
Journal of Hydrology 538 (2016) 539–550
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol
Predicting available water of soil from particle-size distribution and bulk
density in an oasis–desert transect in northwestern China
http://dx.doi.org/10.1016/j.jhydrol.2016.04.046
0022-1694/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +86 10 64889270.
E-mail address: shaoma@igsnrr.ac.cn (M. Shao).
Danfeng Li a, Guangyao Gao a,b, Ming’an Shao c,⇑, Bojie Fu a,b

a State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
b Joint Center for Global Change Studies, Beijing 100875, China
cKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing
100101, China

a r t i c l e i n f o s u m m a r y
Article history:
Received 21 January 2016
Received in revised form 21 April 2016
Accepted 22 April 2016
Available online 30 April 2016
This manuscript was handled by Corrado
Corradini, Editor-in-Chief, with the
assistance of Juan V. Giraldez, Associate
Editor

Keywords:
Soil water characteristic curve
Soil available water
Pedotransfer functions
Oasis–desert transect
A detailed understanding of soil hydraulic properties, particularly the available water content of soil,
(AW, cm3 cm�3), is required for optimal water management. Direct measurement of soil hydraulic prop-
erties is impractical for large scale application, but routinely available soil particle-size distribution (PSD)
and bulk density can be used as proxies to develop various prediction functions. In this study, we com-
pared the performance of the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Arya
and Heitman (AH) model, and Rosetta program in predicting the soil water characteristic curve (SWCC) at
34 points with experimental SWCC data in an oasis–desert transect (20 � 5 km) in the middle reaches of
the Heihe River basin, northwestern China. The idea of the three models emerges from the similarity of
the shapes of the PSD and SWCC. The AP model, MV model, and Rosetta program performed better in pre-
dicting the SWCC than the AH model. The AW determined from the SWCCs predicted by the MV model
agreed better with the experimental values than those derived from the AP model and Rosetta program.
The fine-textured soils were characterized by higher AW values, while the sandy soils had lower AW val-
ues. The MV model has the advantages of having robust physical basis, being independent of database-
related parameters, and involving subclasses of texture data. These features make it promising in predict-
ing soil water retention at regional scales, serving for the application of hydrological models and the opti-
mization of soil water management.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Reasonable management of the soil water content status is cru-
cial for plant growth and crop production in arid and semi-arid
regions (Lawes et al., 2009; Hosseini et al., 2016). The soil available
water, AW (cm3 cm�3), is the amount of water released between
in situ field capacity and the permanent wilting point. To deter-
mine AW, the pressure-based values of field capacity and wilting
point are usually derived from the soil water characteristic curve
(SWCC). This property measures the capability of soil to retain
water, and reflects the effects of textural composition, mineralogy,
soil structure, organic matter content and management practices
(Arya et al., 2008). A quantitative and precise estimation of the
SWCC is required in many hydrological models and is essential
for a wide range of applications, such as soil and water conserva-
tion, irrigation scheduling, solute transport, and plant stress and
growth (Ramos et al., 2014).

Direct measurement of the SWCC are always preferred in a
small area, but laboratory procedures to determine it are time-
consuming and costly, measuring it for large-scale regions at a fine
spatial resolution is impractical (Gijsman et al., 2003). Indirect esti-
mation of the SWCC from routinely available soil properties is sim-
ply one of the most feasible alternatives (Soet and Stricker, 2003;
Ramos et al., 2014; Arya and Heitman, 2015). Particle-size distribu-
tion (PSD) is a basic property of mineral soils and can be measured
easily and quickly. Using PSD, alone or in combination with bulk
density and soil organic matter content, as surrogate data is attrac-
tive to predict selected points on the SWCC or the entire SWCC
(Arya et al., 1999; Skaggs et al., 2001; Ramos et al., 2014; Jensen
et al., 2015).

Current indirect methods for the SWCC estimation are classified
into empirical, semi-physical, and conceptual methods (Schaap
et al., 2004; Arya and Heitman, 2015). Following an empirical
approach, a considerable number of pedotransfer functions (PTFs)
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have been developed (Nemes et al., 2006; Bayat et al., 2013;
Ghanbarian et al., 2015). Overviews of the current status of PTF
approaches have been given by Wösten et al. (2001) and Gijsman
et al. (2003). Pachepsky et al. (2015) comprehensively summarized
the trends in PTF development and in input and output data, and
methods to build PTFs. Various PTFs are usually given in the form
of either a tabulation (Schaap and Leij, 1998; Soet and Stricker,
2003; Al Majou et al., 2008) or continuous functions (Wösten
et al., 1999; Nemes and Rawls, 2006; Bayat et al., 2013;
Haghverdi et al., 2015) to predict either a single point on the SWCC
(Skaggs et al., 2001; Ramos et al., 2014) or parameters for the
entire SWCC (Schaap et al., 2001). For example, the PTFs in the
Rosetta program allow the estimation of parameters of van Gen-
uchten equation for describing SWCC (van Genuchten, 1980) using
limited (textural classes only) to more extended (texture, bulk den-
sity, and one or two water retention points) input data (Schaap
et al., 2001). The reliability of PTFs can be hindered by the mis-
match in measurements of data for developing the functions. The
utility of PTFs may be limited to the environmental conditions
the original data were collected and can be compromised by the
mismatch in measurement times (Pachepsky et al., 2015). The
application of regional PTFs has to be adapted to the particular sit-
uation under consideration (Wösten et al., 2001; Gijsman et al.,
2003; Botula et al., 2012; Antinoro et al., 2014).

