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a b s t r a c t

Accurate groundwater level (GWL) prediction can contribute to sustaining reliable water supply to do-
mestic, agricultural and industrial uses as well as ecological services, especially in arid and semi-arid
areas. In this paper, a regional GWL modeling framework was first presented through coupling both
spatial and temporal clustering techniques. Specifically, the self-organizing map (SOM) was applied to
identify spatially homogeneous clusters of GWL piezometers, while GWL time series forecasting was
performed through developing a stepwise cluster multisite inference model with various predictors
including climate conditions, well extractions, surface runoffs, reservoir operations and GWL measure-
ments at previous steps. The proposed modeling approach was then demonstrated by a case of an arid
irrigation district in the western Hexi Corridor, northwest China. Spatial clustering analysis identified 6
regionally representative central piezometers out of 30, for which sensitivity and uncertainty analysis
were carried out regarding GWL predictions. As the stepwise cluster tree provided uncertain predictions,
we added an AR(1) error model to the mean prediction to forecast GWL 1 month ahead. Model per-
formance indicators suggest that the modeling system is a useful tool to aid decision-making for
informed groundwater resource management in arid areas, and would have a great potential to extend
its applications to more areas or regions in the future.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Groundwater resource is commonly the most important water
resource in semi-arid and arid areas that are often subject to water
shortage. It plays a fundamental role in supplying clean and safe
water to competing uses for domestic, industrial and agricultural
sectors, and increasing attentions are also paid to its significance for
ecological integrity. However, groundwater aquifer systems always
feature complexity, high nonlinearity, being multi-scale and
random as a result of the frequent interactions between surface
water and groundwater as well as acute human disturbance
(Nourani et al., 2015). Thus, effectivemodeling techniqueswould be
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required for providing efficient ground water management strate-
gies. As for dynamic groundwater level (GWL) prediction, physical-
based or conceptual models represent the hydrological variables
and physical processes in real-world systems (Han et al., 2015), but
they have practical limitations in terms of prediction accuracy as a
result of unavoidable discrepancies between the model and the
real-world system (Adamowski and Chan, 2011; Nourani et al.,
2015; Salas et al., 1990). As far as increasingly scarce water re-
sources accompanying with expanding population growth are
concerned, improvements and innovations in groundwater pre-
dictions become critical. Hence, such black box or data driven
models as Artificial Neural Networks (ANNs) were found to be
widely employed by hydrogeologists (Chen et al., 2010; Coppola
et al., 2005; Izady et al., 2013; Mohanty et al., 2010; Tapoglou
et al., 2014; Yoon et al., 2011; Zahmatkesh et al., 2015).

Although various data-drivenmodels were developed to predict
GWL fluctuations, there are no consistent agreements on how to
select an appropriate model with high efficiency in a real case
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(Coulibaly et al., 2001). Considering the “multiple inputs-multiple
outputs” structure of regional GWL prediction models, a prom-
ising approachwould be the Stepwise Cluster Analysis (SCA), which
has been widely used for flow prediction recently by virtue of its
ability to represent the nonlinear and complex relationships be-
tween various inputs and response variables (Fan et al., 2015;
Huang et al., 2006; Li et al., 2015b). Moreover, it proved to be an
effective and promisingmethod for air-quality prediction and pilot-
scale groundwater simulation (Huang et al., 2006; Qin et al., 2007;
Sun et al., 2009). However, to perform GWL predictions at a
regional level is still a hard work, considering the complexities of
specific hydrogeological conditions and interactions between
groundwater and surface water as well as climatic factors
(Adamowski and Chan, 2011; Dash et al., 2010; Nourani et al., 2011).
Predictor selection and parameter setting during the training phase
would also lead to variations in the model performance with
respect to the reliability and robustness of simulations, and optimal
model configurations would be a key point of generating reliable
simulations when SCA is applied. In order to deal with such issue, a
stepwise cluster multisite inference model based on SCA specif-
ically for accurately predicting regional GWL fluctuations would be
indispensable.

Generally, data-driven models use statistical techniques instead
of numerical simulation to relate the system response to various
inputs, which are termed as predictors. As such, these models are
able to “learn” system behavior of interest through exploring the
patterns of representative data. Accordingly, the data quality for
both predictors and training samples would impose varying in-
fluences on the model performance, and the introduction of irrel-
evant and redundant information might mislead the knowledge
discovery process during the training phase and further yield un-
reliable predictions (L�ab�o, 2012). To tackle such dilemma, on one
hand, it was recommended that pre-processing is recommended on
the raw data to achieve accurate forecasting as conducted by many
studies (Chen et al., 2010, 2011; Moosavi et al., 2013; Nourani et al.,
2015). On the other hand, prevalent post-processing procedures
were also adopted to correct the predictions (Li et al., 2015a;
Morawietz et al., 2011). Accordingly, auxiliary procedures based
on pre-processing or post-processing would be favorable alterna-
tives to obtain more accurate GWL predictions.

