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Wetlands are valuable ecosystems for maintaining biodiversity, but are vulnerable to climate change and land
conversion. Despite their importance, wetland hydrology is poorly understood as few tools exist to monitor
their hydrologic regime at a landscape scale. This is especially true whenmonitoring hydrologic change at scales
below 30 m, the resolution of one Landsat pixel. To address this, we used spectral mixture analysis (SMA) of a
time series of Landsat satellite imagery to reconstruct surface-water hydrographs for 750 wetlands in Douglas
County, Washington State, USA, from 1984 to 2011. SMA estimates the fractional abundance of spectra
representing physically meaningful materials, known as spectral endmembers, which comprise a mixed pixel,
thus providing sub-pixel estimates of surfacewater extent. Endmembers forwater and sage steppewere selected
directly from each image scene in the Landsat time series, whereas endmembers for salt and wetland vegetation
were derived from amean spectral signature of selected dates spanning the 1984–2011 timeframe. This method
worked well (R2 = 0.99) for even small wetlands (b1800 m2) providing a wall-to-wall dataset of reconstructed
surface-water hydrographs for wetlands across our study area. We have validated this method only in semi-arid
regions. Further research is necessary to extend its validity to other environments. This method can be used to
better understand the role of hydrology inwetland ecosystems and as amonitoring tool to identify wetlands un-
dergoing abnormal change.

© 2016 Published by Elsevier Inc.
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1. Introduction

Wetlands are among the most biodiverse ecosystems in the world,
due largely to their dynamic hydrology (Mitsch & Gosselink, 2007).
The hydroperiod, whichwe define as the pattern of flooding and drying
within a wetland, is the most important determinant in the establish-
ment andmaintenance of specificwetland habitat types and the species
that they support (Babbitt, 2005; Correa-Araneda, Urrutia, Soto-Mora,
Figueroa, & Hauenstein, 2012; Mitsch & Gosselink, 2007; Tavernini,
Mura, & Rossetti, 2005). Despite the importance of the wetland hydro-
period, it is not well understood (Mitsch & Gosselink, 2007), in part be-
cause it is time-consuming and expensive to monitor changes in
wetland hydrology using field measurements. Landscape-level hydro-
period data are scarce because tracking changes in wetlandwater levels
over weeks and months requires the installation of expensive monitor-
ing equipment or visiting sites many times a year for several years
(Ryan, Palen, Adams, & Rochefort, 2014). However, without broad-
scale long-term hydroperiod data it is not possible to adequately
195-2100, United States.
monitor changes in the hydrologic regime of wetlands to understand
general patterns across different wetland types and to distinguish the
difference between natural and abnormal changes to wetland hydrol-
ogy. Furthermore, without adequate baseline data of the wetland hy-
droperiod, it is not possible to understand how changes in
temperature and precipitation will impact the hydrology, structure
and function of wetlands under climate change (Arnell et al., 2001;
Poiani, Johnson, Swanson, & Winter, 1996; Ryan et al., 2014; Werner,
Johnson, & Guntenspergen, 2013).
1.1. Wetland definition

We define wetlands using the United States Army Corps of
Engineer's definition of wetlands as “those areas that are inundated or
saturated by surface or ground water at a frequency and duration suffi-
cient to support, and that under normal circumstances do support, a
prevalence of vegetation typically adapted for life in saturated soil con-
ditions.” (Environmental Laboratory, 1987) Shallow lakes and lake
fringes meet the above definition within our study area, and therefore,
this analysis includes both large and small waterbodies.
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1.2. Remote sensing of wetland surface water dynamics

Remote sensing has provided a usefulmeans to study the changes in
wetlands through spatially explicit, cost- and time-effective data
(Ozesmi & Bauer, 2002). However, mapping the hydroperiod of wet-
lands offers several challenges to remote-sensing analysts. The core
challenge is the trade-off between temporal and spatial resolution of re-
motely sensed imagery. Currently, no one sensor has both the temporal
and spatial resolution to detect the fine-scale patterns of wetland
change over time, particularly for small wetlands (Gallant, 2015;
Tiner, 2009; Wulder, Hall, Coops, Steven, & Franklin, 2014).

Landsat imagery with moderate spatial and temporal resolution has
widely been used for surfacewater mapping through hard classification
methods (sensu Foody, 2000), which classify pixels as either water or
non-water. Commonly used classification methods include thematic
classification, multi-band indices (e.g. normalized difference water
index, NDWI (McFeeters, 1996)), single band thresholding, and spectral
mixture analysis (Ozesmi & Bauer, 2002). These methods have been
successfully applied to map surface water changes of large lakes and
wetlands (Adams & Sada, 2014; Bryant & Rainey, 2002; Castaneda &
Herrero, 2005; Hui, Xu, Huang, Yu, & Gong, 2008; Liu et al., 2013;
Sener, Davraz, & Sener, 2010). However, wetlands that express changes
in surface water extent at fine scales (below 30 m – the resolution of 1
Landsat pixel) and small wetlands, whichwe define aswetlands smaller
than 5 ha, have received considerably less attention (Ryan et al., 2014).
This is an issue because inmany regions of theworld themajority of the
landscape is composed of small wetlands (Downing et al., 2014; Gilmer,
Work, Colwell, & Rebel, 1980; Halabisky, Moskal, & Hall, 2011).

For high resolutionmapping of wetlands analysts typically use high-
resolution aerial imagery (b1 m), but repeat coverage is lacking (Tiner,
1990). This has limited high-resolution remote sensing of wetlands to
detecting change between a few dates (Adams & Sada, 2014; Dyke &
Wasson, 2005; Hui et al., 2008; Liu et al., 2013; Murkin, Murkin & Ball,
1997; Niemuth, Estey, Reynolds, Loesch & Meeks, 2006). Although use-
ful, change detection of wetlands under these limitations does not pro-
vide enough detail for understanding patterns and dynamics of annual
and inter-annual wetland response,much less to determine ifmeasured
changes in the surface water extent represent natural year-to-year var-
iability, or abnormal changes in wetland hydrology. Even several dates
of aerial imagery cannot provide enough information to determine the
hydrologic regime of a particular wetland necessary for monitoring or
future climate modeling.