The semi-physical models provide conceptual insights into the
physical relationship between soil particle size and pore size. These
models are developed based on the close similarity between the
shapes of PSD and pore size distribution (Arya and Paris, 1981;
Arya et al., 1999; Hayashi et al., 2006; Hwang and Choi, 2006). A
significant contribution, the AP model, was made by Arya and
Paris (1981). In this semi-physical approach, pore radii were deter-
mined by scaling the pore lengths of cubic close-packed assem-
blages with spherical particles to those of the natural structure.
Researchers thereafter have suggested that the SWCC prediction
by the AP model would improve if the scaling parameter (a) were
formulated as a varying rather than a constant value over soil par-
ticle ranges and textural classes (Basile and D’Urso, 1997; Arya
et al., 1999; Vaz et al., 2005). The AP model has been progressively
modified and used to predict SWCC. Arya et al. (1999) expressed
the a values by logistic growth and linear fitting equations, which
improved the SWCC estimation for 23 soils from the UNSODA
hydraulic properties database (Leij et al., 1996). Antinoro et al.
(2014) found that SWCCs of 140 Sicilian soils predicted by the AP
model with a values formulated by the logistic growth equation
were more biased than using a values given by the linear equation
with regression coefficients directly from Arya et al. (1999). There-
fore, the empirical parameters in the semi-physical models need to
be determined in individual studies (Arya and Heitman, 2015;
Jensen et al., 2015).

Attempts have been made to develop conceptual methods for
reducing dependence on experimental data. Mohammadi and
Vanclooster (2011) introduced a packing-state coefficient into the
calculation of pressure heads for individual particle ranges in nat-
ural structure soil. The SWCCs predicted by this model (the MV
model) approximated to the experimental SWCCs across 80 soils
from the UNSODA hydraulic properties database (Mohammadi
and Vanclooster, 2011). Arya and Heitman (2015) proposed a con-
ceptual model (the AH model) involving only soil PSD and bulk
density for predicting the SWCC. The predicted SWCCs showed rea-
sonable to excellent agreement with experimental SWCCs in 75% of
41 soils from the UNSODA hydraulic properties database (Arya and
Heitman, 2015). The performance of the conceptual procedures is
generally robust and independent of soil type, allowing improve-
ment of the SWCC prediction at regional or watershed scales.

The performance of semi-physical models could be affected by
the database used for calibration and validation (Mohammadi
and Vanclooster, 2011). The conceptual models have robust phys-
ical basis, but the reduced sensitivity to measured data might gen-
erate some deviations due to the simplified pore geometric
concepts of the models, and the uncertainty and errors of measure-
ments. Few studies comparing the semi-physical and conceptual
models in SWCC prediction have been reported (Mohammadi
and Vanclooster, 2011; Arya and Heitman, 2015). It is necessary
to assess the applicability of these models in studies at regional
or watershed scales in arid and semi-arid regions where the soil
water content status is vital for plant growth. In the middle reaches
of the Heihe River in northwestern China, various land use types
intersperse with one another. Soils have a layered structure with
obvious heterogeneity in both the horizontal and vertical direc-
tions (Li and Shao, 2013). It has been reported that land use, soil
texture and structure have substantial effects on water retention
(Hayashi et al., 2006;Wu et al., 2011; Haghverdi et al., 2015). Accu-
rate prediction of soil water retention is essential for optimizing
irrigation schedules, draining to alleviate salinization, and calculat-
ing ecological water requirement in this region.

The objectives of this study were: (1) to compare the perfor-
mance of the AP, MV, and AH models, and Rosetta program in pre-
dicting the SWCC of various soil types, (2) to choose the most
appropriate model for estimating AW in an oasis–desert transect
in the middle reaches of the Heihe River basin.

2. Model description

2.1. Model theory

The idea of the three models (the AP model, MV model and AH
model) emerges from the similarity between the shapes of the PSD
and SWCC. The cumulative PSD is divided into m (mP 20) frac-
tions, with solid mass and mean particle radius, wi (g g�1) and Ri

(cm), respectively, for the ith fraction ði ¼ 1;2; � � � ;mÞ. Solid parti-
cles in each fraction are assembled to form a hypothetical, cubic
close-packed structure consisting of uniform-sized spherical parti-
cles with bulk density (qb, g cm�3) and particle density (qs,
2.65 g cm�3) equaling those measured on the natural structure
sample.

The void ratio, e (dimensionless), is determined by:

e ¼ ðqs � qbÞ=qb ð1Þ
Starting with the first fraction, calculated pore volumes are pro-

gressively summed and considered filled with water. The summa-
tion of filled pore volumes is divided by the bulk volume to obtain
the volumetric water content, hi (cm3 cm�3), which is given by
(Arya and Paris, 1981):

hi ¼ hs
Xj¼i

j¼1

Wj; i ¼ 1;2; � � � ;m ð2Þ

where hs is the measured saturated water content (cm3 cm�3).
Pressure heads, hi (cm water), corresponding to pore radii are

computed based on different hypotheses and explanations of the
structure of each assemblage in these models. Brief introduction
of the calculation of the three models are given sequentially in this
study. Readers are referred to Arya et al. (1999), Mohammadi and
Vanclooster (2011), and Arya and Heitman (2015) for detailed
instructions on the AP, MV, and AH models, respectively.

2.2. Arya and Paris model

In this model, the pore volume formed by the assemblage with
spherical particles in each fraction is approximated as a uniform-
sized cylindrical capillary tube. The pore radius (ri, cm) is related
to Ri, and is calculated by (Arya and Paris, 1981):
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ri ¼ 0:816Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enð1�aiÞ

i

q
ð3Þ

where ni is the number of spherical particles for the ith fraction and
is given by (Arya and Paris, 1981):

ni ¼ 3Wi=ð4pqsR
3
i Þ ð4Þ

The variable ai in Eq. (3) is the scaling parameter. Basile and
D’Urso (1997) and Vaz et al. (2005) expressed a values as functions
of h and h, respectively. To decrease the uncertainty in the SWCC
prediction caused by the interdependence of a on h or h, we
adopted the formulation proposed by Arya et al. (1999), that is,

ai ¼ logNi= logni ð5Þ
where Ni is the number of spherical particles required to trace the
pore length for the ith particle fraction in the natural structure soil.

