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Abstract 

Monthly stream-flow forecasting can yield important information for hydrological applications 

including sustainable design of rural and urban water management systems, optimization of water 

resource allocations, water use, pricing and water quality assessment, and agriculture and irrigation 

operations. The motivation for exploring and developing expert predictive models is an ongoing 

endeavor for hydrological applications. In this study, the potential of a relatively new data-driven 

method, namely the extreme learning machine (ELM) method, was explored for forecasting monthly 

stream-flow discharge rates in the Tigris River, Iraq.  The ELM algorithm is a single-layer feedforward 

neural network (SLFNs) which randomly selects the input weights, hidden layer biases and analytically 

determines the output weights of the SLFNs. Based on partial autocorrelation functions on historical 

stream-flow data, a set of five input combinations with lagged stream-flow values are employed to 

establish the best forecasting model. A comparative investigation is conducted to evaluate the 

performance of the ELM compared to other data-driven models: support vector regression (SVR) and 

generalized regression neural network (GRNN). The forecasting metrics defined as the correlation 

coefficient (r), Nash-Sutcliffe efficiency (ENS), Willmott’s Index (WI), root-mean-square error (RMSE) 

and mean absolute error (MAE) computed between the observed and forecasted stream-flow data are 

employed to assess the ELM model’s effectiveness. The results revealed that the ELM model 

outperformed the SVR and the GRNN models across a number of statistical measures. In quantitative 

terms, superiority of ELM over SVR and GRNN models was exhibited by Ens = 0.578, 0.378 and 

0.144, r = 0.799, 0.761 and 0.468 and WI = 0.853, 0.802 and 0.689, respectively and the ELM model 

attained lower RMSE value by about 21.3% (relative to SVR) and by about 44.7% (relative to GRNN). 

Based on the findings of this study, several recommendations were suggested for further exploration of 

the ELM model in hydrological forecasting problems. 
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1. Introduction 

Accurate stream-flow modeling and forecasting are important tools for sustainable water resources 

planning and management. Accurate multiple-scale (e.g., weekly, monthly and seasonal) stream-flow 

forecasts are important for the efficient operation and planning of reservoirs, sediment transport in 

rivers, hydro-power generation, irrigation management decisions, scheduling reservoir releases and 

other hydrological applications (Araghinejad et al., 2006; Danandeh Mehr et al., 2014; Solomatine and 

Shrestha, 2009). Accurate short-term (real-time) forecasts (e.g., hourly or daily) are important for flood 

forecasting and developing early warning systems (Chiang et al., 2004; Guven, 2009; Yaseen et al., 

2015a). This type of forecasting can be a valuable tool not only for providing advanced warning of an 

impending flood event to reduce and mitigate the impacts of flooding on infrastructure, property and 

public health, but can also yield significant information that can be used by hydrologists in the areas of 

water resources management, water quality assessments, water pricing and implementing sustainable 

agricultural practices.     

Stream-flow time series forecasting is a challenging task. This is because the dynamics of 

stream-flow tends to be filled with chaotic disturbances, exhibiting complex non-linear dynamics and 

randomness phenomena (El-Shafie et al., 2009; Maier and Dandy, 2000; Singh and 

Sankarasubramanian, 2014). Enhancing the accuracy and reliability of forecasting such (potentially 

non-stationary) hydrological variables has always been an important research topic for hydrologists. To 

date, there has been no single universal or generalized approach that provides the most appropriate 

stream-flow forecasting results under all circumstances. This may be due to the fact that natural 

processes evolve uniquely through time while modeling approaches (which are based on finite-length 



  

datasets) are synthetic by construction and are controlled by parametric forms that differ from one 

modeling approach to the next (e.g. a family of models that may be skillful for predicting stream-flow 

may not be so useful for predicting urban water use, etc.).  

Over the last two decades, Artificial Intelligence (AI) approaches using machine learning 

algorithms have been broadly applied in the field of hydrological applications (Aziz et al., 2014; 

Chiang et al., 2011; El-Shafie and El-Manadely, 2010; Fijani et al., 2013; Khatibi et al., 2011; Moosavi 

et al., 2014; Moosavi et al., 2013; Rieker and Labadie, 2012; Saldarriaga et al., 2004; Shamim et al., 

2015; Shu and Burn, 2004). AI (or statistical) models, which are classified as ‘black box’ models, are 

very useful in modeling natural systems. These models do not require complex physical equations and 

parametric assumptions often required in the case of deterministic ‘white box’ (or physically-based) 

models. Due to the simplicity in their design and implementation, including their relative accuracy in 

forecasting problems, numerous studies have successfully demonstrated their applicability in 

hydrological modeling/forecasting (Afan et al., 2014; Deo and Şahin, 2016a; El-Shafie et al., 2012; 

Kisi, 2008a; Kişi, 2011; Makarynska and Makarynskyy, 2008; Nourani et al., 2012; Palani et al., 2008; 

Salcedo-Sanz et al., 2015; Shu and Burn, 2004; Taormina et al., 2012; Tezel and Buyukyildiz, 2015). 

In this paper, we focus on the application of AI approaches for stream-flow forecasting in a semi-arid 

region.  

