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The Pleistocene global dispersal of modern humans required the
transit of arid and semiarid regions where the distribution of
potable water provided a primary constraint on dispersal pathways.
Here, we provide a spatially explicit continental-scale assessment of
the opportunities for Pleistocene human occupation of Australia,
the driest inhabited continent on Earth. We establish the location
and connectedness of persistent water in the landscape using the
Australian Water Observations from Space dataset combined with
the distribution of small permanent water bodies (springs, gnam-
mas, native wells, waterholes, and rockholes). Results demonstrate
a high degree of directed landscape connectivity during wet periods
and a high density of permanent water points widely but unevenly
distributed across the continental interior. A connected network
representing the least-cost distance between water bodies and
graded according to terrain cost shows that 84% of archaeological
sites >30,000 y old are within 20 km of modern permanent water.
We further show that multiple, well-watered routes into the semi-
arid and arid continental interior were available throughout the
period of early human occupation. Depletion of high-ranked re-
sources over time in these paleohydrological corridors potentially
drove a wave of dispersal farther along well-watered routes to
patches with higher foraging returns.

Sahul | Pleistocene colonization | radiocarbon | human dispersal |
paleohydrological corridor

Considerable debate has surrounded the timing, routes, and
mechanisms of early human colonization of the continent of

Australia. Initial occupation from the north appears to have
begun before 47 kyBP (1–8) with relatively rapid movement
therafter; for example, the Willandra Lakes region in the south-
east of the continent may have been occupied within 1,000 y after
the arrival of humans (1, 9, 10). Birdsell (11) considered that
dispersal occurred rapidly and throughout the continent, whereas
Bowdler (12) considered that early dispersal took place along the
coastlines, with limited initial occupation of the interior. Horton
(13) and Tindale (14) added the postulates that, upon arrival in
the northwest, or north, respectively, humans dispersed through
the northern and eastern interior woodlands along riverine cor-
ridors and thence to the coast. These “end-member” dispersal
scenarios (Fig. 1) subsequently have been reworked to include a
more nuanced understanding of “the filling of the continent”
(p. 453 in ref. 15) as variably dependent on a matrix of biogeo-
graphic (16), ecological/climatic (17), and sociological/technological
(18, 19) facilitators of—or barriers to—dispersal from an initial
point of entry in the north (20). The vast interior of the continent is
now viewed as a mosaic of potential oases, corridors, and barriers,
with the viability of a specific region for occupation or transit also
depending on the trajectories of environmental change (21–24).
O’Connell and Allen (1), building on previous work (25) and

drawing on optimal foraging theory, propose a model of human
dispersal throughout the continental interior driven by resource
availability/depletion, with the major interior rivers/river basins
representing the environments most attractive to human foragers;
these environments extended into other areas for short periods, at
times of rain-related resource “flushes.” Smith (26) attributes
human dispersal through the desert to access to the food resources

provided by stepping stones of small and variable water features,
rather than to the resources themselves. All treatments of human
dispersal in Pleistocene Sahul to date have lacked an explicit
spatial dimension. What potential dispersal routes were available,
where, and under what circumstances? These questions relate
specifically to water in the landscape, because water is critical for
human survival (27–30), and three-quarters of Australia is semi-
arid or arid. In the absence of spatial information, discussion of
the patterns of human colonization in Australia usually have been
framed in general terms of aridity—the absence of water—although
it is well known that even the driest deserts in Australia are peri-
odically flooded (21, 31, 32). In the Western Desert, for example,
Peterson (p. 65 in ref. 33) noted that “after substantial falls of rain
the population disperses widely to the most ephemeral sources
far out on the plains. As the water supplies disappear the
people retreat back to the more permanent water supplies,
where they may become trapped for a period” (34). It is perhaps
for this reason that Gould (35) observed that indigenous Aus-
tralians prioritize foraging near satellite water holes before
settling closer to the main water hole. In the Western Desert,
Veth (36) notes a positive correlation between the number of
extractive artifacts and the permanency of water.
Aridity in isolation therefore is not necessarily a barrier either to

