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ABSTRACT 

 

In recent years, the joint distribution properties of drought characteristics (e.g. severity, 

duration and intensity) have been widely evaluated using copulas. However, history of 

copulas in modelling drought characteristics obtained from streamflow data is still short, 

especially in semi-arid regions, such as Turkey. In this study, unlike previous studies, drought 

events are characterized by annual maximum severity (AMS) and corresponding duration 

(CD) which are extracted from daily streamflow of the seven gauge stations located in Çoruh 

Basin, Turkey. On evaluation of the various univariate distributions, the Exponential, Weibull 

and Logistic distributions are identified as marginal distributions for the AMS and CD series. 

Archimedean copulas, namely Ali-Mikhail-Haq, Clayton, Frank and Gumbel-Hougaard, are 

then employed to model joint distribution of the AMS and CD series. With respect to the 

Anderson Darling and Cramér-von Mises statistical tests and the tail dependence 

assessment, Gumbel-Hougaard copula is identified as the most suitable model for joint 

modelling of the AMS and CD series at each station. Furthermore, the developed Gumbel-

Hougaard copulas are used to derive the conditional and joint return periods which can be 

useful for designing and management of reservoirs in the basin.  

Keywords: Drought, Annual maximum severity, Corresponding duration, Archimedean 

copulas, Çoruh Basin, Turkey 
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1. Introduction 

 

Drought is a complex phenomenon that can be mainly characterized by its severity and 

duration. These characteristics are usually derived from hydro-meteorological data, such as 

precipitation, streamflow and groundwater, using the threshold level approach. Among 

these data, if the main parameter of interest is streamflow, it is defined as hydrologic 

drought. The severity and duration characteristics of the hydrological drought are the main 

concern of engineers and hydrologists for design, planning and management of water 

resources structure. It should be noted that studies of drought duration and severity have 

great importance for hydropower installations and reservoir policies. Water resources 

managers and engineers utilize joint and conditional return periods of drought duration and 

severity as a hydraulic design criterion and give valuable information for assessing hazard 

(Mirabbasi et al., 2012; Shiau, 2006). Since the drought severity and duration characteristics 

are random variables, they are analyzed and modeled using probabilistic theories. 

Approaches to probabilistic analysis of droughts are univariate or multivariate. Drought 

severity and duration are also mutually correlated variables, hence, the univariate analysis of 

the drought characteristics is inadequate to account the significant correlation between the 

variables.  Also, in design and management of water supply systems, it is not enough to 

know information about drought duration only, but it is also essential to estimate severity 

value of that duration. Therefore, in recent years, multivariate analysis of drought events has 

attracted more interest than univariate analysis. For this purpose, traditional multivariate 

distributions (such as multivariate normal, multivariate lognormal, multivariate weibull etc.) 

have been employed by a number of researchers (Nadarajah, 2007; Nadarajah, 2008; 

Nadarajah, 2009; Yue et al., 2001). However, these distributions usually suffer from several 
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limitations and constraints. For example, individual behavior of drought variables must be 

characterized by the same parametric family of univariate distributions. During last decade, 

copulas have emerged as a new multivariate method to overcome such difficulties. Copulas 

can both preserve dependence structure and different distribution characteristics of the 

random variables. Therefore, the copulas have recently gained popularity in multivariate 

modelling of drought characteristics. Multivariate modelling of hydrological drought is also 

necessary in the reservoir design and management. Crisis-oriented drought response efforts 

have been largely ineffective, inadequately coordinated, unfavorable, and inefficient as far 

as the allocated resources. One approach to make management of drought easier is to build 

up an arrangement of progressively strict conservation measures in view of a sequence of 

drought triggers, and look for public’s approval. The present water management condition in 

the basin (Çoruh Basin) is not really planned with a numerousness of projects and initiatives 

under the auspices of unique regions, and a diversity of private sector performers and global 

funding organizations. Expanded cooperation and offer of information on developing 

drought occasions at basin level can lessen possible risks (Awass, 2009). In the majority of 

previous works on copula based multivariate drought modelling, drought characteristics 

have been extracted from precipitation data (Chen et al., 2013a; Ganguli and Reddy, 2012; 

Lee et al., 2013; Ma et al., 2013; Mirabbasi et al., 2012; Mirakbari et al., 2010; Rauf and 

Zeephongsekul, 2014; Reddy and Ganguli, 2012; Shiau, 2006; Shiau and Modarres, 2009; 

Song and Singh, 2010; Tosunoglu and Can, 2016; Yoo et al., 2013; Yusof et al., 2013; Zin et 

al., 2013) and a few attempts have been done on joint modelling of drought characteristics 

obtained from streamflow data. Among these, Shiau et al. (2007) used bivariate copula 

functions to build joint distributions of drought severity and duration series obtained from 

the monthly streamflow in Yellow River basin, China. Sadri and Burn (2014) used 
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Archimedean family of copulas, namely Clayton, Frank and Gumbel-Hougaard, for joint 

modelling of drought duration and severity series extracted from monthly streamflow from 

36 non-regulated sites in the Canadian Prairies (see also Chen et al., 2013b; Kwak et al., 