In order to address this limitation several researchers have used one
or more soft classification techniques such as multi-band indices and
single band tracking to predict sub-pixel surface water estimates of
Landsat imagery (Beeri & Phillips, 2007; Frohn et al., 2012;
Gómez-Rodríguez, Bustamante, & Díaz-Paniagua, 2010; Huang, Peng,
Lang, Yeo, & McCarty, 2014; Huang, Dahal, Young, Chander, & Liu,
2011; Reschke & Hüttich, 2014; Rover, Wylie, & Ji, 2010b). Soft classifi-
cationmethods do not assign a pixel to one class, but instead provide an
estimate of classmembership and can be used tomeasure the sub-pixel
surface water area through regression modeling and classification and
regression trees (Foody, 2000). However, these methods require a
large amount of training data from field data or higher resolution imag-
ery from the same time period and are not directly transferable to other
study areas (but see Rover, Wylie, & Ji, 2010a).

Spectral mixture analysis (SMA) is a physically based technique
which can be used to estimate the percent cover of surface water with-
out the need for extensive training data. SMA estimates the fractional
abundance of spectra representing physically meaningful materials,
known as spectral endmembers, which comprise a mixed pixel, thus
providing sub-pixel estimates of surface water extent (Adams, Smith,
& Johnson, 1986; Adams & Gillespie, 2006). While SMA provides sub-
pixel fractions of surface materials, it is commonly used to drive a clas-
sification by converting mixed pixels into water or non-water through
selection of a threshold value (Shanmugam, Ahn, & Sanjeevi, 2006).
Frohn et al. (2012) used SMA to identify wetlands at sub-pixels scales,
but did not use it to estimate the percent cover of surface water or
track changes to surface water through time.

While sub-pixel methods can identify the percent cover of surface
water they do not provide the location of surface water within a pixel,
which makes tracking change over time challenging. To remedy this
issue, researchers have either tracked changes of individual pixels
(Beeri & Phillips, 2007; Collins et al., 2014; Gómez-Rodríguez et al.,
2010; Reschke & Hüttich, 2014) or summarized changes for all pixels
within an entire landscape (Beeri & Phillips, 2007; Huang et al., 2014;
Huang et al., 2011). Table 1 summarizes the key papers that meet one
ormore of the criteria necessary for high resolutionmapping ofwetland
surface water dynamics.

What is almost entirely missing from the methods summarized in
Table 1 is the ability to track changes to individual wetlands and the
temporal detail tomonitor both seasonal and long-term changes inwet-
land hydrology. Only one study that achieved this was Gómez-
Rodríguez et al. (2010) in which the authors measured changes in the
flooding duration of wetlands by examining how pixel reflectance of
the near infrared band changed through time for over 800 temporary
ponds spanning a 23-year time period in the Doñana National Park,
Spain. Because the authors co-registered images to correct for small
pixel misalignments between image scenes they could track changes
of surface water extent for pixels within an individual wetland showing
a significant trend of hydroperiod shortening likely due to groundwater
depletion from agricultural irrigation. However, a challenge with track-
ing single pixels through time is the labor-intensive and imperfect pro-
cess of pixel-to-pixel registration and atmospheric correction for multi-
date analysis (Dai, 1998; Song, Woodcock, Seto, Lenney, & Macomber,
2001; Wyawahare, Patil, & Abhyankar, 2009). For some projects, it is
not feasible to perform these pre-processing steps on hundreds of
images.

We sought to develop a method that mapped surface water dy-
namics at temporal and spatial scales similar to Gómez-Rodríguez
et al. (2010), but with minimal pre-processing. Additionally, we
aimed to use this data to reconstruct individual wetland surface
water hydrographs, which chart the pattern of flooding within a
wetland over time. Here we use the term hydrograph to refer to tem-
poral changes in surface-water extent (area) within a wetland,
rather than temporal changes in water depth. This is due to the diffi-
culty of determining water depth from a pixel composed of multiple
surface materials.

The goal of this project was to develop a semi-automated tool to
map and monitor wetland dynamics for individual wetlands while still
covering a broad landscape. Specific objectives of this research were to:

1.) Develop a method with minimal pre-processing to estimate
surface-water extent for wetlands at scales below 30 m.

2.) Reconstruct individual wetland hydrographs from 1984 to 2011.
3.) Determine if hydrographs could be used to classify wetland types

and monitor wetland change over time.

2. Study area

We chose Douglas County, Washington (WA), located in the Colum-
bia Plateau ecoregion in the Northwest of the United States as our study
area (Fig. 1) as wetlands are abundant and representative of semi-arid
ecosystems common to Western North America. Douglas County is
4714 km2 in size with non-irrigated farming and ranching being the
dominant land uses. It is a semi-arid sage steppe ecosystem, receiving
an average of 29 cm of precipitation a year. Douglas County is bordered
by the Columbia River with a low elevation of 180 m near the river and
rising to an elevation of 1220m at the top of the plateau. In general, the
surface topography of the plateau is subtle and free from shadows re-
solved at the 30-m Landsat scale. Isolated, depressional wetlands are
the dominant wetland type. Wetlands are typically shallow and do not



Table 1
Summary of key papers related to this study's research objectives (the current paper is added for completeness). In the ‘key details’ column the codes relate to the following criteria: (1.)
Spatial resolution of surface water measurement (2.) Scale used for tracking change: wetland, pixel or landscape (3.) Temporal resolution: seasonal or long-term (4.) Application.

