 10. Scatterplot of L3 SM (1st row) and L4 disaggregated SM (2nd row) against in situ SM
samples for LWnetwork for summer periods (June, July and Augustmonths of years 2010 to
2014). Dashed line represents the 1:1 slope and the solid line corresponds to the linear
regression line (S statistic).
5.5. Analysis of the STD and COUNT datasets

As introduced in Section 3.6, the STD and COUNT datasets can
help derive conclusions on the quality of the SM_HR values. In this
section, we evaluate spatial and temporal statistics on SM samples
with different corresponding STD and COUNT values. We first select
the samples with values falling inside a given STD or COUNT range of
values; then, we compute statistics on the in situ, L3 and L4 values for
those samples. This analysis is conducted onMB and Yanco networks
as USDA networks still show low statistics after filtering for STD and
COUNT values. Herein, we use the gain metrics introduced in
Section 4.4, which will simplify the task of comparison between
bins of STD and COUNT.

Table 6 shows spatial statistics for MB and Yanco divided in 3 ranges
of STD (b0.03 m3/m3, 0.03–0.07 m3/m3, N0.07 m3/m3). Note that the
total number of days analyzed drops drastically when STD or COUNT
Please cite this article as: Molero, B., et al., SMOS disaggregated soil moistu
results, Remote Sensing of Environment (2016), http://dx.doi.org/10.1016/j
filtering is applied to spatial metrics. This is as expected since for a
given time stamp, the samples have STD and COUNT values that belong
to different bins andwe need at least 5 samples in the same bin to com-
pute statistics. C4DIS SM dataset exhibits the lowest correlation (S and
R) and the highest error (ubRMSD)with in situwhenmost of the pixels
have high STD (N0.07m3/m3). This seems plausible since large ubRMSD
values can be produced by forcing events (rain, irrigation) in the 3-days
windowof DISPATCH, so thefinal SM_HRvalueswould contain high un-
certainty. We cannot generalize any behavior in performances for the
medium and lower STD ranges (b0.07 m3/m3) since MB and Yanco
show different trends. If we consider only Yanco, which is a much
more homogeneous area in terms of climate and landscape properties,
we can conclude that, regardless of the bias, the rest of spatial metrics
are better as STD gets lower. Whether this is applicable to other homo-
geneous areas or not need to be the subject of additional studies.
re product at 1km resolution: Processor overview and first validation
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Table 6
Spatial statistics as a function of the values of the STD dataset for MB and Yanco areas from 01/06/2010 to 31/05/2011. Best statistics are outlined and in italics. Last line of Yanco table (in
bold) should not be considered because it refers to only one day of statistics.

STD Yanco MB

GEFFI GACCU GROBU GubRMSD Ndays GEFFI GACCU GROBU GubRMSD Ndays

b0.03 0.27 0.24 −0.22 0.05 11 0.15 0.11 −0.12 −0.04 45
0.03–0.07 0.13 0.06 −0.11 −0.10 39 0.17 0.05 −0.03 −0.07 108
N0.7 −0.47 −0.12 −0.42 −0.57 1 −0.02 −0.09 0.05 −0.28 16

Table 7
Spatial statistics as a function of the COUNT dataset for MB and Yanco areas from 01/06/2010 to 31/05/2011. Best statistics are outlined and in italics.

COUNT Yanco MB

GEFFI GACCU GROBU GubRMSD Ndays GEFFI GACCU GROBU GubRMSD Ndays

1–8 0.16 0.08 −0.16 −0.16 69 0.16 0.07 −0.05 −0.11 143
9–16 0.12 0.16 −0.15 −0.07 22 0.14 −0.01 −0.12 −0.15 51
17–24 0.44 0.29 −0.08 0.06 11 0.35 0.15 −0.24 −0.04 13
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Spatial statistics are also filtered for COUNT values (Table 7). In this
respect, statistics are better for large values of COUNT (17–24 datasets).
However, the number of days used in this computation is low in the
same line, if possible so the results may not be accurate.

Regarding the temporal domain, Yanco shows a deterioration of the
metrics as STD increases (Table 8), which is consistent with the prelim-
inary in situ spatial analysis andwould bemainly due to the uncertainty
added when precipitation or irrigation take place in the 3-days window
of DISPATCH. Such trend is not revealed in the MB data (same table),
and conclusions are difficult to be derived given the high heterogeneity
within the network.

Concerning the COUNT dataset, Table 9 clearly shows that
temporal statistics improve as COUNT increases. This seems to
confirm that the methodology of averaging of the disaggregated
ensemble helps to reduce random uncertainties in the temporal
domain.

6. Conclusions

The C4DIS processor is the new SMOS L4 processor of the French
ground segment CATDS, which provides global maps of disaggregated
Table 8
Temporal statistics as a function of the STD dataset for MB and Yanco areas from 01/06/2010 t

STD Yanco

GEFFI GACCU GROBU GubRMSD Nsam

b0.025 0.18 0.04 −0.30 −0.06 472
0.025–0.040 0.04 −0.06 −0.14 −0.11 813
0.040–0.055 0.03 −0.04 −0.41 −0.18 192

Table 9
Temporal statistics as a function of the COUNT dataset for MB and Yanco areas from 01/06/201

COUNT Yanco

GEFFI GACCU GROBU GubRMSD Nsamp

1–8 0.08 −0.06 −0.21 −0.15 965
9–16 0.17 −0.02 −0.18 −0.12 386
17–24 0.22 0.19 0.35 0.01 126

Please cite this article as: Molero, B., et al., SMOS disaggregated soil moistu
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SM at 1 km resolution. The C4DIS processor is the operational version
of the DISPATCH prototype (Merlin et al., 2012, 2013). DISPATCH disag-
gregates LR SM observations using HR soil temperature data. It models
the physical link between soil temperature, evaporation and moisture
with a semi-empirical SEE model and a first-order Taylor series expan-
sion around the SM observation. The soil temperature is derived from
the combination of LST, NDVI and elevation information. The C4DIS pro-
cessor uses the SM dataset of the SMOS 1-day L3 CLF31A/D product
from CATDS, the LST dataset of the MODIS MOD11A1 and MYD11A1
products from LP DAAC services, the NDVI dataset from the MOD13A2
product from LP DAAC services, and the elevation dataset from the
GTOPO30 product from the USGS Eros Data Center.