2014; Zhang et al., 2013). Also, to the best knowledge of the authors of this article, there is 

not any published study in the literature related to application of copulas for joint modeling 

of maximum drought characteristics. In addition, the copula based drought analysis has not 

been previously employed for the Çoruh Basin which has a number of dams and 

hydroelectric power plants where the studies of drought duration and severity have great 

importance. Hence, the present study aims to model the joint distributions of annual 

maximum drought severity and corresponding maximum drought duration series obtained 

from streamflows. Threshold level method is used to define maximum severity and duration 

series of daily streamflow data obtained from seven gauge stations located in the Çoruh 

Basin, Turkey. Marginal univariate distributions of the derived drought characteristics are 

then determined. Furthermore, Archimedean families of copulas, namely Ali-Mikhail-Haq, 

Clayton, Frank and Gumbel-Hougaard copulas, are employed to model joint distribution 

function of the derived drought characteristics.  The most appropriate copulas are then used 

to derive conditional and joint return periods of drought characteristics, which can be useful 

for designing and management of reservoirs (e.g. for hydropower, drinking and irrigation 

water supply) in the basin.  

 

2. Study area and data 

 

The study area Çoruh Basin has an area of 19,748 km2, which is approximately 2.53% of 

Turkey, located in North-East Turkey. Because of prevailing climate conditions and geological 
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characteristics over different parts of the basin, it can be defined as three main sub-basins, 

namely lower, middle and upper. The basin’s average annual rainfall is about 480 mm 

whereas average rainfall over the year in Turkey is around 642 mm (Yerdelen et al., 2010). 

The Çoruh River is about 410 km that is the longest river of the East Black Sea region and the 

river has the third highest runoff coefficients of 26 basin rivers in Turkey. The Çoruh Basin 

and its rivers have a high economic importance to Turkey because it is largely undeveloped 

but has economically exploitable hydropower potential (Berkun, 2010). In order to use the 

energy potential of the river, a number of dams and hydroelectric power plants (HEPP) have 

been recently designed; the construction of some is already completed while some are 

under construction or in the project phase. Location of the Dams and HEPPs is presented in 

Figure 1. Among these, Deriner Dam and HEPP is the most important scheme of the lower 

part development of the Çoruh River. The Deriner Dam whose reservoir began to fill in 2012 

and its power station was completed in 2013. It is the highest dam of any kind in Turkey and 

ranks in the top 10 of the highest concrete dams in the world with a height of 253 m. It is 

expected to generate 2118 GWh of electrical energy annually. In this study, daily streamflow 

records from seven gauge stations were selected for hydrologic drought analysis and copula 

modelling (Figure 1). All stations are operated by General Directorate of State Hydraulic 

Works, Turkey. The record lengths vary from 28 to 45 years (see Table 2). Observations are 

not affected by water reservoirs since the considered data periods include the time before 

the reservoirs were constructed. More detailed information (e.g., type of dam, construction 

time period, location, power, etc.) of these reservoirs can be found in Akpinar et al. (2011). 

 

Figure 1 
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3. Methods 

 

3.1. Definition of annual maximum drought severity and corresponding duration 

 

The threshold level method is most frequently applied to define hydrologic drought events 

from streamflow time series. A drought event is said to be a period which the flow is below 

the threshold. Therefore, the most important decision for hydrologic drought definition is 

the selection of the threshold value. There are various levels that have been used as 

threshold value in hydrologic applications. However, the widespread threshold types are the 

median or mean flow (Shiau et al. 2007) and the flow values equal to 70 (Q70) and 90 (Q90) % 

of the time from flow duration curves (Edossa et al., 2010; Hisdal et al., 2004). After defining 

drought events according to the selected threshold value, important drought parameters, 

such as duration (D) and severity (S) are easily determined. Drought duration is the length of 

period in which the hydrological variable values (in here daily streamflow) are less than 

truncation value, drought severity is the cumulative streamflow (the total deficit) value 

based on the duration time. Annual maximum drought severity (AMS) is the largest value of 

the computed severity series for each year and corresponding duration (CD) is length of 

maximum drought severity. Figure 2 illustrates the definition of drought characteristics 

extracted from threshold level method. In this study, threshold level Q70 values are selected 

to investigate the streamflow drought events at the considered stations.  

 
Figure 2 
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3.2. Univariate marginal distributions for drought characteristics 

 

Definition of marginal distribution for drought characteristics is essential step before 

launching into a multivariate model. Based on different characteristics of droughts to be 

examined, various univariate distributions have been employed in many studies. In this 

study, eleven probability distributions usually applied in hydrological frequency analysis are 

considered. The distributions are Exponential, Extreme Value, Weibull, Gamma, Generalized 

Extreme Value, Generalized Pareto, Inverse Gaussian, Logistic, log-Logistic, Normal and 

Lognormal distributions. To define the most suitable type among alternative distributions, 

Akaike Information Criterion (AIC) developed by Akaike (1974) is used and it can be 

expressed as; 

                                                                                                                                     (1) 

where log L is the log likelihood of the model and k denotes the number of model 

parameters. The most appropriate distribution is the one which has the minimum AIC value.  