Study Study area Data used # of image
dates/time
span

Method Key details

1. Gómez--
Rodríguez et al.
(2010)

Doñana
National Park,
Spain

Landsat TM 174 dates
1984–2007

Developed a linear model using reflectance of near IR band to
predict subpixel fractions of water cover.

1.) b30 m
2.) Pixel
3.) Seasonal and long-term
4.) Classified wetland types by hydro-

period and monitored wetland
change over time.

2. Beeri & Phillips
(2007)

Missouri
Couteau, USA

Landsat TM 31 dates
1997–2005

Developed a regression model to identify surface water for
waterbodies greater than a half a Landsat pixel.

1.) b30 m
2.) Pixel and landscape
3.) Seasonal and long-term
4.) Identified shifts in the distribution

of hydroperiod classes within and
between years

3. Huang et al.
(2011)

Cottonwood
Lake, North
Dakota, USA

Landsat
TM, aerial
photos,
lidar

26
(Landsat
TM),
11 (aerial
photos),
1 (lidar)

Developed a complex regression model using Landsat, Palmer
Drought Severity Index, and aerial imagery to model surface water
for wetlands as small as 0.8 ha.

1.) b30 m
2.) Wetland and landscape
3.) Seasonal and long-term
4.) Tracked changes to surface water

from modeled result, which is
driven by PDSI.

4. Huang et al.
(2014)

Chesapeake
Bay
watershed,
USA

Landsat
TM, lidar
intensity

4 dates

2005–2010

Developed a regression model using multiple variables including
tasseled cap indices, NDVI, NDWI and Modified NDWI, and an
infrared-visible ratio index to predict sub-pixel wetland
inundation maps.

1.) b30 m
2.) Landscape
3.) N/A
4.) Tracked changes in inundation for a

wet, dry, and average year and
summarized at the landscape scale.

5. Reschke &
Hüttich (2014)

Western
Turkey

Landsat TM 3 dates
2002–2003

Mapped sub-pixel fractional wetland type (including water) using
a Random Forest algorithm

1.) b30 m
2.) Pixel
3.) Seasonal
4.) Classified wetlands by type (i.e.

marsh, mudflat, river, water), but
not by hydroperiod

6. Collins et al.
(2014)

Prairie
Potholes, USA

Landsat TM 35 dates

2008–2011

Used a band ratio (bands 5, 3) to classify pixels as water,
non-water.

1.) 30 m
2.) Pixel, wetland, landscape
3.) Seasonal and long-term
4.) Measured hydroperiod length of

playa wetlands for 3 years and
compared it to surrounding land
use.

7. Frohn et al.
(2012)

Ohio, USA Landsat TM 2 dates
2002–2003

Developed a spectral mixture analysis partial unmixing model to
detect sub-pixel inundation levels.

1.) b30 m
2.) Pixel
3.) N/A
4.) Identified isolated wetlands as

small as 1/2 Landsat pixel.
8. Rover et al.

(2010a)
Alaska, USA Landsat

TM, SPOT-5
One date
N/A

Developed a self-trained regression tree using single band and
multi band indices to map sub-pixel percent-water maps and
compared results to other sub-pixel methods.

1.) b30 m
2.) Pixel
3.) N/A
4.) N/A

9. Niemuth,
Wangler, &
Reynolds
(2010)

Prairie
Pothole
Region, USA

Aerial
photos

20 dates
1987–2006

Used a combination of supervised classification and photo
interpretation to map surface water area within wetlands.

1.) b8 m
2.) Wetland
3.) Long-term
4.) Examined spatiotemporal patterns

of wetland inundation.
10. Our method Douglas Co,

WA, USA
Landsat TM
Aerial
photo

230 dates
1984–2011

Developed a 4 endmember spectral mixture analysis model to
measure sub-pixel wetland inundation.

1.) b30 m
2.) Wetland
3.) Seasonal and long-term
4.) Classified wetland types by hydro-

period and monitored wetland
change over time.
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support floating vegetation. Wetland vegetation is restricted to areas
that are seasonally flooded, often forming a ring around wetlands that
are semi-permanently or permanently flooded. Refill of wetlands in
this area is driven by snowmelt occurring in late winter or early spring.
As the summer season progresses temperatures increase and precipita-
tion levels decline. Wetlands begin to dry out during this time, and
many are completely dry by the end of the summer. Short-term rainfall
events are usually localized in nature and occur sporadically during the
spring and summer months. Although the direct causes of hydrologic
change are not clear due to lack of research, wetlands in the Columbia
Plateau generally are known to be stressed from impacts caused by
farming, grazing, and reduced groundwater levels.

3. Materials

3.1. Aerial imagery

We used two digital ortho-imagery (2006 and 2011) with 1-m pixel
resolution freely available through the National Agricultural Inventory
Program (NAIP) rectified to true ground +/− 6 m (Table 2). The 2006



Fig. 1. a.) Study area, Douglas County, Washington state, USA. b.) Endmember locations. The background image is a Landsat TM 5 scene acquired on 07 Jul. 2011 and was clipped to our
study area. c.)The graph represents the four endmembers used; water (blue), salt (orange), wetland vegetation (green), sage steppe (black). d.) Endmember graphs for salt and wetland
vegetation from selected dates spanning the 1984–2011 timeframe used to derive a mean spectral signature for SMA. The graphs for sage steppe and water represent the image
endmembers from the same date selection and illustrate the spectral variability across multiple image dates, but were not used for SMA. Instead, endmembers for water and sage steppe
were selected directly from each image scene in the Landsat time series.
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digital aerial image was a 3-band image (red, green, blue) and was ac-
quired early in the summer of 2006 (exact date unknown), a wet year,
when wetland water levels were high (USDA-FSA Aerial Photography
Field Office, 2006). The 2011 aerial imagery was a 4-band image (NIR,
red, green, blue) and was acquired between 06 Jul 2011 and 07 Jul
2011 (USDA-FSA Aerial Photography Field Office, 2011).