Based on a recent review conducted by Yaseen et al. (2015b), stream-flow forecasting using AI 

techniques can be divided into four different categories; (i) classification and regression-based 

machine-learning approaches, (ii) fuzzy sets, (iii) evolutionary computation, and (iv) conjunction AI 

models (e.g. those based on wavelet filter or other hybrid-models). The artificial neural network (ANN) 

algorithm has been applied in numerous studies for stream-flow modeling (and forecasting) using its 

supervised and non-supervised capabilities (Abrahart and See, 2000; Allawi and El-Shafie, 2016; Bray 

and Han, 2004; Cigizoglu, 2005; Danandeh Mehr et al., 2014; Deo and Şahin, 2016a; Ghorbani et al., 



  

2016; Hsu et al., 2002). In order to consider the uncertainty in time series modeling, Chang and Chen 

(2001) proposed the earliest research using fuzzy set neural networks. This study was followed by 

many investigations of the fuzzy logic approach (El-Shafie et al., 2007; Graves and Pedrycz, 2009; 

Greco, 2012; Katambara and Ndiritu, 2009; ÖZger, 2009). Inspired by the Darwinian theory of 

evolution, the evolutionary-class of optimization algorithms have been used to solve challenging 

hydrological and water resources optimization problems (Tsoukalas et al., 2016). The main advantage 

of evolutionary optimization methods when compared to traditional gradient-based optimization 

algorithms stems from their ability to gradually search for solutions for the examined problem (using 

evolutionary concepts such as bacterial foraging, particle swarming, echolocation, etc.) instead of 

giving direct solutions (i.e. through partial derivatives of the model parameters, with respect to the 

input and output data). Many authors have examined the robustness of evolutionary optimization in 

stream-flow forecasting and modeling (Chen et al., 2008; Dorado et al., 2003; Guven, 2009; Kisi et al., 

2012; Makkeasorn et al., 2008; Ni et al., 2010; Savic et al., 1999; Whigham and Crapper, 2001). 

Likewise, conjunction AI models (e.g. wavelet-hybrid SVR models) have also been applied in areas of 

stream-flow, drought, global solar radiation and evaporative loss modeling (Deo et al., 2016a, b; Kisi 

2008b; 2011, Guo et al., 2011). While evolutionary optimization algorithms and AI conjunction models 

are worthwhile research endeavors to explore, they are beyond the scope of this work. In this work we 

focus on the evaluation of a newer data-driven algorithm (i.e. ELM) and its comparison with traditional 

data-driven approaches for monthly stream-flow forecasting with an application to a semi-arid region. 

However, in future studies, evolutionary optimization algorithms and conjunction models can be 

adapted for use with the newer data-driven algorithm explored in this work. 

 Despite the growing applications and usefulness of AI techniques in modeling stream-flow data 

(and other hydrological time series), the forecasts produced by some of these methods (e.g. ANN) still 

suffer from several shortcomings (e.g., over-fitting, slow learning speed, and local minima). An 



  

emerging data-driven algorithm for single hidden layer feed-forward networks (SLFNs), the extreme 

learning machine (ELM) model, was proposed by Huang et al. (2006a) and overcomes the 

disadvantages of the traditional feed-forward backpropagation ANN (FFBP-ANN) (i.e. over-fitting, 

slow learning speed, and local minima). In the last decade, the ELM algorithm has been applied in a 

diverse range of applications due to its high-performance and innovative design features (i.e., random 

generation of the parameters of hidden nodes without the need for iteratively tuning the algorithm, 

determining the output weights analytically by solving a least squares problem and yielding 

significantly faster solutions compared to traditional neural network models (e.g. FFBP-ANN)). Some 

recent applications of the ELM model in diverse fields of research include: the prediction of 

evapotranspiration (Abdullah et al. 2015), dew point prediction (Mohammadi et al., 2015), fast object 

recognition and image classification (Samat et al. 2014; Bencherif et al. 2015), land displacement 

prediction (Lian et al. 2012), sales prediction (Sun et al. 2008), melting point prediction of organic 

compounds (Bhat et al. 2008), big data classification (Wang et al. 2015), and the use of prior 

knowledge (Soria-Olivas et al. 2011). In comparison with other AI techniques (e.g., ANN, support 

vector regression (SVR), fuzzy logic, etc.), the ELM method has important advantages due to its 

improved (or, at least, comparable) generalization performance and faster learning speed (Deo and 

Şahin, 2015b; Deo and Şahin, 2016a; Deo et al., 2015b). In 2014, the first attempt of applying ELM in 

stream-flow modeling was conducted by (Li and Cheng). They integrated the wavelet decomposition 

approach with ELM in forecasting monthly river flow in southwestern China. Recently, Deo and Sahin 

(2016) applied ELM model for stream-flow forecasting in Queensland to validate its superiority over 

artificial neural network (ANN) models. Online sequential extreme learning machine (OSELM) 

approach investigated in forecasting daily stream-flow as an online warning system in Canada by 

(Lima et al., 2016). Another study conducted most recently utilizing OSELM in forecasting river 

discharge in Germany (Yadav et al., 2016). In summary, ELM exhibited a robust and fast soft 

computing technique in comparison with AI data-driven models. 



  

Since ELM is a promising but a relatively new approach for stream-flow forecasting, this paper 

investigates its potential for accurate monthly stream-flow forecasting in a semi-arid environment (the 

Tigris river in Iraq) and compares its performance against traditional data-driven methods. In the last 

decade, Tigris river has experience a negative deterioration in water resources management and 

sustainability due to climate changes and diplomatic issues in the region. Thus, establishing the current 

model comes with the important motive of developing an accurate expert system for this river system 

and other eco-hydrological systems in arid and semi-arid regions.  This study was inspired also by the 

growing application of the ELM model in general forecasting problems where it has been shown to 

outperform traditional data-driven methods such as ANN (and SVR) (Huang et al., 2012), in addition to 

its limited applications in the field of hydrological forecasting (where ANN and SVR are ubiquitously 

implemented). The work of Deo and Sahin (2016) compared an ELM (with an ANN) model for stream-

flow discharge and water level forecasting problems in Queensland (Australia) and found that the ELM 

produced more accurate forecasts than ANN with a lower computational expense. Other applications of 

the ELM model, broadly in the area of climate and hydrology, includes the forecasting of the effective 

drought index (Deo and Şahin, 2015b; Deo et al., 2015b) and the evaporative losses estimations in 

Australia (Deo et al., 2015a), downscaling of Global Climate Models (Acharya et al., 2013) in India, 

solar and wind forecasting problems in Turkey, Spain and the United States of America (Salcedo-Sanz 

et al., 2015) (Sahin et al., 2014). However, to the best of our knowledge, the ELM model has not yet 

been tested for stream-flow forecasting in the present study region, so exploring this technique carries 

significant merit.    