Regional GWL observations are usually comprised of GWL time
series for many piezometers, and a clustering technique may be
preferred as a spatial data pre-processing tool to help to identify the
regional characteristics dependent upon several representative
observations instead of all observations involved. As such, the
reduction of dimension would support efficient and informed de-
cisions when black box models are used, although specific loss of
GWL information might occur. Hence, intensive modeling efforts
would be made based on these representative sites such as cen-
troids for the obtained homogenous clusters. As an unsupervised
machine learning technique, the self-organizing map (SOM) oper-
ates to reduce dimensions of high-dimensional data, and it could
reveal the complex, nonlinear, and statistical relationships between
high-dimensional data items on a low-dimensional display so as to
allow optimal clusters to be determined (Chen et al., 2010; Kalteh
et al., 2008; Kohonen, 1997; Nourani et al., 2015; Yang et al.,
2012). Accordingly, the dimensionality of input variables as well
as the resulting model complexity would be decreased (Hsu and Li,
2010; Hsu et al., 2002; Kalteh et al., 2008; Nourani et al., 2013,
2015).

Thus, a promising approach to achieve accurate and efficient
regional GWL predictions would combine both spatial clustering
method and data-driven model in association with pre/post-
processing procedures. With multisite representative GWL obser-
vations being considered at the same time, it would then lead to a
SOM-aided stepwise cluster multisite inference model for GWL
prediction. In this study, this model would be developed to predict
GWL a month into the future, and this paper is arranged as follows.
The study area for an arid irrigation district is first introduced in the
western Hexi Corridor of China. The proposed methodology is then
presented with respect to modeling framework, SOM, stepwise
cluster multisite inference and autoregressive error models as well
as model performance indicators. Afterwards, the obtained results
are presented in association with discussions, which are subse-
quently followed by summarized conclusions.

2. Study area and data

The study area is located in the Shule River watershed of China,
which covers an area of approximately 160,000 km2, and drained
by such major inland rivers as Shule River, Dang River and Shiyou
River (Fig. 1). Moreover, the Shule River is one of the three longest
inland rivers in the Hexi Corridor, extending a length of 670 km. As
depicted in Fig. 1, most part of the Shule River watershed is situated
in Gansu Province, while almost all source waters are formed in the
mountains of Qinghai Province. The whole watershed bears a semi-
arid to arid climate, and according to the observations for Dun-
huang, Yumen and Guazhou station during 1961e2010, annual
mean temperature in the plain region is 7.2e9.7 �C together with
annual precipitation ranging from 40.1 to 66 mm and annual
evaporation up to 2755 mm (E20 pan evaporation). Therefore, the
whole watershed is very vulnerable to water shortage, and the
extent to which water demands across the plain region could be
satisfied is highly dependent on the runoff contribution from
source water areas. Although groundwater plays a vital role in
sustaining the oasis and conserving the eco-environment, its
pumping extraction is not effectively controlled and managed in
this area, which is resided by almost 200,000 populations. Hence,
careful management of water resources has been emphasized in
order to guarantee a coordinated development between economy,
society and eco-environment, and the water-saving policies and
water-efficient techniques are always highlighted by local govern-
ment. However, few models were developed for supporting water
resource management, and no simulation modeling tools are really
applied for GWL prediction as a result of a lack of hydrogeological
investigations. Besides, complex interactions between ground-
water and surface water further complicate the groundwater flow
modeling procedures. Therefore, accurate predictions for GWL
fluctuations through developing data-driven models like SCA
would be imperative to enhance efficient water utilization as well
as ecological conservation for this area.

In this study, the area of interest focuses on the middle reach of
the Shule River. As we can see in Figs. 1 and 2, through construction
of irrigation canals, the Changma reservoir serves as themainwater
supply to three irrigation districts, including Changma, Shuangta
and Huahai. Besides, two more dams of Shuangta and Chijinxia
were built to manage water resources for irrigation in the Shuangta
and Huahai irrigation district. The average runoff for the Shule
River that is drained annually into the Changma reservoir is
9.48 � 108 m3 with apparent variations in monthly runoff. A large
alluvial fan was formed after the river goes through the Changma
Valley, and three main irrigation canals have been constructed
along the river channel to divert water in a synergistic manner to
three irrigation districts. The Changma irrigation district is selected
herein to conduct modeling simulations for GWL prediction, taking
its social-economic conditions and water consumptions into
consideration. This entire irrigation district is located on the Yumen
Basin, and has an area of 460 km2, which is the largest in the Shule
River watershed.