 

3.3. Joint distribution of drought characteristics: Copulas 

 

To obtain joint distribution of random variables that follow different distributions, copulas, 

which have been proposed by Sklar (1959), are recently used as a powerful and relatively 

new technique in the field of hydrology. Major advantage of copulas lies in modelling the 

dependence structure of the univariate marginal distributions independently. Thus, this 

gives great freedom to choose the univariate marginal distributions. Considering a situation 

with two random variables, according to Sklar’s Theorem if 
, ( , )X YF x y  is a two-dimensional 
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cumulative distribution function (cdf) with marginal cdfs ( )XF x  and ( )YF y then there exists 

a copula C such that  

  

                                                                                                                                      (2) 

 

 

Conversely, assuming that ( )XF x and ( )YF y are cdfs of univariate distributions of random 

variables and C is any type of copula, the 
, ( , )X YF x y  then becomes a two-dimensional 

distribution function with marginal distributions ( )XF x  and ( )YF y . Furthermore, if ( )XF x

and ( )YF y are continuous, then C is unique (Shiau, 2006). Under the assumption that the 

marginal distributions are continuous with probability density functions ( )Xf x  and ( )Yf y  

the joint probability density function then becomes  

 
 

                                                                                                                              (3) 
 
 

where c is the density function of C, defined as 

 

                                                           
        

    
                                                                (4) 

 

In which,         and        . 

 

 

3.4. Archimedean copulas 

 

In this study, the Archimedean class of copulas, namely the Ali-Mikhail-Haq family, the 

Clayton family, the Frank family, and the Gumbel-Hougaard family are considered due to the 

fact  that these copulas are easy to construct and they can capture wide ranges of 
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dependences (e.g. Chang et al., 2016; Grimaldi and Serinaldi, 2006; Lee et al., 2013; Li et al., 

2013; Reddy and Ganguli, 2012; Sadri and Burn, 2014; Shiau et al., 2007; Sraj et al., 2015; 

Wang et al., 2009; Wong et al., 2010; Zhang and Singh, 2006; Zhang and Singh, 2007). 

According to Nelsen (2006), the n-dimensional Archimedean copula can be expressed as: 

 

                                                                         (5) 

 
 

where   is the copula generating function and nuuu ,......., 21  are cumulative distribution 

functions (CDFs) of univariate distributions of random variables. Two dimensional 

Archimedean copula is then expressed as; 

                                                                                                                              (6) 

 

    is the inverse of the generating function  . Mathematical expressions of the selected 

copulas and their generating functions are summarized in Table 1. 

 

Table 1 

 

 

3.5. Goodness of fit tests for bivariate copulas 

 

Once the characteristics of a set of copulas have been estimated, the next step in the 

process of fitting copulas to empirical data consists of selecting the most suitable copula 

among the various copulas under consideration. For this context, the Akaike information 

criterion (AIC), the Bayesian information criterion (BIC), the Kolmogorov-Smirnov (KS), the 

Anderson-Darling (AD), and Integrated Anderson-Darling (IAD) tests have recently been used 

by a number of researchers. In this paper, an integrated version of the Anderson-Darling test 

(IAD), which can be more sensible to reduce the impact of outliers, is applied to define the 
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most appropriate copulas. The IAD test statistics for d dimensional copula is calculated as 

follows:  

 

                        
                                               

 

                                                 

 

   

 

   

 

   

 

 

where    represents the parametric copula and    denotes the empirical copula calculated 

from n observational data as follows 

 

                
 

 
  

 

   

 
  

   
    

  

   
        

  

   
     

 

where Ri, Si and Ti denote the ranks of observed data and   is an indicator function taking the 

value 1 if the condition is satisfied and 0 otherwise. The bivariate copula family with the 

minimum value of test statistics is selected as the most appropriate model. Parameters of 

copulas are estimated using three procedures; (1) Method of moments (MOM), (2) 

Maximum pseudo likelihood estimator (MPLE) and (3) Inference from Margins (IFM). In this 

study, MOM is used to estimate parameters of the candidate copulas because this method is 

quite popular in Archimedean family of copulas (Nazemi and Elshorbagy, 2012). Moreover, 

Cramér-von Mises test, which is one of the most powerful goodness of fit test, is employed 

to evaluate performance of the copulas. According to Genest et al. (2009), the Cramér-von 

Mises test statistic, Sn, can be computed as follows; 

                        
                                        

 
          

 

         
 

 

(7) 

(8) 
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An approximate p-value corresponding to the above test statistic can be obtained via large 

simulated samples by means of the parametric bootstrapping procedure defined by Genest 

and Remillard (2008) or by the multiplier approach recently shown by Kojadinovic et al. 

(2011). Calculation of the p value is; 

  
 

 
                                                                        

 

   

 

 

Where N is the number of simulations and the p value is utilized for acceptance or rejection 

of considered copulas. If the computed p value is larger than a significance level (α), then the 

copula is accepted as a suitable model (Abdi et al., 2016; Requena et al., 2013). In this study, 

the p values for each copula are estimated using the parametric bootstrapping procedure 

and all calculations are carried out with the free software R (R, 2012) and the commercial 

software Matlab (Matlab 2009a, The Math-Works, Inc.).  