In this paper, the potential usefulness of the ELM approach was compared with other data-

driven methods including support vector regression (SVR) and the generalized regression neural 

network (GRNN) models in order to evaluate forecasting accuracy. In order to evaluate the 

performance of the proposed ELM approach, several quantitative performance indicators (section 3.5) 



  

are employed to validate the proposed research. The rest of this paper is organized as follows: section 2 

describes the case study and the catchment properties. Section 3 provides a detailed introductory to the 

methodologies including a description of the data-driven approaches, model configuration and the 

performance assessment indicators. The application of the ELM, SVR and GRNN models to the study 

catchment and their forecasting results are discussed in Section 4. Finally, the main findings and 

concluding remarks are highlighted in the last section. 

2. Case Study and Catchment Description 

The Tigris River is one of the largest rivers in the Middle East. It spans approximately 1718 km. At the 

starting point, the Tigris River runs from Turkey toward the south alongside Iraq. About 85% of its 

basin lies in Iraq, covering a catchment area of approximately 253,000 km. The Tigris River shares its 

space with the Euphrates River as the main sources of water (e.g., domestic, agriculture, industrial, and 

other uses) for the major cities of Iraq. The climate in this region is characterized by a semi-arid 

environment. In the capital city, Baghdad, the average rainfall is estimated to be about 216 mm with 

seasonal characteristics (December to February). The mean flow in the Tigris river is estimated to be 

about 235 m3/s. The maximum temperature is approximately 45 °C during the summer; the temperature 

drops to about 10 °C minimum in the winters (Al-Ansari, 2013; Salman et al., 2014). In this study, the 

monthly stream-flow time series data for the Baghdad station along the Tigris River in Iraq region were 

used. This data base was obtained from the USGS Data Series 540. The drainage area of this site is 

134,000 km2, which is located between (33° 24' 34") N Latitude and (44° 20' 32") E Longitude, as 

displayed in Fig.1. 

Fig. 1 

3. Theoretical Overview 



  

3.1 Extreme Learning Machine 

In this study, an extreme learning machine model (Figure 2) was developed that used a set of training 

data samples denoted as )},(),...,,{( 11 tt yxyx  with xt as the explanatory variable and yt as the response 

variable. The input vector (x1, x2… xt) incorporated the predictor variable defined by the lagged 

combinations of historical monthly stream-flow from which the data patterns and attributes were 

extracted and the vector (y1, y2… yt) was the response variable (i.e. the observed values of stream-flow 

used to validate the stream-flow forecasts). For the data points defined by t = 1, 2, …, N that contains a 

set of N- training data samples, 
d

t
x ℜ∈ and ℜ∈

t
y , the single layer feed-forward neural network 

(SLFN) with Λ hidden nodes can be mathematically expressed as (Huang et al., 2006a; Şahin et al., 

2014): 

   ( ) t

i

itiii zxgB =+∑
Λ

=1

. βα      (1) 

where, Β ∈ ℜΛ represents the weights that are to be estimated in the output layer between the nodes of 

the hidden layer (Λ nodes in total) and the ELM model’s output Z (zt ∈ ℜ), G (α, β, x) is the hidden 

layer activation function, αi ∈ ℜd
 and βi ∈ ℜ are the weights and biases in the ELM algorithm’s 

randomised layers, respectively, i represents the index of a particular hidden neuron and d is the 

number of input neurons (Figure 2). The value of d is determined by the number of input time series 

that is used for forecasting the stream-flow values.  

Fig. 2 

For the present study, the number of input neurons was denoted as a value from d = 1 to 5 (i.e. 

the set of input combinations) and a logarithmic sigmoid activation function G (x) following previous 

studies (e.g. (Deo et al., 2016; Deo and Sahin 2015)) was applied: 
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In the output layer where the forecasted values of stream-flow were generated, a linear transfer 

function was adopted as this is a common practice in hydrological time-series forecasting (Deo and 

Şahin, 2015a; Deo and Şahin, 2015b; Yonaba et al., 2010).  

As described by Huang et al. (2006), Eq. (2) can be used to approximate a set of N training set 

samples via: 

0
1

=−∑
=

N

t

tt yz  
(3) 

The basic premise of the ELM modeling framework is that, in accordance with Eq. (3), the 

ELM model with a suitable number of hidden neurons and randomized input layer weights and hidden 

neurons biases (α and β) can yield a zero error, leading to the realization that the network’s output 

weights (Β) can be determined analytically for a training sample. It should be noted that the magnitudes 

of α and β are sampled from (one of many) continuous probability distributions (such as the uniform, 

triangular or normal distributions, for example).   

Concordant with Eq. (3), one may estimate the values of Β directly from the N input-output set 

of data samples with a system of linear equations (Huang et al., 2006b): 

Β= GY  (4) 

such that: 
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Here, G is also known as the hidden layer output matrix (and T represents the transpose of the 

matrix/vector).  

The output weights of the ELM network can be deduced by inverting the hidden layer matrix 

using the Moore-Penrose generalized inverse function (+) (Huang et al., 2006a): 

YG
+=Β

^

  (7) 

where 
^

Β  represents the estimated output weights from the N data samples used in the modelling 

process.  

Finally, the forecasted values  of the monthly stream-flow data, 
^

y  can be obtained by the 

testing input vector (xtest) (outside of the training dataset) (Akusok et al., 2015): 

( )∑
Λ

=

+=
1

^^

.
i

itestiii xgBy βα   
(8) 

For a more detailed evaluation of the ELM algorithm, the readers can refer to the seminal works 

of (Huang et al., 2012; Huang et al., 2015; Huang et al., 2006c). 