3.2. Landsat satellite imagery

Wedownloaded230 Landsat ThematicMapper 5 satellite images ac-
quired between 1984 and2011 from theUnited States Geologic Services
GLOVIS website (http://glovis.usgs.gov/) using the batch download tool
for our time series analysis. Our study area fell on two Landsat scenes,
path 45 row 27 and path 44 row 27. Each image was visually assessed
for quality, and only cloud-free images were chosen. All downloaded
images were processed as Level 1 T terrain-corrected products. Because
most wetlands in our study area freeze in the winter months and may
be covered in snow, only snow-free images acquired between April 1
and October 30th were selected (Table 2).

4. Methods

We identified wetlands in our study area using an object-based
image analysis classification of high-spatial-resolution aerial photogra-
phy (Sections 4.1). For each identified wetland, we estimated the sub-
pixel surface water area (m2) from a four-endmember spectral mixture
analysis (SMA) of Landsat TM imagery (Sections 4.2.1, 4.2.2). We then
validated the SMA model for 750 wetlands by comparing surface
water area fromone Landsat image towetland surfacewater area delin-
eated from a matching date of high resolution aerial imagery

http://glovis.usgs.gov


Table 2
Materials.

Datasets Spatial resolution Temporal resolution Source

2006 digital aerial imagery 1 m 1–3 years United States Department of Agriculture, National Agriculture Inventory Program
2011 digital aerial imagery 1 m 1–3 years United States Department of Agriculture, National Agriculture Inventory Program
Landsat TM 5 30 m 16 days United States Geological Survey http://glovis.usgs.gov/
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(Section 4.2.3). Next, we reconstructed surface water hydrographs for
all wetlands using the time-series of Landsat imagery from 1984 to
2011 (Section 4.3). Finally, we explored the dataset to determine if it
could be used as a tool to classify wetlands by their hydrologic regime
and monitor wetlands (Section 4.3). Fig. 2 provides a flowchart of
these steps.
4.1. Data pre-processing

Weused a high-resolutionwetland classification for Douglas County
to summarize spectralmixture results for individualwetlands. Thewet-
land classification was created using object-based image analysis of
2006 digital aerial images with 1-m pixel resolution, freely available
through the United States Department of Agriculture, National Agricul-
ture Inventory Program (NAIP). The classificationwas created through a
rule based algorithm using wetland features, such as color, shape and
texture determined frommanual photo interpretation and is described
in Halabisky et al. (2011). The classification had an overall accuracy of
89% and a minimum mapping unit of 200 m2.

We updated the wetland classification created from 2006 aerial im-
agery to classify wetlands that were dry or had been plowed since that
time by adding the NAIP imagery from 2011 to the object based image
analysis algorithm. In addition, we manually edited the updated classi-
fication to correct and remove misclassified wetland polygons (~40 h).
Mostmisclassification errors were due to small shadows, rock outcrops,
or road sections that were dark in color and were spectrally similar to
water. With the additional date of imagery our accuracy minimally im-
proved by 1% to an overall accuracy of 90.3% (k = 0.85) (Table 3). The
confusion matrix was created using a stratified random sample of 177
points within the wetland classification and 100 additional points in
the background matrix.

All wetland components (i.e. emergent vegetation, open water)
were merged to form wetland complexes. Wetland complexes that
consisted only of wetland vegetation were not used for this analysis.
Fig. 2. Flowchart of
From this classification, we selected wetlands larger than 600 m2. We
buffered complexes by 30 m to allow for small spatial shifts between
Landsat image scenes.

4.2. Objective 1: develop amethodwithminimal pre-processing to estimate
surface-water extent for wetlands at scales below 30 m

4.2.1. Spectral mixture analysis
Spectral mixture analysis (SMA) is a method used to identify the

fractional abundance of distinctive spectra, known as spectral
endmembers, within the spectrum of a mixed pixel (Adams et al.,
1986; Adams & Gillespie, 2006). Spectral endmembers represent sam-
ples of significant physical scene components and are selected from
spectral measurements on the ground, spectral libraries (“reference”
endmembers) or from the image itself (“image” endmembers). Samples
measured on the ground generally are themselves mixtures and there-
fore do not yield “pure” spectral signatures of the material they repre-
sent. However, at image scales the spectral heterogeneity is
commonly reduced and well-chosen spectra are sufficient for SMA
(Adams & Gillespie, 2006). SMA has been shown to work well in
water environments and in areas where there is high spectral contrast
between classes (Shanmugam et al., 2006).

Mathematically, SMA can be expressed as:

DNi ¼
X

j

F jDNi; j þ ri and
X

j

F j ¼ 1 ð1Þ

where DNi is the measured value of a mixed pixel in band i; DNj is the
measured value of each endmember; Fj is the fraction of each
endmember; r is the root mean square (rms) residual that accounts
for the difference between the observed and modeled values (Adams
& Gillespie, 2006).

We developed our SMA model using ENVI software version 4.8
(Exelis Visual Information Solutions, Boulder, Colorado). For every
Landsat image we used all bands, except band 6, the thermal infrared
method steps.

http://glovis.usgs.gov


Table 3
Accuracy assessment forwetland classificationwith OBIA andNAIP imagery (overall accu-
racy = 90.3%, k = 0.85) in Douglas County, WA, 2011).