habitation or to transit. It is the duration of inundation, the con-
nectedness of water at times of inundation, and the location of
permanent water in the landscape that dictates where, and for what
length of time, humans could reside in or transit through most of
interior Australia. O’Connell and Allen note that “terrestrial patch
rank was determined primarily by the availability of freshwater, as
measured by the volume and reliability of precipitation and/or local
stream flow” (pp.7–8 in ref. 25).
The Water Observations from Space (WOfS) dataset (37) allows

an assessment of the spatial distribution and permanency of standing

Significance

Australia is the driest inhabited continent on earth, but humans
dispersed rapidly through much of the arid continental interior
after their arrival more than 47,000 y ago. The distribution and
connectedness of water across the continent, and particularly in
its arid core, played a pivotal role in facilitating and focusing early
human dispersal throughout the continent. We analyze the dis-
tribution and connectedness of modern permanent water across
Australia. The modelled least-cost pathways between permanent
water sources indicate that the observed rapid occupation of the
continental interior was possible along multiple, well-watered
routes and likely was driven by the depletion of high-ranked
resources in each newly occupied area over time.
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water in the modern Australian landscape. Here we use this infor-
mation, coupled with the distribution of small natural permanent
water bodies (springs, gnammas, native wells, waterholes, and
rockholes) compiled from the 1:250,000 topographic sheets
(nationalmap.gov.au) to provide a spatially explicit assessment
of the opportunities for Pleistocene human occupation of, and
dispersal throughout, Australia. A connected network was pro-
duced representing the least-cost distance between water bodies
and graded according to terrain cost.

Results and Discussion
The results of the spatial analysis of the 112,786 individual nat-
ural water points (Dataset S1) demonstrate a high degree of
directed landscape connectivity during wet periods and a high
density of water points distributed widely but unevenly across
modern arid and semiarid Australia (Fig. S1). Inundation events
may have been both more and less common in the past, per-
manent water points may have shifted location in the past, some
permanent water may not be potable, and small isolated water
points may not have been readily accessible to parties unfamiliar
with the area into which populations were moving. Nevertheless,
the broad-scale patterns observable in the present are likely to
have held in the past and particularly during the wetter periods
of initial human dispersal. All the archaeological sites from
>30 ka are closely associated with the least-cost pathways identi-
fied in Fig. 2 on the basis of modern permanent water distribution.
This assertion is supported by the close proximity of the ar-

chaeological sites from >30 ka to modern permanent water (Fig. 3).
Excluding four sites in the Willandra Lakes area that were within
10 km of water at the time of initial occupation but now are >50 km
from permanent water because of the avulsion of the Lachlan River
(38), 84% of the sites from >30 ka (46 of 55 sites) are <20 km, or
approximately a day’s walk, from modern permanent water, and all
sites are <40 km, or a 2-d walk. This relationship is stronger than
that between younger archaeological sites and water (65% <20 km),
including sites dating to the Holocene when climate and the

distribution of permanent water were similar to the present day
(39). Archaeological sites in Australia are frequently located and
investigated as a result of linear infrastructure surveys associated
with mining, road, and pipeline developments and as such are not
biased per se toward locations associated with water. Research-
based probabilistic survey is extremely rare in Australia. The
explicit comparison between archaeological sites is important
because it further diminishes potential bias associated with site
selection, given that all sites were discovered by broadly the same
array of archaeological survey techniques.
The distribution of sites from <30 ka is similar to the distribution

of land area relative to modern permanent water (Fig. 3), with 65%
of 1,049 sites <20 km and 20% of sites >40 km from modern
permanent water. This distribution suggests that more recent
populations have developed the ability to journey farther from
permanent water than populations could during the initial dis-
persal. The association between archaeological sites from >30 ka
and modern permanent water suggests that the distribution of
modern permanent water is a reasonable analog for the distri-
bution of permanent water in the past.
At the continental scale it is clear that dispersal over long

distances was rapid, implying the existence of connected and
relatively abundant resources, including water. Initial coloniza-
tion certainly had occurred by 47 ka (1) but may have occurred
earlier (50–55 ka; e.g., ref. 3). From an initial entry point in the
northwest or north (see ref. 20 for a review), the Willandra Lakes
region in southeast Australia was occupied by 41–45 ka (1) or
46–50 ka (9), and Devil’s Lair in the southwest was occupied by
43–48 ka (1) or by ∼50 ka (40). There was a lag in occupation of
the arid bedrock core of the continent, which was not occupied
until 36.5–42.5 ka (23). These data imply a maximum dispersal
interval of ∼5,000–10,000 y, during which most of the readily
habitable parts of the continent were occupied.
The analysis presented in Fig. 2 cannot confirm or rule out

any of the extant models of human dispersal through Australia
after arrival but does allow several robust inferences (Fig. 4).