  

3.2 Support Vector Regression  

Compared to the earlier developed ANN models (McCulloch and Pitts, 1943), support vector 

regression (SVR) is a relatively new and improved data-driven model that is based on statistical 

learning theory (Vapnik, 1995).  It was initially proposed to solve pattern recognition and 

classifications problems and was later adapted to solve regression problems. 

To describe the SVR model, let us assume that we have a set of N-training data, t = 1, 2, …, N, 

d

t
x ℜ∈ and ℜ∈

t
y . The regression function of the SVR (Vapnik, 1995) can be expressed as: 

���� = 	��	��� + � (9) 

where w is a weight vector, b is the bias and 	 presents a non-linear transfer function. Here, the 

objective of the transfer function is to nonlinearly map the input variables to a high-dimensional feature 

space. The convex optimization formula with an e-insensitivity loss function is presented as follows: 

min		��, �� = 12 ‖�‖� + � ����
�

���
�	 

(10) 

subject to the following constraints: 

������� + �� ≥ 1 − �� , � ≥ 0, �! = 1,… ,#� (11) 

where � is a slack variable that penalizes training error by the loss function for the chosen error 

tolerance. C is a positive regularization parameter that shrinks the weight parameters while minimizing 

the empirical error in the optimization problem (see Fig. 3).  

The SVR optimization problem is usually solved in its dual form using Lagrangian multipliers. 

The current study is conducted using Sequential Minimal Optimization (SMO) that was introduced by 



  

(Platt, 1999). In this study, the main reason for employing the SMO algorithm in forecasting stream-

flow over other possible algorithms is that SMO can provide an analytical solution for a subset that can 

be achieved without invoking a quadratic optimizer (He et al., 2014). This reduces the need for an 

expensive, third-party quadratic programming solver. For those interested in other optimization 

algorithms for SVR with applications in hydrology, one may refer to Raghavendra. N and Deka (2014), 

where several algorithms were proposed to solve the dual optimization problem.  

The flexibility of the SVR model is reflected in the use of the kernel function that nonlinearly 

maps the training input data to a higher, and possibly an infinite dimensional feature space (Tripathi et 

al., 2006). In this paper, the Radial Basis Function (RBF) was employed as the kernel function, which 

was also utilized in a number of previous studies and is, in general, popular in hydrology (Deo et al., 

2016a; Deo et al., 2016b).  The RBF kernel width, regularization, and slackness parameters were 

solved through a grid-search. 

Fig. 3 

3.3 Generalized Regression Neural Networks 

In order to further evaluate the ELM model for stream-flow forecasting, the GRNN model, which is a 

variation of RBF-based neural networks (similar to kernel regression), was used in this study 

(Cigizoglu and Alp, 2006). The main difference between the GRNN and the traditional FFBP-ANN is 

that the network’s architecture (described in more detail below) is fixed for a given input-output dataset 

while the FFBP-ANN requires the determination of an optimal number of hidden layers and hidden 

nodes. In GRNN only a single parameter needs to be optimized, the RBF kernel spread parameter, σ, 

which is used to decipher the similarity between input parameters. A spread that it too large induces 

over-smoothing and will typically cause the majority of input patterns to appear similar while a spread 

that is too small will not provide a smooth regression surface, thus an intermediate value of the 



  

smoothing parameter should be sought to provide an optimal amount of smoothing so that the GRNN 

generalizes well to out-of-sample inputs.  

The GRNN model is able to approximate any arbitrary continuous function mapping for a given 

input-output dataset, and draws the function estimates directly from the training input data (Kisi, 2006). 

As an additional advantage to the present forecasting problem, the GRNN model can generate 

consistent forecasts such that when the training data set size becomes large, the estimation error 

approaches zero, with only mild restrictions on the function (Cigizoglu and Alp, 2006). Based on these 

features, the GRNN was preferred over the back-propagation neural network approach (e.g. ANN 

model). The GRNN model consists of four layers that are designated as the input layer, pattern 

recognition layer, summation layer and the output layer as shown in Fig. 4. 

Fig. 4 

In the first layer, the input units pass the input variables provided to the network to the pattern 

layer through the input weights (which are equal to the input variables). The second layer, the “pattern 

layer”, is connected to the first layer via the input weights and in this layer the similarity between input 

patterns is calculated using a distance function, formula (13). The third (summation) layer in the 

GRNN architecture computes the prediction for a given input data vector as the weighted sum of the 

outputs aligned with those input patterns that are closest to a given input, formula (12). The final 

(output) layer receives the result from the summation layer and represents the network prediction, or 

stream-flow forecast (since the transfer function in the layer is linear). According to the literature, the 

GRNN with RBF neurons can provide similar or better performance when compared to the other ANN-

based algorithms and has the advantage that the network architecture is fixed and only a single 

parameter needs to be optimized (Yaseen et al., 2015b). Considering this, the RBF equation has been 

used to compute the distance metric between input patterns (Deo and Sahin, 2016; Deo et al., 2016).  



  

To achieve the forecasted value 
^

y for an unknown input vector xtest from a training dataset 

defined by t = 1, 2, …, N that contains a set of N- training data samples, d

tx ℜ∈ and ℜ∈ty it follows 

that (Firat, 2008): 

 �$ = ∑ �� . exp[−+��,-.,, ���]0���∑ exp[−+��,-.,, ���]0���  
(12) 

 +��, ��� = �1�� − ��23 4
5

2��

�
 

(13) 

where + denotes the distance function for the RBF kernel (Firat, 2008). In this study, we used the trial 

and error procedure to optimize the RBF spread parameter (Firat et al., 2010; Wang and Sheng, 2010). 