Reference data

Classification
data

Open
water

Emergent
vegetation

Background Total User's
accuracy

Open water 68 68 100.0%
Emergent vegetation 4 82 86 95.3%
Background 23 100 123 81.3%
Total 72 105 100 277
Producer's accuracy 94.4% 78.1% 100.0%

Overall accuracy 90.3%
k 0.85
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band. The image endmembers were selected from areas mapped as
water, sage steppe, salt, and wetland vegetation. Salt was chosen be-
cause many of the wetlands form a salt crust when dry. Image
endmembers for water and sage steppe were selected using specific
geographic coordinates determined in thefield based on our knowledge
of the landscape and selected directly from each Landsat image (Fig. 1).
The benefits of selecting an endmember from the image is that atmo-
spheric correction is not required as long as the geographic extent is
not too broad to have significant variation in atmospheric effects
(Aspinall, Marcus, & Boardman, 2002). The water endmember was se-
lected from a deep portion of the Columbia River behind the Grand Cou-
lee Dam (Fig. 1). This part of the Columbia River has little to no flow and
is low in suspended sediment therefore represents a reliable signature
for water that remains stable throughout the year.

Spectrally pure pixels for salt and wetland vegetation are not appar-
ent in every image. Therefore, we estimated image endmembers for salt
andwetland vegetation using themean spectral signature derived from
an early summer and late summer image for three years: 1984, 1994, &
2004. Six images in total were used to calculate the mean endmember
values for each of the six bands (29 Aug 1984, 28 Sep 1984, 24 Jul
1994, 26 Sep 1994, 30 May 1994, 30 Mar 2004, 21 Sep 2004) (Fig. 1).
The 29 Aug 1984 endmember for salt was omitted because there was
not a spectrally “pure” pixel for that scene. Therefore, the salt
endmember was sampled from five images instead of six.

We performed no atmospheric correction because we selected our
water endmember directly fromeach image in the time series, minimiz-
ing error in the endmember fractions caused by atmosphere. However,
becausewe used average spectra for two of our endmemberswe cannot
completely remove error from endmember fractions caused from
changes in atmosphere between image dates. A sum-constrained linear
spectral mixture model (for ENVI, an arbitrary but large sum
constraint = 10,000 was specified, corresponding to the endmember
fraction summing to ~1.00) was run on all scenes. Only the fractional
abundances for water and the root mean square (rms) error were
exported as a two-band image. Proportion of surface water generally
ranged from b0 to 1.0, with some surface water values above 1.0. Any
score below zero represents pixels with no surface water, while scores
of 1.0 or above represent pixels composed entirely of surface water.
We ran our SMA model on all 230 Landsat image scenes using batch
processing in ENVI IDL (Exelis Visual Information Solutions, Boulder,
Colorado). Total processing time took roughly 4 h.

4.2.2. Estimating surface water extent for wetlands
In order to estimate the surface water extent for wetlands we first

converted all pixels from the SMA output to sub-pixel surface water
area estimates (m2). To do this we multiplied the fractional abundance
of surfacewater for each pixel by the area of the pixel (i.e. 900m2). This
provided a sub-pixel surface water area estimate for each pixel in the
image scene (Fig. 3).

Next, we summarized the sub-pixel surface water area estimates for
each wetland using the buffered high-resolution wetland classification
derived from 2006 and 2011 aerial imagery. The buffered wetland poly-
gonswere used to select (known as “extract by polygon” in ArcGIS) cor-
responding sub-pixel surfacewater area estimateswhichwere summed
for each wetland using python tools in ArcGIS 10.1 (ESRI, Redland, Cal-
ifornia). Mathematically this can be expressed as:

Xn

i¼1

Fi � a ð2Þ

where F is the fractional abundance of water for pixel i; a is the area of
one Landsat pixel (i.e. 900 m2) and n is the number of pixels selected
for each wetland polygon.

4.2.3. Validation
We used the 07 Jul 2011 Landsat image to validate our four-

endmember SMAmodel. We compared SMAwetland surface water ex-
tent for this image to a reference dataset created throughmanual delin-
eation of wetlands using high-resolution aerial imagery acquired at the
same time (06 Jul 2011–07 Jul 2011). To build our reference dataset, we
used sampling with probability proportional to size to select 100 wet-
land polygons from our wetland classification. We chose this sampling
strategy for two reasons. First, we did not set a minimum mapping
unit and wanted to see how error changed across multiple wetland
sizes. Second, because wetlands b1 ha dominate the landscape an en-
tirely randomly sample of wetland polygons would result in a sample
primarily consisting of very small wetlands. The surface water extent
of wetlands in the validation dataset ranged from 0 (completely dry)
to 22.48 ha.

In order to understand error in terms of percent change we con-
verted surface water area estimates into percentages by relativizing
surface water area by the maximum inundation extent (derived
from Landsat) for each wetland. We also relativized the reference
dataset by the maximum inundation and compared it to the percent
surface water from the SMA. We plotted the residuals from the rela-
tionship between percent actual surface water extent and percent
modeled surface water extent against wetland size to see if error
changed across wetland size.

We assessed the rms output for the 07 Jul 2011 Landsat satellite
image scene to determine that the four endmember SMA model
accounted for all surface materials within each wetland polygon and
calculated the percentage of pixels with a rms error above 2 DNs. Addi-
tionally, we calculated the mean rms error for an area in the Columbia
River that represented a homogenous body of water with the assump-
tion that a model with acceptable levels of noise should have DN values
below 2 (Nichol & Vohora, 2004).

4.3. Objective 2: reconstruct hydrographs

Surface water area estimates from all images (1984–2011) were
exported for each wetland and used to reconstruct individual surface-
water hydrographs using plotting tools in R statistical software (R
Core Team, 2013).