 

3.6. Assessment of tail dependence 

 

Another crucial concern in multivariate frequency analysis of extreme hydrological events, 

such as droughts and floods, is the tail dependence. If the tail dependence structure 

amongst drought (or flood) characteristics is not well preserved by chosen copula, it may 

provide a high uncertainty in estimation of extreme quantiles which consequently causes to 

inaccurate decisions for design of hydrologic structure. Hence, this evaluation plays an 

important role in evaluating the adequacy of the selected copula family. For bivariate 

copulas, tail dependence can be calculated as follows (Poulin et al., 2007); 
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In which,     and     are the upper and the lower tail dependence, respectively. In analysis 

of extreme events, the upper tail dependence has greater interest than lower tail 

dependence. Therefore, we only focus the upper tail dependence in the present study. 

Several coefficients have been suggested for non-parametric estimation of the upper tail 

dependence (Serinaldi et al., 2015). In this study, the estimator suggested by Caperaa et al. 

(1997) and (Frahm et al., 2005) is used to compute nonparametric upper tail dependence 

coefficient because of its popularity related to its advantages (see Poulin et. al., 2007). This 

estimator can be estimated based on the following equation; 

 

  
           

 

 
 

 
    

 

 
     

 

  
      

 

  
 

    
 

          
  

 

 

 

   
 

                                       

 

Where,    and    are the CDFs of the drought characteristics considered in this work. Copula 

based upper tail (   ) and empirical upper tail (  
     coefficients are compared to verify the 

adequacy of the model. Moreover, it is important to recognize that the Ali-Mikhail-Haq, 

Clayton and Frank copulas do not have upper tail dependence        while the Gumbel-

Hougaard copula has strong upper tail dependence which can be easily calculated as 

      
 

  .  
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4. Results 

 

4.1. Marginal probability distributions of AMS and CD series 

 

As mentioned in the section 3.1, the AMS and CD series for each station were computed 

using constant threshold level (Q70) that obtained from flow duration curves. The basic 

statistics properties of the daily streamflow and the computed AMS and CD series are 

presented in Table 2. In this table,            indicate the mean and standard deviation for 

daily streamflow data and             are the mean and standard deviation of the drought 

characteristics. It is apparent from the table that the station 2315 has the lowest variation 

(SD/  ) while the highest variation belongs to 2325. The highest variation of 2325 may be 

due to the small drainage area and high elevation of this station and low variation of 2315 is 

also related to its big drainage area and low elevation. The variation of drought 

characteristics is lower when compared to daily streamflow data. In conventional frequency 

analysis, data series under study should be stationary. Therefore, before fitting any 

univariate distribution to data, the stationarity must be provided by using some statistical 

methods, such as time trend analysis (e.g. trend test , Spearman’r Rho test, autocorrelation 

function analysis), time-frequency analysis (e.g.Wavelet analysis) and frequency domain 

analysis (e.g. spectral analysis) (Parmar and Bhardwaj, 2015; Zhang, 2005). In this study, 

Mann-Kendall test is applied for checking stationarity of the AMS and CD series. The results 

are summarized in Table 2. In the Mann-Kendall test, the null hypothesis (H0) is an 

assumption that the AMS and CD series are stationary at significant level of 0.05. According 

to Table 2, it can be inferred that there is not significant trend detected by the Mann-Kendall 

test and hence, the AMS and CD series can be considered as stationary time series. A 

detailed description of the Mann-Kendall test can be found in (Cigizoglu et al., 2005; Kahya 
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and Kalayci, 2004; Kisi, 2015; Kisi and Ay, 2014; Onoz and Bayazit, 2003; Partal and Kahya, 

2006). It should be noted that pre-whitening is not applied here because the AMS and CD 

series have not serial autocorrelation (see Figure 3a and 3b).  

Table 2 

Figure 3a and 3b 

 

After the stationarity of the AMS and CD series is provided, estimation of univariate marginal 

distributions of these series is performed. For this purpose, various univariate probability 

distributions mentioned in the previous section have been evaluated by the Akaike 

Information Criterion (AIC). The Maximum Likelihood Method (MLM) was used to estimate 

the parameters of the selected distributions as it would provide the smallest sampling 

variance of the estimated parameters, and hence of the estimated quantiles, compared with 

other methods (Can and Tosunoglu, 2013). The results are represented in Table 3, which 

shows the most suitable distributions for the AMS and CD series of each station. According 

to the Table 3, the AIC test results indicate that Exponential and Weibull are the best fit 

distributions for the AMS series while Weibull and Logistic distributions performed well for 

the CD series. Probability distribution functions (PDF) of these distributions are also given in 

Table 3. Moreover, the visual comparison between empirical and theoretical cumulative 

distribution functions (CDFs) for the AMS and CD series at each station is presented in Figure 

4a and 4b. Here, the Hosking’s (Hosking, 1990) plotting position formula,         
      

 
, 

was used to calculate empirical cumulative probability. Here, i denotes the rank of the 

observations in ascending order and n is the sample size. The derived theoretical CDFs show 

good agreement with the empirical CDFs.  
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Table 3 

Figure 4a and 4b. 