3.4 Model Development 

The stream-flow data spanned a period of 20 years (1991-2010). Table 1 displayed the statistical 

characteristics including training, testing and the complete data span.  In order to partition the data into 

the model development (training) and model evaluation (testing) parts, the full set was split into 16 

years (80% of the set) for the training phase and the remaining 4 years (20% of the set) was used for 

the testing phase. 

Table 1. 

As a prior and significant step in developing reasonable forecasting models using data-driven 

techniques, the selection of proper input variables are required to be supplied to the different models 

(i.e. ELM, SVR, and GRNN) (Graves and Pedrycz, 2009; Kisi, 2007; Kisi, 2008b; Kisi et al., 2012; 

Maier and Dandy, 2000; Nourani et al., 2012; Pramanik et al., 2010). In the literature, there are two 

common methods for input selection: (i) determining the number of sequential time series lagged data 



  

values that can provide the best forecast performance using the trial and error procedure or (ii) the most 

correlated lagged variable(s) that can be determined using the auto-correlation function (ACF) and the 

partial auto-correlation function (PACF) statistical methods. In this study, the input combinations were 

selected based on ACF and PACF, as done in other hydrological forecasting studies (Maier and Dandy, 

2000; Maier et al., 2014; Sang, 2013; Yaseen et al., 2015b; Zhang et al., 1998).  

To develop an accurate forecasting model, we analysed the patterns in the observed stream-flow 

data for the training set by using the correlation statistics via autocorrelation and partial autocorrelation 

functions to identify suitable predictors (Sudheer et al., 2002; Tiwari and Adamowski, 2013; Tiwari 

and Chatterjee, 2011). The statistical approach employed time-lagged information from Q time-series 

to analyze the monthly time periods between the current Q and the Q value at some specific point in the 

past (i.e. a time lag) to assess any temporal dependencies existing in the time-series. Subsequently, the 

optimum inputs for each (monthly) time lag were identified by statistically analyzing lagged 

combinations and the respective correlation coefficient (r). 

Fig. 5 

Fig. 5 shows auto-correlation and partial auto-correlation functions for monthly stream-flow 

data. It was evident that the PACF was useful for identifying the model inputs as it removed the 

dependence on intermediate elements (those within lags interpreted as a regression of time-series 

against its past lagged value) and identified the extent to which current stream-flow is correlated to past 

months. It was evident that the original signal (Q (t)) and the 1-month lagged signals Q (t – 1) where 

highly correlated (with r ≈ 0.8). Furthermore, the PACF also exhibited statistically significant 

correlations for several monthly lags and most importantly, at five inputs at lags of 1, 2, 3, 4 and 5 

months that were used for forecasting the stream-flow Q (t). This procedure aimed to develop a model 

that utilized memory (i.e. time-lagged or past values of stream-flow) to forecast the present monthly 



  

value. It should be noted that, one-month-ahead forecasting for stream-flow at Baghdad station is 

crucial for the decision-maker for water resources in order to have a vision for managing the available 

water for different users. For instance, irrigation schedule (re-adjusting the schedule for existing crops 

or tuning for the planning crop pattern), industry productions (giving proper decision on the amount of 

productions relying on the amount of water availability).  

Subsequently, a set of five input sets were designed with lagged t of up to 5 months for one 

month lead time forecasting of stream-flow discharge using ELM, SVR, and GRNN methods, via: 
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where Q (t) = the target output or forecasted stream-flow value, Q (t – 1) = the first input (1-month 

lagged Q), Q (t – 2) = second input (2-month lagged Q), Q (t – 3) = the third input (3-month lagged Q), 

Q (t – 4) = the fourth input (4-month lagged Q), and Q (t – 5) = the fifth input (5-month lagged Q), and 

f represents the model type (i.e. ELM, SVR, or GRNN).  

As a requirement in a problem with data-driven models, the scaling of the input variable(s) was 

undertaken to avoid data patterns and attributes with large numerical ranges dominating the role of the 

smaller numerical ranges via: 

minmax

min
,

QQ

QQ
Q i

normalizedi
−

−
=  

(1

5) 

where Qi,normalized is the normalized value (between 0 and 1) for mean monthly stream-flow; Qi, Qmin 

and Qmax are the current stream-flow value that is to be normalized and minimum and maximum 

stream-flows within the historical dataset. 



  

In order to develop the optimal ELM model, the best neural network architecture (with the 

optimum number of hidden neurons) was identified to create an appropriate ELM structure for stream-

flow forecasting, following earlier studies (Deo et al., 2016; Deo and Sahin 2015). Using the respective 

training datasets for different input combinations (of lagged stream-flows) defined in Eq. (14), the 

ELM model architecture that performed the best in the training period was determined as the optimal 

model. To identify the optimal ELM model, we followed the approach in Deo et al. (2016b) where the 

ELM network architecture was randomly executed 1.0 × 103 times with 1:2N+1 hidden neurons (in 

increments of 1) to investigate how the randomized hidden layer weights and biases varied the model’s 

output in the N-data training period. This process was performed to acquire the smallest value of the 

root mean square error (RMSE) between the network output (forecast) and the observed stream-flow in 

the train/target dataset. Consequently, the optimum ELM model which had a single hidden layer 

network (with an input, hidden and output layer), resulted in about 100 randomizations that were 

examined for a stable solution of the forecasted stream-flow values. For each model run, the modeling 

time was also recorded to examine the computational efficiency. 

The SVR model was optimized using the SMO algorithm as mentioned in section 3.2. This is 

due to the features of the SMO algorithm including good computational speed and simple 

implementation. The theoretical detailed procedure of this optimization algorithm can be found in 

(Platt, 1999; Takahashi et al., 2008; Yang et al., 2007). The positive regularization C parameter and 

kernel function parameter γ were determined via the grid-search algorithm (He et al., 2014; Hsu et al., 

2003). The GRNN model was developed using NeuroSolutions software (Principé and Lefebvre, 

1998). NeuroSolutions is a tool that provide the ability to solve temporal problems by extracting how 

the time series pattern changes with time. RBF kernel spread parameter σ was determined for the 

GRNN model in accordance to the minimum RMSE. 