4.3.1. Validation
No formal validation was performed on the reconstructed

hydrographs, because we could find only one high-resolution aerial
image acquired at the same timeas a Landsat image. Instead,we visually
compared hydrographs to annual precipitation patterns for the same
time period (1984–2011). Monthly precipitation totals came from the
PRISM Climate Group, Oregon State University, http://prism.
oregonstate.edu (created 4 May 2015), which gathers climate observa-
tions from a wide range of monitoring networks and develops spatial
climate datasets covering the conterminous United States (Daly et al.,
2008). We plotted a moving average of annual precipitation using
monthly precipitation totals as taken from PRISM data along with our

http://prism.oregonstate.edu
http://prism.oregonstate.edu


Fig. 3. Example of combining high-resolution classification and sub-pixel surface water estimates from SMA.Wetland complexes, including pond and wetland vegetation (top left) were
buffered by 30 m (red outlines). SMA results (top right) were summed for each wetland polygon to derive surface water extent. The example on the bottoms shows from left to right, a
buffered wetland, the SMA results converted to surface water area, and rms error for one wetland, 3.4 ha in size.
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reconstructed hydrograph to visually assess if wetland surface water
area generally tracked changes in precipitation.

4.4. Objective 3: use hydrographs to classify wetland types and monitor
wetland change over time

The methods above enabled us to reconstruct wetland hydrographs.
We then explored these reconstructed hydrographs to determine if the
dataset could be used as a tool to classify and monitor wetlands. We
classified wetlands in two ways. First, we categorized wetlands based
on the percentage of years a wetland dried out. We considered a wet-
land dry when surface water extent fell below a threshold of 25% as
not all years captured the exact date of 100% drying. Because the wet-
lands in Douglas County are shallow, depressional wetlands when the
surface area of water in a wetland falls below 25%, the water depth is
very shallow and the wetland is near drying. Next, we classified wet-
lands by hydroperiod type based on the seasonal patterns of an average
year of precipitation (2011) using wetland hydrologic modifiers from
the Cowardin classification scheme; temporarily flooded, seasonally
flooded, and permanently flooded (Cowardin, Carter, Golet, & Laroe,
1979). Temporarily flooded wetlands only hold water for brief periods
in the growing season. Seasonally flooded wetlands hold water for ex-
tended periods in the growing season, but are usually completely dry
by early summer. A permanently flooded wetland shows little change
in surface water area throughout the summer months.

In order to determine if hydrographs could be used to monitor wet-
land change we selected all wetlands with maximum surface water ex-
tent above 1 ha as patterns are more distinct at this scale to create a
subset of 481 wetland hydrographs. We next, organized hydrographs
with similar patterns into unique groups.We looked at historic imagery
of a sample of wetlands from each group to determine if we could dis-
tinguish the cause of the hydrograph pattern.
5. Results

5.1. Objective 1: develop amethodwithminimal pre-processing to estimate
surface-water extent for wetlands at scales below 30 m

Our method captured the surface water extent for each wetland
within our wetland classification for our 07 Jul 2011 Landsat image.
The rms image had no distinct pattern within the wetland boundaries
(Fig. 3), indicating that the SMA technique accounted for all significant
endmembers. Because the objective was to estimate surface water ex-
tent, we were not concerned about error rates outside of the delineated
wetland basins. Twenty percent of pixels within the wetland classifica-
tion had an rms error above 2 DNs. Sampling of pixels behind Grand
Coulee Dam on the Columbia River, a homogenous waterbody, had a
low rms error. Mean rms error was 0.45 DNs with all rms error for the
Columbia River falling within a range of image noise between 0.06
and 1.14 DNs.

Comparisons of the SMAwetland surfacewater estimates to the val-
idation dataset show a R2 value of 0.99 (p b 0.001) (Fig. 4) and a stan-
dard error of 0.85. Percent surface water estimates, as expected, had a
lower correlation, with a R2 value 0.85 (p b 0.001) (Fig. 4) and a stan-
dard error of 0.08. Although, still low, further examination of the resid-
uals compared to the size of the wetlands shows a larger magnitude of
error for smaller wetlands (Fig. 5)



Fig. 4. Figure on left shows the comparison ofmodeled surfacewater area as derived from SMAmethod against actual surfacewater area derived frommanual delineation of aerial photos.
Figure on right shows the percent of modeled surface water extent compared to the percent of the actual surface water extent. Percent surface water extent was derived by relativizing
wetland surface water area by the maximum flooded area derived from SMA time series.
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5.2. Objective 2: reconstruct individual wetland hydrographs from 1984 to
2011

Our technique produced detailed hydrographs for 750 wetlands
spanning a time period from 1984 to 2011, across Douglas County.
The individual hydrographs capture both long-term change and sea-
sonal change to surfacewater extentwithinwetlands and appear to fol-
low changes in precipitation levels (Fig. 6). As described above smaller
wetlands had higher error. An example of a small wetland hydrograph
is shown in Fig. 7. Thiswetlandhas amaximumsize of 1530m2. The val-
idation dataset estimated the surface water extent for this wetland (de-
rived from the 2011 aerial image) to be only 800 m2 in size, less than
one Landsat pixel. The SMA technique estimated the wetland to be
140 m2. Of all the wetlands in the validation dataset it has the highest
residual (28%). Despite this error it is clear that this wetland only fills
up during wet years (mid 1980s, mid 1990s, and a few years in the
2000s), when precipitation levels are above average.

5.3. Objective 3: use hydrographs to classify wetland types and monitor
wetland change over time

Reconstructed hydrographs show seasonal change and can be used
for classification of wetland by hydroperiod type. Fig. 8 shows the
hydrograph for three different wetland hydroperiod types based on
both long-term and seasonal patterns found within the dataset. Note,
that although the three wetlands (Fig. 8 a, b &c) are different sizes,
they are distinguished by their hydrologic regime not their size. A tem-
porarily flooded wetland (Fig. 8a) dries up early in the summer season
Fig. 5. Residuals of relationship between percent predicted surface-water extent to
percent actual surface water extent. Surface water extent as measured by the validation
dataset is plotted on the x-axis.
in an average year of precipitation and dries upmost years. A seasonally
flooded wetland (Fig. 8b) dries up between 51 to 75% of the years that
wemeasured. In an average year of precipitation it significantly declines
in surface area, but does not completely dry up. A permanently flooded
wetland (Fig. 8c) does not dry up and has little seasonal change to sur-
face water extent.