 

4.2. Application of bivariate copulas 

 

Prior to fitting the bivariate copulas, it is important to examine dependence structure 

between the AMS and CD series. In this study, Pearson’s (ρ) and Kendall’s (τ) correlation 

coefficients were applied for achieving this goal. The calculated correlation values and their 

corresponding p values are presented in Table 4. The statistical significance of the 

correlation values is checked by Student’s t test at the significance level of 0.05. The test 

results indicate that there is a statistically significant positive dependence between the 

drought characteristics for all stations. However, the Pearson coefficient only represent 

linear dependence and therefore it may not be useful for heavy-tailed variables. It can be 

strongly affected by outliers. On the other hand, the Kendall (τ) can describe a wider class of 

dependencies and shows resistance to outliers (Klein et al., 2011). Hence, the Kendal’s 

correlation might be more suitable in describing dependence structure in this study. Since 

there was significant positive association between the drought characteristics and they are 

well fitted by different distributions, copula functions are employed to model the joint 

distribution. Four types of Archimedean copulas, namely Ali-Mikhail Haq, Clayton, Frank and 

Gumbel-Hougaard, are fitted and compared.  Since the Kendall τ of the Ali-Mikhail-Haq 

copula needs to be within the range of [−0.1817, 0.3333] this copula was automatically 

excluded from further analysis. Furthermore, parameters of the three copula models have 

been estimated using method of moments. The Integrated Anderson-Darling test statistics 

(DIAD) have been calculated for each copula and the results are given in Table 5. In addition, 

the performance of each copula have been evaluated by means of the Cramér-von Mises 
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test. For this purpose, the test statistics Sn and its associated p values have been computed 

from 10,000 parametric bootstrap samples with the same length as the historical data (Table 

5). According to the DIAD and Sn statistics, Gumbel-Hougaard copulas having minimum test 

values perform better than other options. It can be also seen that all the the Gumbel-

Hougaard copulas are satisfied with all p-values larger than 0.05. The parameters of the 

Gumbel-Hougaard copulas are also given in Table 5. For example, the joint cumulative 

distribution function (CDF) of the most suitable copula for the station 2305 is given by; 

 

                                                                              
 

                         (14) 

 

Where u and v are the CDFs of the Exponential and the Weibull distributions, respectively. 

Copula based joint CDFs can be obtained in the same way for other stations. Having selected 

the Gumbel-Hougaard as the most suitable copula for all stations, nonparametric and 

parametric values of upper tail dependence coefficient have been calculated to assess the 

sufficiency of the copula model. The computed values are presented in Table 6. From the 

table, it can be seen that the Gumbel-Hougaard copulas provided good estimation of upper 

tail limit compared to the empirical ones although there were some minor differences. 

Moreover, as a visual evaluation, 10,000 pairs were generated by the derived Gumbel-

Hougaard copulas and compared with historical data. The comparison scatter plots of 

generated data (grey points) with overlapped historical samples (red points) are illustrated in 

Figure 5. From these plots, it can be observed that the Gumbel-Hougaard copulas perform 

satisfactorily since the generated data are adequately overlapped with the natural 

dependence of historical data. As a result, the adequacy of the Gumbel-Hougaard copulas 

has been proven and allow us to use them for further analysis.   
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Table 4 

Table 5 

Table 6 

Figure 5 

 

 

4.3. Bivariate return periods of the AMS and CD series 

 

Estimation of the return periods of drought characteristics is one of the fundamental subject 

in the planning and management of water resources systems. Univariate return periods of 

the considered drought characteristics can be estimated by; 

 

                        
    

           
                          

    

               
                       (15) 

 

In these equations,      and     are the return periods with an annual maximum drought 

severity (or corresponding duration) greater than or equal to a certain value ams (or cd). 

          and         are the cumulative distribution function of annual maximum 

drought severity and corresponding duration series, respectively. E(L) is the expected 

drought inter arrival time. Here, the E(L) value is equal to 1 year as annual maximum drought 

characteristics are considered. However, as mentioned earlier, droughts are multivariate 

events characterized by mutually correlated variables and univariate analyses of these 

variables may not be sufficient for assessment and management of droughts. In other words, 

the return period studies that consider univariate cases may lead to an under or 

overestimation of the risk (Salvadori and De Michele, 2007). Bivariate return periods can be 

easily derived using copula based joint distribution function. These return periods can be 

derived in two ways. One is the joint return periods for drought characteristics and the other 
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one is the conditional return periods for drought characteristics. The joint drought duration 

and severity return periods are defined for two cases: the return period for AMS ≥ ams and 

CD ≥ cd; and the return period for  AMS ≥ ams or CD ≥ cd; These joint return periods for 

copula based drought events are denoted by          and           respectively as follows; 

 

           
 

                                   
      

 
 

                                        
 

 

 

                            
 

                 
 

 

                      
 

 

Where,                      indicates copula based joint distribution function of the 

drought characteristics. Using the derived bivariate copula functions for each station, the 

joint return periods of the AMS and CD series were computed and contours of the different 

return periods (2, 3, 5, 10, 20, 50, 100, 200 and 500 years) of the AMS and CD series are 

presented in Figure 6. Here, since different combinations of the correlated AMS and CD 

variables can occur in the same period, the return periods are shown using the contour lines. 