3.5 Model Performance Indicators 



  

To evaluate the performance of the three modeling approaches (Legates and McCabe, 1999a), the 

following statistical score metrics were used. 

I. Correlation coefficient (r) expressed as: 
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II. Willmott’s Index of agreement (WI) (Willmott et al., 2012) expressed as: 
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III. Nash–Sutcliffe coefficient (ENS), expressed as: 
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IV. Root mean square error (RMSE) expressed as: 
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V. Mean absolute error (MAE) expressed as: 
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where Qobs and Qfor are the observed and forecasted ith value of the stream-flow, obsQ
_

 and for
Q
_

 

are the average of observed and forecasted Q. 

4. Results and Discussion 

A direct comparison of the ELM with SVR and GRNN models is made in Table 2, which shows the 

models’ performance metrics computed by Eq. (16-20) for each of the investigated models (i.e. with 

different time lagged stream-flow observations as model inputs) within the testing period phase. Here, 

we have used various performance metrics to assess the models with great detail. In particular, the 

correlation coefficient compares directly the observed and forecasted streamflow values in test period 

whereas the Willmott’s Index and Nash-Sutcliffe efficiency for normalized metrics to measure the 

overall prediction skill. As correlation coefficient is largely based on linear agreements between 

observed and forecasted streamflow, WI and ENS which are free from any assumptions were utilized. 

The ENS  provides a better assessment of  model as it is sensitive to differences in the observed and 

forecasted means and variances (ASCE, 2000; NERC, 1975). However, the WI has an advantage over 

the r2 and ENS where differences are calculated as squared values so larger values can be overestimated 

whereas smaller values can be neglected (Legates and McCabe, 1999b). This insensitivity was 

overcome using WI (Willmott 1981) as the ratio of the MSE was considered instead of the square of 

the differences (Willmott, 1981). It can be noted that the ELM model outperformed the SVR and 

GRNN models in terms of each performance indicator and computational run-time (section 3.5). The 

best sets of model inputs were not the same for each of the explored predictive modeling techniques, 

indicating that the respective model type responds differently to different input variable sets and the 

data patterns/attributes in the historical input data. Overall, the most accurate input combinations were 

based on models M5, M1 and M2 for the ELM, SVR and GRNN, respectively. The assessment of the 

different modeling paradigms (ELM, SVR, and GRNN) with different input variable sets (i.e. M1-M5) 



  

illustrates that the most accurate forecasts depend on the model that is used and the optimization of the 

model parameters for the given input data - this is the reason why the different modeling techniques 

perform best with different input variable sets. 

A closer assessment of the results showed that for the ELM model, the lowest magnitude of the 

absolute error metric (MAE = 71.544 m3 s-1) was acquired by the fifth antecedent value of stream-flow 

as an input variable. In this study, the modeling process was terminated at the fifth lag time in 

accordance with the PACF statistical results in which the first five lag times were the correlated 

attributes in forecasting one-step-ahead (Fig. 5). Using the efficiency criteria as the basis for identifying 

an optimal model for the ELM, SVR and GRNN (Nash-Sutcliffe efficiency (Ens) 0.578, 0.378 and 

0.144, respectively) yielded the correlation coefficient (r) (0.799, 0.761 and 0.468) and Willmott’s 

index (WI) (0.853, 0.802 and 0.689). It should be noted that the WI was inspected for analyzing the 

trends on the modeling accuracy as it is a descriptive measure similar to the regression coefficient. 

However, the regression coefficient can be overly sensitive to extreme values as it is based on the 

differences in the observed and forecasted means and variances. Thus, larger values in forecasted 

stream-flow can be overestimated by r whereas smaller values can be neglected (Legates and McCabe, 

1999a). This issue can be overcome using the WI metric where the ratio of the mean square error is 

considered instead of the square of the differences (Willmott, 1981). Therefore, WI was not established 

to be a measure of correlation, but rather applied to analyze the consistency in the modeling accuracy. 

The mean absolute error measures (e.g., RMSE and MAE), which represented the raw error values of 

the forecasted stream-flow in the testing period were also evaluated for all predictive models. The 

ELM, SVR and GRNN yielded a RMSE (m3s-1) value of 87.906, 106.749 and 125.187, respectively and 

the MAE (m3s-1) values were 71.544, 90.905 and 103.551, respectively. Taken together, it is 

noteworthy that several evaluation metrics indicate the merits of the ELM over the SVR and GRNN 

models.    



  

The computational advantage of ELM in comparison to SVR and GRNN is a useful 

characteristic to consider when designing stream-flow forecasts for decision making and real-time 

forecasting applications. For monthly streamflow forecasts (the focus of this study), the computational 

efficiency of ELM would be useful for building an ensemble forecast, such as an ensemble of 

bootstrap-based forecasts (Tiwari and Adamowski, 2013); for short-term stream-flow forecasting, the 

ELM’s computational efficiency would be well suited for flood-warning systems when compared with 

other models (e.g. SVR or GRNN).  From the computational run-time results (Table 2), on average, we 

can run three ELM models for each SVR and GRNN model that is tested. This result, which agrees 

closely with the other investigations in terms of a shorter modeling time (Deo et al., 2016; Deo and 

Sahin, 2016; Deo and Sahin 2015; Sahin et al., 2014; Quilty et al., 2016), identifies a distinct advantage 

of the ELM over the SVR and GRNN models. The shorter modeling time is due to the non-tuned 

mechanism of the ELM algorithm (i.e. non-iterative-based solutions to the network parameters), and 

this led the ELM model to be much faster in comparison with the SVR and GRNN models. The current 

use of the ELM in forecasting hydrological time series is an offline application where the run-time is 

not significant.  In real-time forecasting problems, the model’s run-time for producing a forecast is of 

high importance, especially for complex problems in water resources planning and decision-making, 

where forecasts may be required at fine temporal and spatial units for flood forecasting, hydro-power 

generation, or forecasting water quality indicators to inform expert-(warning) systems.   