Fig. 1. Proposed colonization models for the Australian continent. (A) Birdsell (11). (B) Tindale (14). (C) Horton (13). (D) Bowdler (12).
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A strictly coastal route from a point of entry in the northwest
(20) to the south and then east is possible, but such a western
coastal route, thence up the Murray-Darling River to Willandra
Lakes (for example) would be at a minimum five times longer
than an overland route across the north of the continent and
south through Queensland (and would be even longer at times
of lowered sea level).
Immediate and rapid continent-wide dispersal (11) is unlikely,

because there are large regions where, at any time, accessible
permanent water is very limited and the distance between per-
manent water points is long; for example, ∼818,000 km2 of land
(∼11% of the total mainland area), mostly in the center and west
of the continent (Fig. 3), is >50 km from permanent water (Fig.
2). A “woodland” route (13) from the northwest, initially east
across the monsoon savannas to Lake Carpentaria and turning
south through Western Queensland to the Lake Mungo region
and central South Australia would have been relatively well-
watered, as would an interior route south from an initial entry
point in the north (14). From the Gulf of Carpentaria south,
multiple paleohydrological corridors [sensu Breeze et al. (30)]
through interior Queensland existed following abundant, per-
manent water points <20 km apart that would be directly
connected at times of inundation. This connectivity would fa-
cilitate ready dispersal by hunter-gatherers with an average
daily foraging range of 10–15 km (41, 42). These same regions
also likely contained attendant, abundant food resources and
focused populations of obligate drinking fauna. Depletion of
high-ranked resources in these patches over time would drive a
wave of dispersal farther along well-watered routes to patches
with higher foraging returns (1, 25).
A lag in the occupation of central Australia amounting to

∼10,000 y suggests that the arid interior was relatively difficult to
access. The bedrock-dominated core of the continent was mostly
readily accessible (Fig. 2), although with greater difficulty and
likely only during extended wet periods, via (i) well-connected
water points in southwest Queensland or South Australia (along

the Finke River) or (ii) relatively well-connected permanent water
points south through the central Northern Territory. Although
multiple archaeological sites are known along the more south-
erly routes, none are known along the putative northern route,
suggesting that the southern route is more likely to have been
the one followed.

Fig. 2. Distance to water and connectivity lines calculated with a topographic convergence index of the travel-cost surface with a minimum catchment size of
∼350 km2 (see Materials and Methods). Small black and larger red dots represent archaeological sites from <30 ka and >30 ka, respectively.

Fig. 3. Percentage of archaeological sites and land area as a function of the
maximum distance to modern permanent water. Note that all archaeological
sites in the >30 ka category that are 50 km or more from modern permanent
water are in the Willandra Lakes region (see text).
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As the continent dried during the Last Glacial Maximum, pop-
ulations contracted into smaller areas with access to a reduced
number of permanent water points and reduced food resources.
Rather than continental-scale refuges (16, 43, 44), these areas may
have been a patchwork of smaller, individually isolated refugia (45,
46) distributed more broadly across the continent. A higher density
of these isolated refugial areas occurred in regions such as the
Kimberley, the rocky central arid zone, and the Channel Country, all
areas identified as regional refugia by Williams et al. (43) on the
basis of the distribution of dated archaeological sites, as well as
in some wetter coastal areas (46). Refugial areas, particularly
those located in the sandy deserts fringing the arid bedrock
core of the continent, may well have been separated by truly
uninhabited regions.
Interpretations of the analysis presented above are subject to