Historical drought events are also included in the graphs. From these graphs, the joint return 

periods of the historical drought events can be easily analyzed. For example, the most severe 

drought event for the station 2315 was appeared in 1966, with an annual severity of 4555 

m3/s days and corresponding duration of 149 days and the joint probability            of this 

event is more than 500 years. The reason of this drought may be the human factors (e.g., 

excessive water withdrawals). In addition the joint return periods, using bivariate copula 

(16) 

(17) 
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functions, the conditional return periods,             and             can be obtained 

using following equations; 

 

 
          

 
 

                                                       
 

 

 

  
         

 
 

                                                     
 

 

The conditional return periods of the CD given various percentile values of the AMS, 

              and the conditional return periods of the AMS given various percentile 

values of the CD,               were calculated by using Equation 18 and 19. The graphical 

representations of             and             are provided in Figure 7. Here, due to 

constrain the paper’s length, three examples of the stations (2315, 2316 and 2325) are only 

given. From these graphs, it can be easily noticed that the graphs indicate similar trend for 

all cases. However,            of the stations 2316 and 2325 tend to show higher return 

periods at the higher values of the AMS. These results indicate that this extreme drought 

events are less likely to happen in these regions. This may be due to the fact that these 

stations are located in high altitude areas in which snowmelt process can have impacts on 

streamflows, especially in spring. On the other hand, the conditional return periods are 

smaller for the station 2315, particularly at higher percentiles of AMS and CD values and 

meaning that extreme drought events are more likely to happen.  These derived conditional 

return periods of the AMS and CD are crucial important to evaluate the risk which might be 

occurred when any water supply system cannot provide enough water under critical drought 

conditions. 
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Figure 6 

Figure 7 

 

4.4. Kendall Return Period  

 

In the present work, supercritical risk of drought characteristics is also evaluated. Another 

definition of the bivariate return period introduced by Salvadori and De Michele (2004) and 

called as Kendall return period by Salvadori et al. (2011) are used to achieve this aim. 

Salvadori and De Michele (2010) reported that utilizing the standard definition of return 

period can bring about underestimates of the correct value, and they proposed the 

utilization of Kendall’s return period (Mirabbasi et al. 2012). The Kendall return period can 

be defined as the average time between the occurrences of two supercritical drought events 

(Vandenberghe et al., 2011). The Kendall return period (also called the secondary return 

period) for drought duration and severity is defined as follows; 

 

                                    
  

 

       
 

 

                          
                           (20) 

 

In this equation, t denotes the critical probability level,    indicates Kendall’s distribution 

function that can be easily computed for copulas of Archimedean family as follows; 

 

        
    

     
 

 

 

 

 

(21)

Where  denotes the right derivative of the generating function  which is associated

with the  copula type. For instance, the generating function  of the Gumbel-Hougaard copula

can be defined as;

(22)
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If the analytical form of    is not existed for any selected copula, it can be calculated using 

an algorithm proposed in Salvadori et al. (2011). Using equations 20-22, the Kendall’s 

periods of the AMS and CD series were estimated for various critical probability levels (t). 

These levels were computed as follows (Vandenberghe et al. 2011);  

 

    
 

        

 

 

Table 7 represents the comparison of the univariate and bivariate return periods of the AMS 

and CD series. For instance, at the station 2315, which is located in the entrance of Muratlı 

Dam and HEPP (see Figure 1), if the engineers only consider single drought characteristics, 

then the univariate return period is assumed to be 100 years meaning that the AMS and CD 

are greater than the 4219 m3/s days and 123 days, respectively. However, the bivariate 

return periods for those variables are 82, 129 and 115 years for case of          

                     
                Furthermore, as can be seen from Table 7, the Kendall’s 

return periods are always larger than the bivariate return period          and are always 

smaller than         . It should be noted that the Kendall’s (secondary) return period 

        
    is totally different from the primary return periods (                   as they 

describe different situations. Therefore, it is not possible to say which performs consistently 

better than the others (Serinaldi, 2015). Importance of these return periods only changes 

based on which one better describes the assessment and management requirements of 

drought risks in the studied region. The relative differences between the univariate return 

 (23)
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period and          are also provided in Table 7. A lower relative difference indicates a higher 

drought risk. It is clearly observed from the table that the differences of stations 2322, 2316, 

2325 and 2323 is relatively higher than those of the stations 2305, 2315 and 2320. Station 

2322 has the highest difference while the station 2315 has the lowest relative difference 

indicating the highest drought risk. The main reasons of these differences may be the 

spatial-temporal variations in precipitation in this basin and constructed dams (e.g., 

regulations of water reservoirs).  

 

Table 7 

 

5. Summary and Conclusions 

 

This study represents the first research to model joint distribution functions of annual 

maximum drought severity and corresponding duration via bivariate copulas. The Çoruh 

Basin which is one of the most important water resources of Turkey was selected for the 

study. Drought characteristics were computed from daily streamflow data of the seven 

gauging stations using threshold level method.  Various marginal distributions were 

evaluated to fit annual maximum severity and corresponding duration series for all stations. 

Archimedean family of copulas including Ali-Mikhail-Haq, Clayton, Frank and Gumbel-

Hougaard were considered for modelling joint distribution of correlated drought 

characteristics. The following conclusions can be drawn from this study: 

 

1- Determination of marginal distributions for drought characteristics is essential and crucial 

step for multivariate modelling. Therefore, eleven widely used univariate distributions were 

fitted and compared. Akaike Information Criterion (AIC) was employed to determine the 
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most suitable distribution among the candidate distributions. The AIC test results indicated 

that the annual maximum severity series were best fitted either by the Exponential and 

Weibull distributions while the corresponding duration series were well fitted either by the 

Weibull and Logistic distributions.  