To proceed with the further examination of the forecasting models, a series of scatter-plots for 

each input combination for the ELM, SVR and GRNN models are shown in Figure 6. The regression 

coefficient R2 and the regression formula (y=aox+a1) is also displayed in the scatter-plots. The ELM 

model was able to obtain the best fit line between the observed and the forecasted stream-flow values 

using the first input combination with an R2 value of 0.66. With any similar input combinations, the 

SVR and the GRNN models had R2 = 0.57 and 0.43, respectively. 



  

Performing an assessment of model accuracy based on investigating the low-, medium- and 

high-flow forecasted stream-flow values is useful to give a deeper and more comprehensive analysis. 

Fig. 7 illustrates the patterns noted for the fluctuations between the observed and the forecasted stream-

flow values for the three models within the testing period. This shows the percentage of the under- or 

over-forecasted stream-flow values. As shown in this figure, the low and medium values of the stream-

flow were slightly overestimated, while the high values of the stream-flow were under-estimated. The 

relatively poor performance for these extreme values of stream-flow shows that there were possibly an 

insufficient number of peak flows in the training dataset used in estimating the model’s parameters. 

However, despite this, the ELM-based forecasts were able to more closely match the actual stream-

flow values within the testing period (2007-2010) compared to the SVR and GRNN models.  

It is also useful to present a visualization of the distribution error for a forecasting model within 

the testing period. Fig. 8 illustrates the magnitude of the relative error (RE) indicator for the ELM, SVR 

and GRNN models. The figure shows that the maximum RE values are approximately (-40.3, -52.6 and 

-42.8) % for the ELM, SVR and GRNN, respectively. However, the ELM model’s relative error 

percentages were between (-10% and 10%) for more than 71% of the testing dataset. Here, it can also 

be seen that the SVR and the GRNN models displayed consistency in their magnitude of the RE when 

compared with the ELM model. It was also not surprising to note that the maximum distribution error 

for all prescribed models appeared in the high peak stream flow values. 

In predictive modelling especially for hydrological variables (e.g. streamflow) that exhibit 

significant chaotic (stochastic) behavior, it is important to cross-validate the model in terms of the 

statistical distribution of the observed and forecasted property. This can assist in deducting the level of 

agreement between the datum point pairs of observed and forecasted streamflow. We thus generated 

box-plots with the respective distributions to demonstrate how closely the ELM model forecasts 

compared with the original time series and the other data-driven approaches. In Fig. 9, the box-plots are 



  

utilized to indicate the degree of overall spread in the observed and predicted data in accordance with 

the respective quartile values and the whiskers. It should be noted that the lower quartile, Q25, 

represents the 25th percentile and the upper quartile, Q75, represents the 75th percentile, while the 

median is represented by, Q50, the 50th percentile. Whiskers are stretched outwards from the lower and 

upper quartiles (Q25-Q75) up to the smallest and largest outliers’ values, respectively. Based on the box-

plots and whiskers, it was evident that the spread of the ELM model-based forecasts closely resembled 

the observed stream-flow, with a slightly larger interquartile range.  The results showed strong high 

flow predictive capability of the ELM although the low flows tend to be slightly overestimated when 

compared to the observed time-series. On the other hand, the SVR and GRNN models showed reduced 

variance and poorer predictive coverage for the lower flows when compared to the observed time series 

and the ELM model. In terms of the practical advantage of the model, one may ascertain that the ELM 

model is expected to generate forecasted streamflow that exhibit closer resemblance to the observed 

values. Furthermore, the accuracy of the GRNN model is significantly limited as the distribution of the 

test data cover a much smaller range than the observed streamflow values.       

The results presented in this paper support the potential advantage of employing the ELM over 

the SVR and GRNN models for accurate and reliable stream-flow forecasts, indicating that this model 

may be further explored by hydrologists.  

5. Conclusion 

The primary basis of the present research was to investigate the applicability and capability of the 

extreme learning machine algorithm for forecasting one-month-ahead stream-flow in semi-arid 

environments, with the Tigris River in Iraq as an example. The effectiveness of the ELM model was 

investigated and compared to data-driven models widely used in hydrological forecasting application 



  

(i.e., support vector regression and generalized regression neural network) and evaluated in terms of 

several performance indicators.  

In conclusion, the main findings of this research can be summarized as follows: 

1. It was found that the ELM algorithm was a useful alternative to the SVR and GRNN models for 

forecasting stream-flow in the semi-arid environment of the Tigris River in Iraq. 

2. The test dataset (2007-2010) indicated that ELM can potentially improve the predictive 

accuracy of the modeling process compared to the SVR and the GRNN models. Based on the 

absolute values of the error metrics, it was found that the RMSE and MAE were reduced 

significantly by about 17.44-29.78 % and 21.3-30.92 %, respectively when the ELM model was 

evaluated compared to the SVR and GRNN models.  

3. Overall, the results showed a good improvement in the forecasting accuracies using the ELM 

model. The degree of matching between the observed and forecasted values of stream-flow was 

significantly enhanced by the ELM model over the other two data-driven models (SVR and 

GRNN). The ELM forecasts of the monthly stream-flow pattern was very close to the observed 

records. In addition, the relative error percentages did not exceed by ± 10% for over 70 percent 

of the tested data. 

4. The computational efficiency of the ELM - due to the least-squares formulation used to estimate 

its model parameters – enables the rapid development of numerous models that can process 

large datasets which is very useful for ensemble learning approaches or forecasting at very fine 

temporal and spatial scales, both of which are very relevant problems/research topics in 

hydrology (and other environmental/engineering disciplines). 