According to Arya et al. (1999), Ni can be estimated from the
measured PSD and experimental SWCC by:

Ni ¼ 7:371wieh
2
mi=ðqsRiÞ ð6Þ

where hmi is the pressure head on the measured SWCC.
A linear relationship between logNi and logWi=R

3
i is proposed

by Arya et al. (1999) to obtain Ni more conveniently based on the
linear dependence of ni on Wi=R

3
i . This method is easy to use,

and its performance is comparable with the logistic growth curve
(Arya et al., 1999; Hwang and Powers, 2003; Soet and Stricker,
2003; Antinoro et al., 2014). Therefore, ai is given by (Arya et al.,
1999):

ai ¼ ½aþ b logðWi=R
3
i Þ�= logni ð7Þ
Fig. 1. The location of the sampling points (black circles) in the oasis-desert transect (c) i
stars indicate the 34 representative points with measured soil water retention data poin
where a and b are unknown empirical parameters.
An equivalent pore radius is converted to hi using the capillary

equation (Arya and Paris, 1981):

hi ¼ 2c cosH
qwgri

¼ 0:18

Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enð1�aiÞ

i

q ð8Þ

where c is the surface tension at the air–water interface (g s�2),H is
the contact angle (this model assumes perfect wettability, H ¼ 0�),
qw is the density of water (g cm�3), g is the acceleration due to grav-
ity (9.8 cm s�2), and the number 0.18 represents a composite of
constants. Readers are referred to Arya et al. (1999) for detailed
instruction of the calculation.
2.3. Mohammadi and Vanclooster model

In the cubic, close packed assemblage with spherical particles
assumed for each particle range, eight spherical particles are
needed to form the narrowest region of an assembled pore. During
the establishment of the SWCC from a drainage experiment on a
saturated soil core, the pore water would drain from the pore when
the metric suction head was larger than the air-entry value of the
narrowest region of the assembled pore. The pore volume in an
assemblage is needed intermediately to calculate the pressure
head. The volume of a single assemblage yields (4Ri)3, while the
solid volume of eight spherical particles was 8ð4pR3

i Þ=3. However,
the number of spherical particles devoted to each assemblage
could be less or more than eight in a natural structure. A coefficient
n the middle reaches of the Heihe River basin (b) of China (a). The black five-pointed
ts.
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of packing states, n (dimensionless), is introduced (Mohammadi
and Vanclooster, 2011):

n ¼ 6
pð1þ eÞ ð9Þ

The hi in a tube of general cross-sectional shape in the natural
structure soil is thus given by (Tuller et al., 1999; Mohammadi
and Vanclooster, 2011):

hi ¼ n
Cpi

Api

c cosH
qwg

¼ 1:038
Rið1þ eÞ ð10Þ

where Cpi (cm) and Api (cm2) are the circumference ð2pRiÞ and area
ð4R2

i � pR2
i Þ of the cross-section of the narrowest region of a single

assembled pore, respectively, the meanings of c, H, qw, g, Ri, and e
are the same as those aforementioned, and the number 1.308 rep-
resents a composite of constants. Readers for more detailed instruc-
tion are referred to Mohammadi and Vanclooster (2011).
2.4. Arya and Heitman model

For each particle fraction, corresponding to the cubic close-
packed assemblage with spherical particles, the natural structure
particles are also assumed to be packed in a cube. Focusing on
one face of the cubes for the natural and hypothetical assemblages,
assumptions are made: (1) pores in the two systems can be
expressed as equivalent circular pores; and (2) the ratio of the pore
sizes is proportional to the ratio of total pore areas on the face of
the cubes for the two assemblages. For a given packing density
and associated pore volume, longer pore length due to various
lengths and jaggedness of particles in a natural assemblage means
smaller radii and larger numbers of pores, both of which are

related to particle numbers. A total of n2=3
i spherical particles are

on one face of the cube for a closely-packed assemblage with

spherical particles, contributing to a total length of 2Rin
2=3
i by plac-

ing these particles end-to-end. However, the value of 2Rin
2=3
i has to

be adjusted within the length of the natural-structure cube in one

dimension ððwi=qbÞ1=3Þ. By introducing the ratio

ðwi=qbÞ1=3=ð2Rin
2=3
i Þ as the proportionality factor to account for

the effects of deformation and packing density, the relationship
between pore radii and pore areas can be rewritten as (Arya and
Heitman, 2015):

pr2in
pr2ic

¼ /ðwi=qbÞ2=3
0:476ð4n2=3

i R2
i Þ

ðwi=qbÞ1=3
2Rin

2=3
i

ð11Þ

where rin and ric are the equivalent circular pore radius in the nat-
ural assemblage and close-packed assemblage with spherical parti-
cles, respectively, / is the total porosity, equaling 1� qb

qs
, and the

number 0.476 is the porosity for spherical particles in the close-
packed assemblage.

The cross-sectional area of a single pore for assemblage with
spherical particles equals ð4� pÞR2

i , so rin is calculated, and the hi
for the natural structure soil is given by:

hi ¼ 2c cosH
qwgri

¼ 0:180w1=6
iffiffiffiffiffiffiffiffi

eR3
i

q ð12Þ

where 0.180 is a composite of constants, and the variables c, H, qw,
g, wi, e, and Ri are the same aforementioned. Readers are referred to
Arya and Heitman (2015) for detailed information of this model.
3. Materials and methods

3.1. Study area

The study was conducted in the middle reaches of the Heihe
River basin, in Linze County of Gansu Province, China (Fig. 1). This
region has a continental arid climate with a mean annual air tem-
perate of 7.6 �C. The mean annual precipitation is 120 mm, approx-
imately 60% of which occurs from July to September, and only 3% in
winter. The mean annual potential evaporation is 2390 mm. The
mean annual wind speed is 3.2 m s�1 and annual gale days (wind
speed varies from 17.2 to 20.7 m s�1) reach to 15 or more, and
the sand-drifting mainly occurs from March to May.