three caveats. First, the spatial analytical results are derived from
the modern distribution of permanent water points in the land-
scape. Of course, it is likely that substantially less water was
available across the continent at some times in the past and
particularly during the Last Glacial Maximum (47, 48). However,
during the millennia following human arrival, the hydroclimate
at the continental scale cycled several times through conditions
similar to modern conditions, toward both wetter and drier pe-
riods, potentially with different timing and to differing degrees
from the south to the north of the continent (48–51). Hence the
modern distribution of water is likely to be broadly analogous to
the situation at some times during early dispersal, and at the
continental scale the connectivity of water points also is likely, in
a relative sense, to have been similar in the past.
Second, some small permanent water points, such as springs,

which are known to be important to human populations, occur
widely in arid and semiarid Australia but are not necessarily
connected to major inundation pathways (52–55). Although it is
possible that springs in local areas will activate or deactivate over
time and that billabongs and other small water sources in bed-
rock (gnammas, rockholes) will form and disappear over time,

the areas where such features have been located in the past can
be assumed to be relatively constant, because they require
particular lithologies, hydrogeological environments, and/or
geomorphic settings. Hence their modern distribution is likely
broadly comparable to their distribution in the past, with many
such locations being important refugia as a result of their long-
term stability (56–58). In the context of early human dispersal,
small isolated water points (identified from topographic sheets)
are likely to have been less significant than areas connected
during times of inundation (identified by the WOfS data), be-
cause of the risk associated with striking out into an unknown
area across an intervening landscape with no known water
points. Many of the small isolated water points, actively main-
tained in pre-European times to allow permanent habitation in
arid regions (55), would not have been available to a party tra-
versing new country except at times of significant inundation.
Third, we assume that the gross routing of floodwaters at the

continental scale is unlikely to have changed dramatically in the
last 50,000 y, except locally in response to geomorphic changes as
a result of neotectonism (59). Most of Australia is tectonically
stable; however, the drying of Willandra Lakes since the Last
Glacial Maximum (38) represents one example in which a well-
watered region containing evidence of occupation before 30 ka
(1, 9) is significantly (>50 km) farther from permanent water
now than during initial human occupation.

Conclusions
The location and connectivity of water in the landscape is critical
to understanding early human dispersal through water-limited
environments across the globe (27, 28). These considerations are
particularly important for Pleistocene Australia, given the broad
extent of semiarid and arid environments and the comparative
rapidity with which these areas were colonized. The clear re-
lationship between archaeological sites from >30 ka and modern
permanent water provides strong evidence that, at the conti-
nental scale, these factors have always been important. A striking

Fig. 4. Hypothesized pathways for colonization of the Australian continent based on the distance to water and the travel-cost surface (see the legend of Fig.
2 and Materials and Methods). Locations mentioned in the text are numbered: (1) Willandra Lakes; (2) Western Desert; (3) Lachlan River; (4) Devil’s Lair; (5)
Murray-Darling River; (6) Lake Carpentaria; (7) Finke River; (8) Kimberley; and (9) Channel Country.
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feature of the spatial analysis presented here is the clear linkage
of well-watered routes from northern Australia, through the
eastern semiarid and arid zone, to southeastern Australia and
into the rocky arid center of the continent. Given that permanent
water points act as a focus for potential prey and other resources,
the apparently rapid dispersal through much of interior Australia
likely was similarly focused along these well-connected routes
defined by permanent water points, and dispersal potentially was
driven farther along these routes by the progressive depletion of
local resources. A corollary of this analysis is that some appar-
ently well-watered, interconnected regions lie along potential
dispersal routes but have yet to yield evidence of early (or, in
some places, any) occupation in prehistory. These regions in-
clude the Channel Country of southwest Queensland and the
route identified in this study that runs south through the
Northern Territory into the arid center (Fig. 4). The lack of
evidence of early occupation could result from poor preservation
potential, from limited archaeological survey effort, or from the
identified route indeed not being used. These alternatives, in
turn, suggest that the dataset, in combination with other terrain
attributes, can be used predictively to identify areas worthy of
investigation for their potential to yield previously unrecognized
archaeological sites to delimit the initial dispersal routes better.
The approach presented here represents a progression from

abstract ideas regarding the filling of the continent to testable hy-
potheses grounded in spatially explicit data (Figs. 2 and 4). The
analysis suggests that permanent water, connected during periodic
inundation events, provided—and provides—effective conduits for
human movement over thousands of kilometers through much, but
not all, of the continental interior. The WOfS dataset only cur-
rently covers the Australian continent. However, it is based on
satellite imagery with global coverage. The imagery can be used to
derive similar products elsewhere, in turn enabling progression
beyond the identification of drainage networks and basins as po-
tential dispersal routes (29, 30, 60) to a more nuanced interpre-
tation that considers the permanency of water across a landscape.
The same approach therefore can be used to develop and test
models that seek to explain the rapid dispersal of modern humans
out of Africa (27–30, 61) via similar periodically interconnected
hydro-ecological networks (1, 27, 28, 43, 62).