In the present study, the investigated ELM model yielded forecasts of stream-flow based on 

historical data of stream-flow itself, and therefore, did not incorporate the exogenous effects of 



  

hydrological variables (e.g. rainfall, temperature, humidity and evaporation) and large-scale climatic 

phenomena (e.g., sea surface temperatures or climate mode indices) (Deo and Şahin, 2016b) that could 

influence the evolution of the stream-flow data patterns. As this is considered a limitation of the present 

technique, in follow-up research, one could also enhance the ELM model performance by using 

multivariate modeling inputs by considering the various related variables that can be used to forecast 

streamflow.  As streamflow model’s input data can exhibit significant stationarity features such as 

periodic patterns, trends and other forms of stochasticity, the potential application of a multi-resolution 

algorithm where the cyclic behavior of the hydrological inputs are extracted by wavelet transformation 

algorithm (e.g. (Deo et al., 2016a; Tiwari and Adamowski, 2013)) can also be implemented into the 

ELM algorithm. In this paper, we have used time-lagged streamflow data as inputs, but in a follow-up 

study, multiple input can be used where a separate feature selection algorithm can be used to extract the 

pertinent useful features for an accurate estimation of stream-flow at multiple gauging locations and 

forecast lead times. In doing so, a variety of non-linear variable input selection methods such bootstrap 

rank-ordered CMI (broCMI) discussed in (Quilty et al. (2016)), evolutionary method of Salcedo-Sanz 

et al., (Salcedo-Sanz et al., 2014) and tree-based iterative input scheme (IIS) (Galelli and Castelletti, 

2013) can be implemented to improve the forecasting efficiency.  Moreover, this paper has validated 

the ELM model for monthly forecasting but  it is also worthwhile to explore the effectiveness of the 

ELM model for short-term stream-flow forecasting (e.g. minute, hourly or daily scales) for its 

possibility in short-term prediction and the associated model uncertainties that may provide us with 

greater insights into its practicality for flood discharge forecasting problems. 
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Fig. 1: Case study site: Baghdad stream-flow station located in Iraq region.  
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Fig. 2: The topological structure of extreme learning machine network used in this study. Inputs layer 

are denoted the lag times of the streamflow, hidden nodes presents the hidden layer that randomly 

generated and the output layer generates the predicted values of the streamflow, Q. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

Fig. 3: Nonlinear support vector machine with Vapnik’s -insensitive loss function (Raghavendra. N and 

Deka, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Schematic of the generalized regression neural network architecture (Firat, 2007). 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Auto-correlation and partial auto-correlation function for the monthly stream-flow time series at 

the Baghdad (Iraq) stream-flow station. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Scatter-plots of observed and simulated mean streamflow, Q (t) using the ELM, SVR and GRNN model with five sets of input 

combination (Model 1: Q (t – 1); Model 2: Q (t – 1, t – 2); Model 3: Q (t – 1, t – 2; t – 3); Model 4: Q (t – 1, t – 2, t – 3, t – 4) and Model 5 (t 

– 1, t – 2, t – 3, t – 4, t – 5). m
3
s

-1
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Fig. 7: Optimal models and observed streamflow for testing period (2007-2010) using ELM, SVR and 

GRNN. 

 

Fig. 8: The relative distribution error (RE) for the testing period phase (2007-2010) using ELM, SVR 

and GRNN models. 
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Fig. 9: Box-plots of the observed streamflow compared with forecasted streamflow from ELM, SVR 

and GRNN models. 

 



  

Table 1: Descriptive statistics for mean monthly stream-flow for Tigris River at Baghdad (Iraq) (1991-2010). 

 

Partition Time Period No. Records 
Q (m

3
s

-1
) 

Mean St. Dev. Median Minimum Maximum 

Training Jun. 1991 - Dec. 2007 187 780.099 379.712 674.700 298.100 2651.000 

Testing Jan. 2007 - Dec. 2010 48 489.879 136.746 445.900 331.400 936.400 

Complete Jun. 1991 - Dec. 2010 235 720.820 363.469 636.900 298.100 2651.000 
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Table 2: Performance indicators using correlation coefficient (r), Willmott’s Index (WI), Nash-Sutcliffe efficiency (ENS), Root 

mean square error (RMSE), mean absolute error (MAE), and time consumption (seconds) for the ELM, SVR and 

GRNN models evaluated in the testing period.’ 

 

Models 

 

  

Correlation 

Coefficient, 

r 

Willmott's 

Index 

WI 

Nash-Sutcliffe 

Coefficient, ENS 

Root mean 

square 

error, m
3
s

-1
 

RMSE 

Mean 

Absolute 

Error, m
3
s

-1
 

MAE 

Model 

Run-

Time, s 

ELM 

M1 0.810 0.820 0.473 98.272 87.012 2.620 

M2 0.817 0.834 0.501 95.571 83.899 2.749 

M3 0.815 0.814 0.406 104.307 92.544 3.129 

M4 0.803 0.826 0.471 98.432 85.117 3.176 

M5 0.799 0.853 0.578 87.906 71.544 3.617 

SVR 

M1 0.761 0.802 0.378 106.749 90.905 9.732 

M2 0.715 0.769 0.325 111.228 95.140 11.279 

M3 0.741 0.776 0.240 118.020 101.850 11.014 

M4 0.728 0.769 0.220 119.539 106.585 12.935 

M5 0.715 0.768 0.158 124.155 108.367 10.148 

GRNN 

M1 0.658 0.689 0.108 127.818 113.698 13.519 

M2 0.468 0.540 0.144 125.187 103.551 8.781 

M3 0.496 0.549 0.106 127.988 107.989 10.812 

M4 0.346 0.507 0.027 133.522 114.063 15.034 

M5 0.248 0.416 0.000 135.350 112.606 12.361 
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