A rectangular oasis–desert transect covering an area of 100 km2

with a length of 20 km from north to south and a width of 5 km
from east to west (39�1203000–39�2302800N, 100�0503200–100�1000100

E, 1372–1417 m a.s.l.) was chosen for this study (Fig. 1b). The
northern part of this transect includes the southern margin of
the Badain Jaran Desert. The Heihe River flows across the area from
east to west. This oasis–desert transect includes croplands with
different cultivation histories, deserts with fixed and semi-fixed
sand dunes, artificial grasslands in the oasis–desert ecotone, and
natural grasslands in the bottomland. Main soil types include Ari-
disol derived from diluvial-alluvial materials in the northern mar-
ginal oasis, Entisols from the long-term encroachment and
deposition of drift sand in the desert, Siltigi-Orhic Anthrosols after
long-term cultivation in the old oasis, and Inceptisols in natural
grassland according to the USDA Soil Taxonomy (Shirazi and
Boersma, 1984; Li and Shao, 2014). The desert vegetation consists
of Halaxylon ammodendron (C.A. Mey.) Bunge, Calligonum mon-
golicum Turcz., Nitraria sphaerocarpa Maxim and Reaumuria soon-
gorica (Pall.) Maxim. The predominant grassland species are
Common Reed (Phragmites australis (Cav.) Trin. ex Steud.), Com-
mon Leymus (Leymus secalinus (Georgi) Tzvel.), Achnatherum splen-
dens (Trin.) Nevski, and Kalidium foliatum (Pall.) Moq. The main
irrigated crops are maize (Zea mays L.) for grain, spring wheat (Tri-
ticum aestivumLinn.), tomatoes (Solanum lycopersicum) and sugar
beets (Beta vulgaris) (Li and Shao, 2014).
3.2. Field sampling and laboratory analysis

A total 120 sampling points (56, 43 and 21 points for desert,
cropland and grassland, respectively) were designed in the grid
size of 1 � 1 km throughout the area except where was unreach-
able (Fig. 1c). Thirty-four of the 120 points were selected as repre-
sentative of desert, cropland and grassland with 15, 12 and 7
points, respectively (Fig. 1c). At each of these representative points,
disturbed soil samples were collected using a 5 cm diameter hand
auger at a depth interval of 20 cm within a 1 m profile. Soil sample
for each layer was taken with three duplicates randomly collected
at a 5 � 5 m plot at each point. A profile was dug to 1.0 m depth,
and one undisturbed soil core was collected in each layer at
20 cm depth intervals using stainless-steel cutting rings (5.0 cm
in height by 5.0 cm in diameter). The sampling was conducted in
April 2011, and all disturbed soil samples and undisturbed soil
cores were well preserved and taken to the laboratory.

In the laboratory, disturbed soil samples were air dried and
passed through a 2 mm mesh after removing the organic debris.
The soil PSD was measured by laser diffraction using a Mastersizer
2000 analyzer (Malvern Instruments, Malven, England). Arya and
Paris (1981) suggested m = 20 as a least number of fractions. The
soil PSD was classified into 20 fractions with boundaries at particle
diameters of 1, 2, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80, 100, 150, 200,
250, 400, 500, 800, and 2000 lm during the measurement in this
study. Measured soil textures covered eight classes including silt



Fig. 2. Textural distribution of the 170 soil samples at the 34 representative points according to the USDA Soil Taxonomy.

Table 1
The soil texture and sample number in the calibration and validation datasets.

D. Li et al. / Journal of Hydrology 538 (2016) 539–550 543
loam, silty clay loam, silty clay, loam, clay loam, sandy loam, loamy
sand, and sand according to the USDA Soil Taxonomy (Fig. 2)
(Shirazi and Boersma, 1984).

The undisturbed soil core was saturated from below, and its sat-
urated weight was measured. The saturated soil core was used to
measure the SWCC data points using a high speed centrifuge
(Nimmo et al., 2002). The saturated soil core was placed into the
centrifuge bucket, and then fixed in the centrifuge rotor by guaran-
teeing the balance of weights of the four buckets in the rotor. The
centrifuge was run by setting centrifuge speeds and time to reach
the given h values. The weight of the core was measured when the
thirteen set h values of �10.2, �51.0, �102.0, �204.0, �408.1,
�612.1, �816.1, �1020.2, �2040.3, �4080.6, �6121.0, �8161.3,
and �10201.6 cm of water were reached after centrifuging for
10, 17, 26, 36, 45, 51, 55, 58, 68, 77, 83, 87, and 90 min, respec-
tively. The final soil core was oven dried at 105 �C for 48 h after
removing the bucket. The dry weight of solid mass was measured
to determine the bulk density, which was used to convert the mass
water content into volumetric water content under each h. To
obtain the continuous SWCC, the van Genuchten equation was
used to fit experimental data (van Genuchten, 1980). An iterative
non-linear regression procedure was employed to find the values
of the fitting parameters in van Genuchten equation that give the
most approximation between experimental and predicted data.
This fitting procedure was performed using the RETC program
(van Genuchten et al., 1991).
Soil texture Total
number

Number for
calibration

Number for
validation

Silt loam 10 5 5
Silty clay

loam
28 16 12

Silty clay 9 5 4
Loam 11 6 5
Clay loam 30 20 10
Sandy loam 10 5 5
Loamy sand 18 9 9
Sand 54 26 28
Total 170 92 78
3.3. Evaluation of models

The soil-specific empirical parameter, ai, in the AP model need
to be determined first when calculating the pressure head corre-
sponding to each particle range. Furthermore, the application of
the three models has to be adapted to the considered situation in
this study. Therefore, the 170 samples with SWCC data at represen-
tative points were randomly split into a calibration dataset (n = 92)
for determining the values of a and b, in turn, the ai value of the AP
model, and a validation dataset (n = 78) for evaluating the predic-
tive accuracy of the three models. The numbers of samples for each
of the textural classes in the two datasets were proportional to
their occurrence in the total dataset (Table 1).