Materials and Methods
Data Sources. The WOfS dataset was created by Geoscience Australia (GA),
the Australian Government’s agency responsible for geospatial research and
information. The data were derived by the application of an algorithm,
developed in-house by GA, to determine the presence of water in Landsat-5
and Landsat-7 imagery. The Landsat satellites have a repeat orbit path of
16 d, and the imagery from which WOfS was derived dates from 1987. The
results come in the form of a number of derivatives, each with a 30-m spatial
resolution, representing the number of clear observations made, the num-
ber of occasions on which water was detected, the percentage of clear ob-
servations in which water was detected, and the confidence that a water
observation in the particular location is correct (37). One mode presents the
percentage of clear observations in which water was detected, filtered using

the confidence layer; we used that dataset for the current method and vi-
sually checked the observations to remove permanent water bodies result-
ing from either dams or water bores.

A measure of ancient human presence across Australia is provided by ra-
diocarbon dates from archaeological sites. This information has been compiled
in the Austarch database comprising 5,044 radiocarbon dates from 1,748 sites
and a further 450 (dominantly luminescence) dates from 86 sites (63).

Spatial Analysis. A connected network was produced, representing the least-
cost distance between water bodies and graded according to terrain cost.

Water Bodies. The tiled WOfS data, the values of which represent the per-
centage of observations over 30 y in which each pixel was identified as water,
were merged into one surface and converted to a binary raster representing
the presence of water bodies, having been filtered for values greater than
90% observed water.

To this water body data were added features from the Australian Hy-
drological Geospatial Fabric (Geofabric) database, which is made available for
download by the Australian Government Bureau ofMeteorology (www.bom.
gov.au/water). The dataset contains the location of water features coded
as spring, gnamma hole, native well, pool, rockhole, soak, water tank, bay,
and water hole. The data were filtered for features that were not bay or
water tank.

The two datasets were merged by first converting them from point vector
to binary raster layers with a spatial resolution of 1 minute (∼1,850 m) and
then combining them with a logical OR operator to mitigate the duplication
of point data at the working scale.

Minimum-Cost Connectivity. A cost surface was calculated by which the op-
timal routes between water bodies could be determined. This surface takes
two factors into account: the relative distance of a cell to the nearest water
body and the difficulty of passing through that cell. The latter consideration is
one of horizontal distance and (in this simplified model) slope. With uniform
pixel sizes, horizontal distance is similar for each cell. For a slope factor,
Tobler’s Hiking Function (64) was used to determine a slope cost as the ratio
of walking speed with zero slope to that at the slope of each cell.

Slope in each cell was calculated using the 1-second hydrologically
enforced digital elevation model derived by Geoscience Australia from the
Satellite Radar Topography Mission dataset (65). From this model, the terrain
cost surface was calculated as described. The final surface was calculated as
the cumulative cost of moving from each cell to the nearest water body.
With the results of this calculation serving as a quasi-topographical surface,
we used a least-cost search algorithm (66) within the r.watershed function of
GRASS GIS (67) to trace least-cost routes from any part of modern Australia
to any part of the coast, which has a cost of zero. The cost surface is anal-
ogous to an elevation model, in which high values drain toward lower values
such as the coast or water holes. Routes out of local minima such as water
holes are established by filling the surrounding basin until it spills over a sill
at a certain threshold. This process is repeated until the streams reach the
coastline. In principle, each pixel can have its streamflow path mapped;
therefore, for analysis purposes, it is necessary to decide on a minimum basin
size governing the density or the strength of the mapped streams. A basin
size of 100 pixels (∼350 km2) was used for our output.
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