In this study, the C4DIS products were evaluated for four different
geographical areas: the Murrumbidgee validation network and the
Yanco area for the period 06/2010 to 05/2011, and the Little Washita
andWalnut Gulch networks for the period 01/2010 to 12/2014. The ob-
jectivewas to provide a first assessment of the processor under different
climatic and land conditions. The performancewas assessed by compar-
ing the disaggregated (L4) and non-disaggregated (L3) SM datasets
against the in situ measurements in both the spatial and temporal
domains. The in situ SM data was statistically analyzed beforehand in
o 31/05/2011. Best statistics are outlined and in italics.

MB

ples GEFFI GACCU GROBU GubRMSD Nsamples

0.16 0.03 −0.81 −0.06 904
0.11 0.01 0.03 −0.10 1459
0.13 0.06 −0.12 −0.03 475

0 to 31/05/2011. Best statistics are outlined and in italics.

MB

les GEFFI GACCU GROBU GubRMSD Nsamples

0.14 0.02 0.08 −0.08 1910
0.19 0.02 0.04 −0.09 737
0.21 0.15 0.44 −0.03 191
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order to predict the suitability of the C4DIS processor for each area. We
also evaluated the output COUNT and STD datasets as potential sources
of information for quality assessment.

The evaluation of the disaggregated SM dataset in Murrumbidgee
and Yanco brought results in coherence with previous versions of
DISPATCH (Malbéteau et al., 2016; Merlin et al., 2012), and presented
improvements on the spatial correlation in the range 0.09–0.17. Similar
enhancements were present in the temporal domain. Additionally,
C4DIS SMmaps succeeded to reveal spatial heterogeneities (rivers, irri-
gation areas, floods).

Little Washita and Walnut Gulch showed very low spatial metric
values for both non-disaggregated and disaggregated SM fields, though
disaggregation slightly improved the statistics. For the Little Washita,
the scatter plots revealed that the performances were better in the dry
section of the SM range (b0.15 m3/m3) and during summers, meaning
that the improvement in spatial representation was possible under
moisture-driven evaporation periods. Visual assessment of C4DIS SM
maps showed that the disaggregated product was capable of revealing
the presence of water bodies in the surrounding areas namely lakes.

For the Walnut Gulch network, the poor spatial correspondence
with in situwas easily explained by the preliminary statistical analysis
that we conducted on in situ SMdata: this revealed very low spatial var-
iability (mean spatial σ was equal to 0.03 m3/m3), which is one of the
essential conditions for a good performance of the algorithm. The eval-
uation of this network brought to view that the algorithm needs to be
improved to adapt to all types of soil. AlthoughWalnut Gulchwatershed
also has amoisture-controlled evaporative profile (semi-arid to arid cli-
mate) like the Australian areas, the soil is mainly sandy with high infil-
tration rates, which obstructs the detection of surface SM variations by
the algorithm.

When evaluating the temporal behavior of the (non-disaggregated
and C4DIS) satellite SM series, we found an improvement of the slope
of the regression line betweenC4DIS and the in situdata. The correlation
was slightly hampered, especially in LW and WG, and the standard de-
viation of the differences also increased. This was likely to be caused by
the increase in uncertainty associated with the use of multi-satellite
data.

With the aim of making the C4DIS products useful in a global per-
spective, we evaluated how the other two output datasets, COUNT
and STD, could help in the future definition of a quality flag.We showed
that for a homogeneous area like Yanco, spatial and temporal metrics
were better as STD decreased. Consistently, large COUNT values helped
to decrease the random uncertainties and they improved temporal sta-
tistics. In this area, heterogeneity is mainly driven by precipitation and
irrigation, and STD was directly linked to such events. On the contrary,
STD and COUNT could not give sufficient information for quality control
in more heterogeneous areas (like the entire Murrumbidgee), so we
concluded that output C4DIS datasets must be combined with ancillary
information like precipitation or other heterogeneity-related data
sources to implement a good quality flag field.

In conclusion, the C4DIS processor performswell in regionswith SM
spatial variability mainly produced by external forcing agents (precipi-
tation or irrigation). Additionally, the degree of variability must be
enough so the application of a disaggregation technique is advisable.
These two characteristics are mainly conditioned by the climate
(semi-arid), soil properties (withmoderate drainage), and land proper-
ties (low topography, quasi-homogeneous land cover). The proper per-
formance of the processor can be predicted by looking at the in situ SM
variability and assessing qualitatively the enounced characteristics. The
C4DIS SM products can be evaluated by applying ordinary spatial and
temporal statistics, visual inspection of maps as well as using the STD
and COUNT datasets on homogeneous areas. In the future, including
meteorological forcing (solar radiation, air temperature, wind speed
and air humidity at 2 m; Stefan et al., 2015), precipitation (Djamai
et al., submitted for publication), soil texture (Merlin et al., submitted
for publication) and solar exposure (Malbéteau et al., submitted for
Please cite this article as: Molero, B., et al., SMOS disaggregated soil moistu
results, Remote Sensing of Environment (2016), http://dx.doi.org/10.1016/j
publication) as ancillary datawill help improveDISPATCH and elaborate
a quality control dataset that will enlarge the applicability areas of the
processor.
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