In the validation dataset, the calculated SWCC data points for
the AP, MV and AH models can be obtained by pairing hi in Eq.
(2) with hi in Eqs. (8), (10) and (12), respectively. The van Genuch-
ten equation was adopted to obtain the SWCC after having fitted
the parameters using the RETC program based on the 20 water
retention data points for each sample predicted by the model
(van Genuchten et al., 1991). On these predicted curves, the h val-
ues corresponding to the thirteen actual measured h values (�10.2,
�51.0, �102.0, �204.0, �408.1, �612.1, �816.1, �1020.2, �2040.3,
�4080.6, �6121.0, �8161.3, and �10201.6 cm of water) can be
determined and was compared with the measured h values. The
soil water contents at field capacity and wilting point were
obtained from the calculated SWCC. Compared to the attainment
of field capacity under a prescribed uniform matric potential value,
Assouline and Or (2014) proposed a new static criteria to deter-
mine the specific pressure heads at field capacity for different soil
types. Water retentions at h of �100 and �330 cm of water were
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commonly considered as field capacity for coarse- and fine-
textured soils, respectively (Rivers and Shipp, 1972; Gijsman
et al., 2003; Haghverdi et al., 2015). Therefore, water content at
field capacity was set at h of �330 cm of water for the first six tex-
tural classes and�100 cm of water for loamy sand and sand soils in
this study. Water content at h of �15000 cm of water was chosen
as wilting point for all textural classes. The AW predicted by the
models was estimated for each sample in the validation dataset.
The calculated AW values were compared with those derived from
the experimental SWCCs. When no measurement has been done,
the soil water contents at field capacity and wilting point can be
conveniently derived from the van Genuchten equation of SWCC
(van Genuchten, 1980) after having determined the parameters
using the Rosetta program (Botula et al., 2012). To further validate
the predictive accuracy of the three models, the predicted AW val-
ues were also compared with those from the Rosetta program
using sand/silt/clay contents and bulk density as input variables.

Three statistical criteria were used to measure the performance
of the models in predicting both h on the SWCC and AW, including
the coefficient of determination (R2), the mean error (ME, cm3 -
cm�3), and the root mean square error (RMSE, cm3 cm�3), which
are given by:
R2 ¼
Pn

i¼1ðOi � OÞðPi � PÞPn
i¼1ðOi � OÞ2

h i0:5 Pn
i¼1ðPi � PÞ2

h i0:5
2
64

3
75

2

ð13Þ

ME ¼ 1
n

Xn
i¼1

ðPi � OiÞ ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðPi � OiÞ2
n

s
ð15Þ
where Oi and Pi are the measured and predicted values, respectively,
O and P are the averages of measured and predicted values, respec-
tively, and n is the number of observations in the validation dataset.
The R2 values range from 0 to 1, and RMSE values are not less than
zero. The model with the highest predictive accuracy was regarded
as the one with the highest R2 value, the lowest absolute value of
ME, and the lowest RMSE value.
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Fig. 3. Relationship between the number of spherical particles to trace the pore lengths
diameter (logWi/Ri3) for all textural classes in the calibration dataset.
4. Results and discussion

4.1. Predictive accuracy of the three models for SWCC

The value of Ni corresponding to each particle range of each
sample was calculated according to Eq. (6). The values decreased
gradually from fine to coarse particle fractions, and differed among
textural classes for the same particle range. The linear relationship
between LogNi and LogðWi=R

3
i Þ in the AP model was well fitted for

each of the eight textural classes in the calibration dataset, with R2

values ranging from 0.836 for sand to 0.959 for silty clay (Fig. 3).
The coefficients of a and b were determined as the intercept and
slope of the linear regression equation, respectively, for each of
the eight textural classes (Fig. 3). The coefficient a differed greatly,
while the b values varied slightly, among different textural classes.
The ai value for each particle range of samples in the calibration
and validation datasets was calculated using a and b values for
each textural class in Fig. 3 according to Eq. (7).

Fig. 4 shows a comparison of the predicted h values by the AP,
MV and AH models, and Rosetta program with the experimental
h values under the thirteen actual measured h values for the sam-
ples in the validation dataset. The use of h instead of h was to pre-
vent possible biases in the optimized ai value due to the use of log-
transformed h values. This procedure is of more practical interest
to assess the accuracy of a prediction model as it relates directly
to the water mass balance of the soil profile (Antinoro et al.,
2014). Pairs of the predicted and measured h values for all textural
classes were pooled.

For the AP model, visual inspection indicates that the majority
of the points were concentrated around the 1:1 line (Fig. 4a). An
overall good agreement was observed between the predicted and
measured h values, since the linear regression had an R2 value of
0.863, and both the ME (�0.008 cm3 cm�3) and RMSE (0.049 cm3 -
cm�3) were close to zero. The linearly fitted ai values, however,
overestimated the experimental h values under h between
�10.20 and �204.03 cm of water for sand soil where the data
points remarkably deviated from the 1:1 line (Fig. 4a). After
removing these data points, the predicted h values approximated
to the experimental values, with R2 of 0.932, the ME and RMSE of
�0.015 and 0.037 cm3 cm�3, respectively. This result indicates that
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Fig. 4. Comparison of the measured and predicted soil water content by the (a) AP model, (b) MV model, (c) AH model and (d) Rosetta program for samples in the validation
dataset. The soil water contents were under the actual measured pressure heads on the soil water characteristic curves.