We detected five different patterns of wetland hydrographs. The
first group (318 wetlands), appeared to follow precipitation patterns
similar to the patterns evident in Figs. 6–8. The second group of
hydrographs (42 wetlands) did not track precipitation levels and had
an irregular zigzag pattern (Fig. 9). These hydrographs represent mis-
classification error carried over from the wetland classification. This hy-
droperiod pattern is likely due to shadows that were misclassified as
open water wetlands in the wetland classification. The hydrograph for
the misclassified shadow appears to increase in surface water extent
during summer for three years (1984, 1993, 2011), which is likely
driven by seasonal changes in the cast shadowas there is nowetland ev-
ident in the aerial photo.

The remaining wetland hydrographs diverged from long-term pre-
cipitation patterns (Fig. 10), but did not have the same regular zigzag
pattern as those in the second group. The third group (84 wetlands)
showed an obvious decrease in surface water extent over time. Fig. 10
(top) provides an example of a wetland that is drying out over time
and is now has only 50% of the total surface water extent it had in the
mid-1980s. The fourth group (32 wetlands) show irregular patterns of
flooding and drying. Fig. 10 (middle) is an example of a wetland that
is repeatedly plowed over for farming. The fifth group (5 wetlands) is
rare on this landscape, but shows an increase in long-term surface
water extent. Fig. 10 (bottom) shows a hydrograph of a wetland that
was created through hydrologic engineering.
6. Discussion

Ourmethod provided detailed hydrological data for all surfacewater
wetlands within our 4714 km2 study area of Douglas County, WA, USA
with minimal data pre-processing. The individual hydrographs capture
both long-term and seasonal change to surface water extent of wet-
lands. To the best of our knowledge, this is the first such reconstruction
of wetland hydrographs for all wetlands across a broad landscape at
such a fine spatial and temporal resolution. As such, it offers novel in-
sight into landscape-level wetland dynamics, reconstructs data for test-
ing hydrologic or ecological hypotheses, and provides a useful tool for
hydrologicalmonitoring ofwetlands atmultiple scales; from large land-
scape analysis to individual wetland monitoring in high contrast semi-
arid locations in the western United States.



Fig. 6. Example of a hydrograph spanning 1984–2011. This figure represents thehydrographof thewetlandhighlighted in Fig. 3, which is 3.4 ha in size. X-axis tickmarks represent number
of observations. Reconstructed hydrographmeasures both inter- and intra- annual change. Amoving average of annual precipitation calculated frommonthly totals is shown in gray. The
hydrograph of this wetland appears to follow changes in precipitation levels.
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6.1. Sources of error

Spectral mixture analysis yields spectral abundance of the spectral
endmembers in the mixed pixel spectrum. It is related to the physical
abundance of the corresponding physical endmember, but is not neces-
sarily a one-to-one ratio. A likely source of error is due to amismatch be-
tween the image endmember chosen in our SMA model, which came
from deep water, and water contained in wetlands. The spectral
endmember we chose for water was likely closelymatched to the phys-
ical endmember we modeled except where algae, floating vegetation,
and areas of shallow water, occurred in wetlands. Wetlands containing
wetmudmay look partially filledwithwater because of spectralmixing
betweenwater and mud. In addition, we cannot completely remove at-
mospheric error from endmember fractions because we used average
spectra for two of our endmembers.

As indicated in Fig. 5, error was greatest for small wetlands. Smaller
wetlands are composed of fewer Landsat pixels and more likely to be
composed of mixed pixels. Because our model used average spectra
for two of endmembers (i.e. salt and wetland vegetation) we assume
that error will be greatest for small wetlands which are composed of
mixed pixels that contain proportions of these two endmembers. Al-
though the accuracy decreased for smaller wetlands, it still provides
useful information on their hydrology and could be used even on wet-
lands smaller than two Landsat pixels (1800 m2) for monitoring of
large disturbance to wetland hydrology (e.g. land conversion). Despite
higher levels of error, this method still provides useful information on
the hydrology of very small wetlands (Fig. 7).
Fig. 7. Example of a hydrograph for a small wetland. This wetland had a maximum size of 1530
the surface area to be only 845 m2 in size (less than one Landsat pixel).
Our validation method does not assess error outside of our wetland
classification. Therefore, it is important to use a wetland classification
that accurately delineates wetlands and has both low errors of commis-
sion and low errors of omission. Although a high-resolutionwetland in-
ventory exists for our study area (i.e. the US National Wetland
Inventory), it did not meet this criteria. Ideally, we would have pre-
ferred a classification derived from historical aerial imagery acquired
prior to 1984 so that we could capture wetlands that had been filled
or drained before 2006, the date of imagery that our classification is
based on.

6.2. Method strengths and limitations

Rather than tracking surface water extent of individual pixels
through time or summarizing changes to surfacewater at the landscape
scale as in previous approaches, our method reconstructs hydrographs
specifically for individual wetlands. Because of this, our SMA model
measures surface water extent in terms of area, providing an intuitive
dataset. By contrast, it can be difficult to understand how other sub-
pixel methods based on remote-sensing indices or changes in band re-
flectance (e.g. Landsat TM 5 Band 5) translate to on-the-ground condi-
tions without field calibration. However, our method measures surface
water extent, not water depth which is of great utility in wetland sci-
ence. Additional research would be necessary to determine if surface
water area could be converted into water depth or water volume. The
addition of a high resolution digital terrain models derived from infra-
red lidar flown when wetlands are dry or the use of green lidar to
m2. The surface area of the validation dataset (derived from 2011 aerial image) estimated



Fig. 8. Example of a hydrograph for three different wetland types for the year 2011; temporarily floodedwetland (a.), seasonallyfloodedwetland (b.), and a permanentlyfloodedwetland
(c.). The map shows the spatial variability of wetland types in northeast Douglas County based on the number of years the wetland fell below 25% water surface area between 1984 and
2011.