 

2- After evaluating goodness-of-fit tests, upper tail and graphical assessments, the Gumbel-

Hougaard copulas were selected as the most suitable copula type for modelling dependence 

structure of the drought characteristics.  

 

3- The conditional and joint return periods of the drought characteristics were derived using 

the developed Gumbel-Hougaard copulas for each station. As an alternative joint return 

period, Kendall’s return period, was also assessed and the univariate and joint return periods 

of the drought characteristics were compared. As a result, the bivariate return periods of the 

annual maximum severity and corresponding duration characteristics can provide more 

useful information for reliable drought risk assessments in the basin. Through the paper, we 

also specified that the bivariate Kendall’s return periods and standard bivariate return 

periods cannot be interchanged as their applicability depends on the type of drought risk 

considered. 

 

4- Comparison of the univariate and bivariate return periods showed that the stations 2305, 

2315 and 2320 have a higher drought risk than the stations 2322, 2316, 2325 and 2323 in 

Çoruh Basin. Station 2322 has the lowest drought risk while the station 2315 has the highest 

drought risk. In order to decrease drought effects in this basin, accurate water resources 
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management (e.g., hydrological regulations of water reservoirs) of the Çoruh Basin is 

necessary. 
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Figure 1. Location map of the considered stations and Dams and HEPPs in the Çoruh Basin 
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Figure 2. Definition of the drought characteristics considered in the study 
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Figure 3a. Autocorrelation plot of the AMS series for all stations 
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Figure 3b. Autocorrelation plot of the CD series for all stations 
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Figure 4a. Comparison between empirical and theoretical CDFs for the AMS series 
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Figure 4b. Comparison between empirical and theoretical CDFs for the CD series 
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Figure 5. Scatter plots of historical values versus generated samples  
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Figure 6. The joint return periods ( and ) of the AMS and CD series 
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Figure 7. The conditional return periods (  and ) of the AMS and CD 

series for the selected stations 

 

  

 

 



  

Table 1. Summary description of the bivariate Archimedean Copulas evaluated in the study 

 

 

 

 

 

 

 

Copula type 
Bivariate Copula 

C(u,v) 
Parameter 
range ( )        

Generating Function 
Relation of Kendal’s τ and    

Ali-Mikhail-Haq      
   

             
 

 

 

          
        

 
          

 

  
  

 

 
   

 

 
 
 

        

Clayton                  
 
 
      

 

 
             

 

   
 

Frank  
 

 
     

                

     
  

 

    

 
 

    
      

     
  

 
                       

          

   
  

      Where       is the Debye function;  
       for any positive integer k,  

           
 
      

       
 

 
    (Wang et al. 2009) 

Gumbel-Hougaard 
                          

 
   

 
    

 

          

                  

      
   

 
 



  

Table 2. Mann-Kendall test results for the AMS and CD series of the selected stations 

 

 

 

 

 

 

     Basic properties of the streamflow and drought data  Mann-Kendall test results 

Station 
Number 

Drainage 
area (km2) 

Elevation 
(m) 

Observ.  
Period 

   
(m3/s) 

SD 
(m3/s) 

Parameter         Calculated  
Z value 

Critical Z 
Value, α=0.05 

Ho 
Hypoth. 

Trend 

2305 7272 654 
1963-2007 
(45 years) 

70.5 80.1 
AMS (m3/s days) 285.2 223.0  0.07 ±1.96 Accept No 

CD (days) 56.2 32.2 -0.85 ±1.96 Accept No 

2315 20,127 57 
1965-2000 
(36 years) 

209.1 207.6 AMS (m3/s days) 1464.5 907.1 -0.50 ±1.96 Accept No 

CD (days) 58.7 27.1 -0.72 ±1.96 Accept No 

2316 5505.2 
1170 

1966-2007 
(42 years) 

39.4 48.5 AMS (m3/s days) 165.7 147.1 1.06 ±1.96 Accept No 

CD (days) 61.9 34.8 0.20 ±1.96 Accept No 

2320 4759.2 
1365 

1971-2007 
(37 years) 

29.4 36.2 AMS (m3/s days) 142.2 145.2 -0.22 ±1.96 Accept No 

CD (days) 58.9 38.7 0.13 ±1.96 Accept No 

2322 18,753.3 
201 

1972-1999 
(28 years) 

160.1 172.9 AMS (m3/s days) 648.2 420.1 -0.10 ±1.96 Accept No 

CD (days) 58.8 28.2 -0.53 ±1.96 Accept No 

2323 7069.8 
580 

1965-2007 
(43 years) 

33.9 39.9 AMS (m3/s days) 203.8 222.9 0.77 ±1.96 Accept No 

CD (days) 55.2 31.9 -0.32 ±1.96 Accept No 

2325 1762 
1129 

1974-2007 
(34 years) 

7.2 10.2 AMS (m3/s days) 114.6 93.0 -0.81 ±1.96 Accept No 

CD (days) 69.4 41.2 -0.73 ±1.96 Accept No 



  

 

 

Table 3. The best fitted univariate distributions for the AMS and CD series of each station 

Station 
No 

Drought 
variables 

Distribution Parameters AIC PDF 

2305 
AMS Exponential α= 285.23 600.79  

 
 
 
Exponential;  
 

       
 