Table 2
Summary statistics of the measured and predicted field capacity, wilting point, and available water content by the AP model, MV model, and Rosetta program for the eight
textural classes in the validation dataset.

Propertya Method Silt loam Silty clay loam Silty clay Loam Clay loam Sandy loam Loamy sand Sand

Fc (cm3 cm�3) Measured 0.37 ± 0.01b 0.33 ± 0.05 0.36 ± 0.07 0.25 ± 0.05 0.24 ± 0.04 0.16 ± 0.02 0.13 ± 0.03 0.10 ± 0.02
AP 0.38 ± 0.01 0.34 ± 0.04 0.36 ± 0.05 0.22 ± 0.05 0.21 ± 0.04 0.10 ± 0.01 0.11 ± 0.01 0.14 ± 0.04
MV 0.30 ± 0.03 0.33 ± 0.03 0.36 ± 0.05 0.21 ± 0.04 0.23 ± 0.04 0.14 ± 0.01 0.15 ± 0.01 0.09 ± 0.04
Rosetta 0.27 ± 0.02 0.28 ± 0.02 0.30 ± 0.01 0.23 ± 0.01 0.25 ± 0.01 0.19 ± 0.01 0.21 ± 0.02 0.09 ± 0.02

Wp (cm3 cm�3) Measured 0.18 ± 0.02 0.19 ± 0.03 0.18 ± 0.02 0.12 ± 0.03 0.12 ± 0.04 0.07 ± 0.02 0.04 ± 0.02 0.02 ± 0.01
AP 0.12 ± 0.03 0.15 ± 0.01 0.16 ± 0.01 0.11 ± 0.02 0.11 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.01 ± 0.01
MV 0.08 ± 0.01 0.11 ± 0.02 0.13 ± 0.01 0.06 ± 0.01 0.08 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.01 ± 0.01
Rosetta 0.09 ± 0.01 0.12 ± 0.01 0.15 ± 0.01 0.10 ± 0.01 0.12 ± 0.01 0.08 ± 0.02 0.06 ± 0.01 0.05 ± 0.01

AW (cm3 cm�3) Measured 0.19 ± 0.01 0.15 ± 0.03 0.18 ± 0.05 0.13 ± 0.02 0.12 ± 0.02 0.09 ± 0.01 0.09 ± 0.02 0.09 ± 0.02
AP 0.26 ± 0.03 0.19 ± 0.04 0.20 ± 0.04 0.10 ± 0.04 0.10 ± 0.03 0.05 ± 0.01 0.06 ± 0.01 0.13 ± 0.04
MV 0.22 ± 0.02 0.22 ± 0.03 0.23 ± 0.05 0.15 ± 0.05 0.14 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.09 ± 0.04
Rosetta 0.18 ± 0.02 0.16 ± 0.02 0.15 ± 0.01 0.12 ± 0.01 0.13 ± 0.02 0.10 ± 0.02 0.15 ± 0.02 0.04 ± 0.03

a Fc, Wp and AW refer to field capacity, wilting point, and available water content, respectively.
b Mean ± one standard deviation.
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the AP model did worse in predicting water retention under lower
pressure heads (h ranges from �10.20 and �204.03 cm of water)
for a majority of sand soil.

The MV model generally predicted water retention well, with
an R2 value of 0.854, and ME and RMSE values of �0.020 and
0.055 cm3 cm�3, respectively (Fig. 4b). The MV model also some-
what overestimated soil water retention under h ranging from
�10.20 to �51.01 cm of water for a few sand soil samples. The
deviation, however, was smaller than that of the AP model. The lin-
ear fitting between experimental and predicted h values also
improved after eliminating these data points (R2 = 0.896,
ME = �0.025 cm3 cm�3, RMSE = 0.050 cm3 cm�3). Both the ME val-
ues for the AP and MV models, with and without the largely devi-
ated data points of sand soil, were negative, indicating that these
two models overall slightly underestimated experimental h values,
although their performances were generally acceptable and evenly
matched.

For the AH model, almost all the predicted h values were larger
than the measured values, since almost all of the data points were
located below the 1:1 line (Fig. 4c). The R2 (0.727) was the smallest,
and the absolute values of ME (0.067 cm3 cm�3) and RMSE
(0.100 cm3 cm�3) were the largest among the three models
(Fig. 4a–c). This result indicates that the AH model tended to over-
estimate the experimental h in the full range of the SWCC. The pre-
dicted h values by the Rosetta program was well fitted to the
experimental values with the highest slope and the lower intercept
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Fig. 5. Comparison of the measured and calculated soil water contents at field capacity and wilting point predicted by the (a and b) AP model, (c and d) MV model, and (e and
f) Rosetta program for the eight textural classes in the validation dataset. The left column refers to field capacity under pressure heads of �330 cm of water for the first six
textural classes and �100 cm of water for loamy sand and sand soils. The right column refers to wilting point under pressure head of �15,000 cm of water.

Table 3
The mean relative error (RE, %) between the predicted available water contents by the
AP model, MV model, Rosetta program, and the experimental available water
contents for soils in the validation dataset.