180 M. Halabisky et al. / Remote Sensing of Environment 177 (2016) 171–183
mapwetland bathymetrymay prove fruitful (Allouis, Bailly, Pastol, & Le
Roux, 2010; Lane & D'Amico, 2010; Richardson & Moskal, 2014).

Because our method incorporates a high-resolution wetland delin-
eation it works best for discrete wetlands that can be delineated into
polygons. For extensive and complex wetlands it may not be useful to
track surface water extent of the entire wetland. In these instances it
could be more useful to track individual pixels through time using
other methods such as those outlined by Gómez-Rodríguez et al.
(2010).

An additional limitation is that accurate wetland classifications are
not available in many areas. However, it is important to note that in
some instances manual delineation of wetlands may provide an ade-
quate alternative to remotely sensed classifications. Furthermore, our
method can be used as a tool to automate removal of erroneously clas-
sified shadows from a dataset because as demonstrated in Fig. 9
shadows have a unique temporal signature.

Areas with limited high-quality cloud-free Landsat imagerymay not
benefit from this method because the imagerymay be too infrequent to
reconstruct meaningful hydrographs. Additionally, wetlands with short
hydroperiods may not be captured at the interval of Landsat imagery
(i.e. 16 days). In these instances, other methods that used multiple
Landsat images to predict the hydrologic regime of wetlands (Beeri &
Phillips, 2007; Reschke & Hüttich, 2014) may be more appropriate.
Our method requires selecting an image endmember from deep,
sediment free water within the image scene. Accuracy would be im-
pacted if the image endmember was not sampled from a spectrally
pure water sample or included seasonal changes in water clarity either
in the image endmember or in the wetlands themselves. This require-
ment cannot be met in many landscapes.

Douglas County has few trees, subtle topography, and therefore few
resolved shadows. Further testing across more diverse and complex
landscapes is necessary to determine applicability of our method in
non-arid landscapes. As shadows andwater have similar spectral signa-
tures, this method would not work well in areas where shadows mixed
with wetland area, such as forestedwetlands or areaswith steep topog-
raphy.Without significantmodification thismethodwould notwork on
wetlands with little or no surface water, such as wet meadows.

6.3. Potential applications

Unlike rivers and streams, which are typically monitored in greater
numbers and at higher frequencies, hydrologic data for wetlands is un-
available for the vast majority of regions. This limitation has inhibited
exploration of questions related to wetland hydrology and advance-
ment of basic scientific understanding of wetland dynamics for some
time (Mitsch & Gosselink, 2007). Our method opens a new area of



Fig. 9. Example of a ‘hydrograph’ of a shadow that was misclassified as a wetland. The long-term hydrograph (top) has a zig zag pattern that does not follow precipitation patterns. The
lower right handgraph shows the seasonal hydrograph for three years (1984, 1993, & 2011). Surfacewater extent increases through the summer season, contrastedwith a typicalwetland
which dries out as the summer temperatures increase and precipitation levels typically decrease.
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wetland science by potentially providing rich hydrologic data for a large
number of wetlands over a broad landscape.

By providing a large sample size of wetland data covering a broad
area, our method facilitates myriad explorations including characteriz-
ing wetlands and classifying wetland habitat types (Snodgrass,
Fig. 10. Example of hydrographs for three wetlands undergoing abnormal change; sh
Komoroski, Bryan, & Burger, 2000), understanding environmental vari-
ability (LaBaugh, Winter, & Rosenberry, 1998), evaluating the relation-
ships between wetland dynamics and climate variables (Winter,
2000), calibrating hydrologic models of climate impacts (Lee et al.,
2015), quantifying ecosystem services (Woodward & Wui, 2001), and
rinking wetland (top), plowed wetland (middle), and created wetland (bottom).
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elucidating the role of groundwater or other hydrologic inputs. When
coupled with biological data, these data support novel ecological inves-
tigations that have been hindered by the lack of time series data forwet-
lands. Opportunities include basic research on the relationship between
hydrologic variation and species occupancy, composition, and richness
(Tavernini et al., 2005); population or community dynamics and species
diversity maintenance (Boyce et al., 2006; Chesson, 2000; Morris et al.,
2008; Tuljapurka, 1990);metapopulation andmetacommunity dynam-
ics (Hanski & Gaggiotti, 2004; Leibold et al., 2004) and ecosystem ser-
vices (Brauman, Daily, Duarte, & Mooney, 2007). Reconstructed
hydrologic data also greatly enhance capacity for applied research on
endangered species or critical ecosystem responses to hydrologic varia-
tion. For example, time-series data can be used to establish baselines
and evaluate trajectories of change and risk associated with shifts in
land use and climate change. Comparing hydrographs with precipita-
tion or land use change data via formal time series analysiswould be an-
other fruitful avenue that may elucidate causes of hydrologic variability
in wetlands.

Additionally, ourmethod can be used as amonitoring tool by identi-
fying abnormal changes to wetland hydrology (Kentula, 2007) and as-
sessment of regional trends over time, including shifts in the relative
coverage of different wetland types and changes in wetland function
critical to understanding the full picture of wetland dynamics beyond
direct land conversion.

7. Conclusion

We demonstrated a reliable and cost-effective method for wetland
assessment that provides information on status and trends of surface
water for individual wetlands in semi-arid regions. Our approach
using high-resolution wetland delineations and spectral mixture analy-
sis of Landsat imagery substantially increases the available hydrologic
data for wetlands by reconstructing detailed wetland hydrographs
without the need for extensive pre-processing. These methods allow
for new insights into landscape level changes to wetland hydrology
and conservation actions. Further research is needed to test limitations
in other non-arid regions.
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