 
  

  

 
               

 
Weibull; 

     
 

 
 
 

 
 
   

 
  

 
 
 
 

           

 
Logistic; 
 

     
 

 
 
 
   
 

 
    

 
   
 

 
 

  

   

 
       
 
 

CD Weibull 
α= 63.06 
β= 1.81 

436.82 

2315 

AMS 
Weibull 

α= 1617.08 
β= 1.59 

590.87 

CD Logistic 
α= 14.27 
β= 57.44 

340.09 

2316 
AMS Exponential α= 165.71 515.26 

CD Weibull 
α= 69.52 
β= 1.85 

415.08 

2320 
AMS Exponential α= 142.16 442.81 

CD Weibull 
α= 65.72 
β= 1.59 

369.18 

2322 

AMS Weibull α= 716.21 
β= 1.54 

416.03 

CD 
Weibull α= 66.28 

β= 2.21 
267.37 

2323 
AMS Exponential α= 203.82 545.28 

CD Weibull 
α= 61.94 
β= 1.80 

416.82 

2325 
AMS Exponential α= 114.60 392.42 

CD Weibull 
α= 77.44 
β= 1.71 

348.53 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

Table 4. Correlation coefficients for drought characteristics 

Station No Pearson’s (ρ) Kendall’s (τ) 

2305 0.897 (6.9 x 10-17) 0.743 (8.3 x 10-13) 

2315 0.941 (1.6 x 10-17) 0.760 (8.1 x 10-11) 

2316  0.820 (3.2 x 10-11 ) 0.707 (5.1 x 10-11) 

2320 0.874 (1.7 x 10-12) 0.806 (3.3 x 10-12) 

2322            0.862 (3.7 x 10-9)            0.757 (2.2 x 10-8) 

2323 0.844 (1.1 x 10-12) 0.670 (3.1 x 10-10) 

2325 0.843 (4.1 x 10-10) 0.639 (1.4 x 10-7) 

Bracketed values indicate the computed p values 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

Table 5. Results of goodness of fit tests for the candidate copulas and parameter values of the best fitted copulas 

 

 

 

Station 
No 

Clayton Frank Gumbel-Hougaard Parameter of 
best fitted 
Copula (θ) 

DIAD Sn p value DIAD Sn p value DIAD Sn p value 

2305 0.225 0.04034 0.0095 0.148 0.02812 0.1082 0.108 0.0194 0.4825 3.893 

2315 0.089 0.02782 0.1284 0.082 0.02481 0.2988 0.071 0.0210 0.4918 4.166 

2316 0.145 0.03585 0.0322 0.093 0.02701 0.2071 0.063 0.0220 0.3941 3.418 

2320 0.165 0.03008 0.0481 0.090 0.01989 0.5096 0.073 0.0191 0.5183 5.148 

2322 0.136 0.03636 0.0627 0.097 0.03391 0.2298 0.082 0.0327 0.1921 4.121 

2323 0.157 0.02932 0.1348 0.143 0.02620 0.2682 0.127 0.0253 0.2761 3.030 

2325 0.244 0.05111 0.0103 0.235 0.04408 0.0349 0.197 0.0357 0.0916 2.767 



  

 

Table 6. Parametric and Non-parametric coefficients of upper tail dependence for all  

stations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Station   
        

2305 0.761 0.805 

2315 0.772 0.819 

2316 0.728 0.775 

2320 0.770 0.856 

2322 0.742 0.817 

2323 0.735 0.742 

2325 0.722 0.715 



  

 

 

Table 7. Comparison of univariate and bivariate return periods for drought characteristic 

 

 

 

 

 

                         

 

 

         

 

Station 
No 

Return Period 
(RP) (years) 

AMS 
(m3/s days) 

CD 
(days) 

         
(years) 

         
(years) 

       
  

(years) 

Relative difference 
between RP and 

         (%) 



  

  

2305 

50 1116 134 41 65 58 23 

100 1314 147 81 130 116 23 

200 1511 159 162 261 232 23 

2315 

50 3808 113 41 64 58 22 

100 4219 123 82 129 115 22 

200 4607 133 163 258 231 22 

2316 

50 648 145 39 68 60 26 

100 763 159 79 137 120 27 

200 878 171 157 275 241 27 

2320 

50 556 155 41 65 58 23 

100 655 172 81 130 116 23 

200 753 188 162 261 232 23 

2322 

50 1741 123 39 70 61 29 

100 1936 132 78 140 122 29 

200 2121 141 156 280 244 29 

2323 

50 797 132 40 67 59 25 

100 939 145 80 134 119 25 

200 1080 157 159 269 237 26 

2325 

50 448 172 40 68 59 26 

100 528 190 79 135 119 26 

200 607 206 158 271 239 26 
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Highlights 

 

 The Exponential, Weibull and Logistic distributions were the best fitted marginal 

distributions for AMS and CD series. 

 Gumbel-Hougaard copulas were selected as the most suitable bivariate distributions 

for joint modelling of the AMS and CD series at stations.  

 The derived GH copulas were used to derive conditional and joint return periods of 

various AMS and CD pairs. 

 According to the calculated relative differences, the highest drought risk was 

obtained for the station 2315 while the lowest drought risk was appeared for the 

station 2322. 

 

 

 

 

 

 