Texture AP model MV model Rosetta

Silt loam 36.9 18.0 8.6
Silty clay loam 32.9 48.6 20.9
Silty clay 15.3 28.2 21.6
Loam 26.4 8.5 11.6
Clay loam 22.4 26.7 24.6
Sandy loam 43.2 14.3 25.5
Loamy sand 37.4 11.8 50.9
Sand 56.0 31.6 62.4
Total 39.8 27.4 38.7

The mean relative error is calculated as: RE ¼ 1
n

Pn
i¼1

jOi�Pi j
Oi

� 100%, where Oi and Pi
refer to the observed and predicted values, respectively.
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values (Fig. 4d). The R2, ME and RMSE for Rosetta program were
0.802, 0.001 cm3 cm�3 and 0.053 cm3 cm�3, respectively. The
regression line nearly overlapped the 1:1 line without obvious
deviation in any range of the SWCC (Fig. 4d).

The slight overprediction in the wet range and slight underpre-
diction in the dry range of the SWCC were common for the AP and
MV models (Fig. 4). This bias has been reported by Arya et al.
(1999) and Antinoro et al. (2014) for the AP model, and by
Mohammadi and Vanclooster (2011) for the MV model. The mod-
els assumed that the particle size and the bulk density are primary
determinants of pore size. In natural soils, aggregation of primary
particles into secondary and tertiary particles, the geometric fea-
tures of root channels, microscopic cracks, and wormholes are
not fully represented by the PSD and bulk density (Arya and
Paris, 1981; Or and Tuller, 1999; Hwang and Powers, 2003). The
relative abundance of such pores affects the extent to which the
predictions would deviate from measurements. In the wet range,
the SWCC is governed by capillary forces, the presence of structural
cracks or macropores, and structural disturbances during the sam-
pling and handling may result in lower measured than predicted h
values (Arya and Paris, 1981; Antinoro et al., 2014). In the dry
range of the SWCC, water is dominated by adsorptive forces (Or
and Tuller, 1999; Jensen et al., 2015). The incomplete desorption
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of residual water held as films or in dead-end soil pores would lead
to higher experimental than predicted h values, since the models
assumed complete desorption of given-size pores when the corre-
sponding capillary pressure was applied (Or and Tuller, 1999;
Mohammadi and Vanclooster, 2011; Antinoro et al., 2014). Addi-
tionally, the packing parameter n does not fully reflect the pore
geometry, which may also contribute to the MV model error
(Mohammadi and Vanclooster, 2011).

Many factors not fully explained by the three models contribute
to the deviation of the predictions from the experimental data.
Non-linearity between PSD and pore size distribution, complex
pore geometry, hysteresis, volume change of clay fraction upon
wetting and drying, and uncertainties in the measurements will
all contribute to the observed disparities (Arya and Paris, 1981;
Rouault and Assouline, 1998; Hwang and Powers, 2003). Addition-
ally, the three models assumed water retention within pores by
capillary action, which was not always true. Except for the distinc-
tion of dominant forces for water retention in the dry and wet
ranges of the SWCC, clay particles retain water primarily by surface
sorption (Hwang and Powers, 2003; Hwang and Choi, 2006).
Therefore, the models might be more suitable for rigid soils with
medium grain size than fine-textured soils.

In summary, the AP and MV models, and Rosetta program out-
performed the AH model in predicting the SWCC in this study. A
closer agreement between the prediction of the AP model and
the experimental data should be expected, since its empirical
parameters were derived from the measured SWCC data. The
Rosetta program was developed based on three databases contain-
ing a large number of soil hydraulic data and predictive soil prop-
erties (Schaap et al., 2001). The feasibility of the Rosetta program
results was therefore taken for granted once the input data were
determined. However, the MV model are more attractive for prac-
tical applications at catchment or regional scales because they are
no longer dependent on soil empirical and database-related
parameters.

4.2. Prediction of field capacity and wilting point

Filed capacity and wilting point on the experimental SWCCs
decreased from fine- to coarse-textured soils in the validation
dataset (Table 2). Weak spatial variability in field capacity was
observed for silt loam because the coefficients of variation
(CVs = 0.04) were not larger than the threshold value of 0.10
(Nielsen and Bouma, 1985). The CVs ranging from 0.14 to 0.22 indi-
cated moderate spatial variability in field capacity for other textu-
ral classes. Moderate spatial variability of wilting point were
observed for the eight textural classes because the CV varied from
0.11 for silt loam to 0.37 for sand soil (Nielsen and Bouma, 1985)
(Table 2).

Field capacity and wilting point on the SWCCs predicted by the
AP and MV models and Rosetta program were compared with the
experimental values (Fig. 5). The MV model performed better than
the AP model and Rosetta program in predicting field capacity. The
AP model slightly overestimated the measured field capacity due
to the influence of some sand soils with relatively higher field
capacity values (Fig. 5a). The MV model and Rosetta program over-
all underestimated experimental field capacity data (Fig. 5c and e).
On the other hand, the AP model did better than the MVmodel and
Rosetta program in predicting wilting point. All the three methods
overall underestimated experimental wilting point because of the
negative ME values (Fig. 5b, d and f). The CVs for field capacity
and wilting point of sand soil predicted by the AP and MV models
were larger than those for other textural classes. The spatial vari-
ability for wilting point of sand predicted by the AP (CV = 1.55)
and MV (CV = 3.18) models was strong (Table 2). However, field
capacity and wilting point predicted by Rosetta program showed
weak spatial variability, except field capacity for sand (CV = 0.29)
and wilting point for sandy loam (CV = 0.18) (Table 2).

4.3. Estimation of available water content

The AW values were determined for the AP and MV models,
Rosetta program, and experimental data for each sample in the val-
idation dataset. The mean AW values calculated by the AP and MV
models were higher than the measured values for the silt loam,
silty clay loam, and silty clay soils. The mean AW values predicted
by the MV model for the remaining five textural classes and those
by the Rosetta program for the first six textural classes approxi-
mated to the measured AW values (Table 2). This could also be



Fig. 7. Distribution of available water content predicted by the MV model for samples in the validation dataset. The circle size refers to the magnitude of AW values. The
larger the circle, the higher the AW value, and vice versa.

548 D. Li et al. / Journal of Hydrology 538 (2016) 539–550
reflected by the values of mean relative error listed in Table 3. The
mean AW values derived from the AP model and Rosetta program
for loamy sand and sand deviated much from those predicted by
the MV model and the experimental values (Table 2). The mean
relative errors of the AP model and Rosetta program for these
two textural classes were much higher than that of the MV model
(Table 3). The AW values for the AP and MV models and experi-
mental data exhibited moderate spatial variability for the textural
classes, except silt loam which had weak spatial variability
(CV = 0.10, 0.08 and 0.06, respectively) (Table 2). The AW values
predicted by the Rosetta program showed weak spatial variability
for the first four textural classes and moderate variability for the
remaining classes (Table 2). Compared with the Rosetta program,
the AP and MV models predicted higher AW values for silt loam,
silty clay loam, silty clay, and sand soils (Table 2). It shows that
field capacity, wilting point and the AW vary greatly, not only
among methods and textural classes, but also within soil types
(e.g., sand soil).

Fig. 6 shows the goodness-of-fit between the predicted and
experimental AW values by pooling the textural classes. In general,
a majority of the predicted AW values by the AP and MV models
were greater than the experimental ones (Fig. 6a and b). The
Rosetta program predicted AW values lower than the experimental
values (Fig. 6c). Overall, the MV model predicted relatively accu-
rate AW values with higher R2, lower RMSE and lower mean rela-
tive error (Fig. 6, Table 3). However, the R2 value (0.726) was more
modest than that for soil water content (0.854, Fig. 4b) and field
capacity (0.890, Fig. 5c). The underestimation of field capacity for
sand soil (Fig. 5c) and wilting point for silty clay loam soil (Fig. 5d)
contributed to the deviation of the AW values of the MV model
from the experimental ones (Table 3, Fig. 6).

The MVmodel generally performed well in indirectly predicting
AW for all textural classes in this study. This highlights the advan-
tages of the MV model of having robust physical basis and being
independent of measured data over the AP model. On the other
hand, the MV model predicts water retention by involving precise
subclasses of texture data rather than simply basing on broadly-
defined soil type like the practice of Rosetta. The AW values pre-
dicted by the MV model for samples in the validation dataset are
shown in the ternary diagrams (Fig. 7). The size of the circles cor-
responded to the magnitude of the AW values. The larger the circle,
the higher the AW value, and vice versa (Fig. 7). The larger AW val-
ues were for fine-textured soils, while the coarse textured classes
of sandy loam, loamy sand, and sand showed lower AW values
(Fig. 7). This reflects the positive correlation between water reten-
tion and fine particle content. The clay fraction favors the occur-
rence of micropores, which generate capillary forces. High clay
content can also increase the specific surface area of the soil
matrix, and enhance water adsorption (Botula et al., 2012).
Haghverdi et al. (2015) reported that a reduction in AW was con-
sistent with an increase in sand content with increasing soil depth.
However, the AW values for silty clay, silty clay loam and silt loam
approximated to each other. This is consistent with the report that
soils with a high clay fraction showed a high proportion of water
unavailable for plants (Al Majou et al., 2008; Ramos et al., 2014).

It is noteworthy that the MV model have not sufficiently taken
into account soil structure, which is an important factor determin-
ing a soil’s capacity to retain water (Gijsman et al., 2003;
Pachepsky and Rawls, 2003). Field-measured data on the critical
volumetric water contents may be need to improve the models’
accuracy by incorporating the effects of soil structure on water
retention (Pachepsky and Rawls, 2003). On the other hand, the
AW is merely the ‘‘capacity” of soil water available for plants. A
high AW does not necessarily mean the plant has easy access to
the water, because the water uptake capability of roots is a func-
tion of wilting point. A higher wilting point means a lower water
uptake at a certain soil–water content (Gijsman et al., 2003). For
water management, the actual available water content, its spatial
distribution and temporal variability are more important
(Haghverdi et al., 2015). Therefore, we will focus on analyzing
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the actual available water content in root zone and its variation
during the growing season, aiming to explore its relationship with
plant growth and to improve water use efficiency in future studies.
5. Conclusions

In this study, we compared the performance of the semi-
physical AP model, conceptual MV and AH models, and Rosetta
program in predicting the SWCC and AW from the soil particle-
size distribution and bulk density at 34 points representing differ-
ent landscapes in an oasis–desert transect in the middle reaches of
the Heihe River basin, northwestern China. Two unknown empiri-
cal parameters, for deriving the scaling parameter by the linear
equation, of the AP model were determined for each textural class
using 92 soil samples covering eight textural classes in the calibra-
tion dataset. The AP model, MV model and Rosetta program
showed better agreement with the experimental SWCCs than the
AH model for 78 samples in the validation dataset. Different
degrees of spatial variability in filed capacity, wilting point and
AW were observed among the methods and textural classes. Great
variations in the three properties also existed within textural class,
especially sand soil. Therefore, the semi-physical and conceptual
models may be more promise by having robust physical basis
and involving specified subclasses of texture data than the Rosetta
program, which is based on neural network analysis and acts on
broadly-defined soil types. Furthermore, the MV model is not
prone to the uncertainty and errors of measurements because it
is independent of experimental data, while the practices of the
AP model and Rosetta program are database dependent. The MV
model outperformed the AP model and Rosetta program in predict-
ing AW. The results of this study indicate that the MVmodel is use-
ful for improving soil water retention prediction at regional or
watershed scales, which then benefits the application of hydrolog-
ical models and soil water management in arid regions.
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