Fig. 3 presents the locations of 30 GWL observation wells



Fig. 1. Location of the study area.
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(piezometers) across the Yumen Basin, and each well is also
notated. To perform simulations, local data was collected and pre-
pared as carefully as possible, and thorough examinations on these
data were also carried out. Specifically, weather observations for
Dunhuang, Yumen and Guazhou station during 1961e2010 were
acquired from the China Meteorological Data Sharing Service Sys-
tem at a monthly step, consisting of precipitation, mean air tem-
perature, monthly maximum/minimum daily average temperature,
relative humidity, sunshine ratio and hours. Monthly hydrologic
records based on daily observations from 1998 to 2010 such as
monthlymean discharges at Changma and Yumen station, monthly
mean inflow into Changma and Chijinxia Reservoir as well as
monthly mean outflow from Changma Reservoir were provided by
the Bureau of Shule River Water Resources Management. In addi-
tion to the GWL elevations for 30 wells across the Yumen Basin, the
Bureau kept a clear record of groundwater withdrawal information
on five delineated subareas from 1998 to 2010.

3. Methodology

Fig. 4 illustrates the flowchart of proposed forecasting frame-
work. Generally, SOM is used as a spatial clustering method to
group the GWL piezometers into several clusters, the number of
which is determined with the help of non-hierarchical K-means
classification method (Tarsitano, 2003). While the GWL elevations
for central piezometers in the future are predicted through devel-
oping such temporal clustering method as stepwise cluster infer-
ence model. At the first step, input pattern analysis is undertaken
on the GWL time series through establishing a self-organizing map.
Then, the non-hierarchical K-means classification method is
applied to identify central piezometers for representing the
regional GWL fluctuations. To accurately predict the GWL for cen-
tral piezometers at a lead time, candidate predictors such as
weather, hydrology, antecedent GWL observations are prepared as
well as to be screened based on experience and trial and error
method. Afterwards, a stepwise cluster tree will be built through
cutting and merging operation based on the training data sets.
According to updated inputs, the GWL simulation would be then
performed through the cluster tree. Thus, a forecasting system is
developed for GWL prediction, and post-modeling analysis would
be carried out accordingly. Details on the principles of modeling
procedures will be further elaborated as follows.

3.1. Self organizing map (SOM)

SOM, also referred to Kohonen network (Kohonen, 1995), im-
plements projection of an orderly mapping of a high-dimensional
distribution onto a regular low-dimensional grid, and it takes ad-
vantages of visualizing high-dimensional data using discrete lat-
tices (Nourani et al., 2015). Thus, a map of 1 or 2 dimensions
produced by SOM is usually favored to illustrate the similarities of
the data, and accordingly, similar data sets can be further grouped
together to result in various categories with similar input patterns
(Kohonen, 1997).

In general, the SOM network consists of two layers, an input
layer and a Kohonen layer (SOM layer). The n-dimensional input
layer is fully projected to the SOM layer through weight vector w,
and a two dimensional SOM layer is the form that is applied in most



Fig. 2. Schematic representation of the water resource system in the study area.

Fig. 3. Distribution of groundwater level observation wells across the Yumen Basin.
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common applications. To apply SOM successfully, following pro-
cedures would be required (Kalteh et al., 2008).

i. Normalization. Normalization ensures that all variables have
equal importance in the formation of SOM by transforming all
the variables to the range of e.g. 0e1. In this study, twice
normalization on groundwater level time series was carried out
in order to avoid the varying effects due to different geographic
locations and time steps. The GWL observations were firstly
normalized for each observation well to eliminate the effects of



Fig. 4. Flowchart of SOM-aided stepwise cluster multisite inference model.
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GWL elevations as a result of geographic locations, and then
normalized at each time step to consider varying effects of the
GWL distinctions at different time steps.

GWLt;i ¼
�
GWLit � GWLimin

�

GWLimax � GWLimin

(1)

GWL*t;i ¼
�
GWLt;i � GWLt;min

�
GWLt;max � GWLt;min

(2)

inwhich, i denotes the order of observationwell; t is the time; GWLit
is the observed groundwater level for the ith observation well at
time t; GWLt;i is the firstly normalized groundwater level for the ith
observation well at time t; GWL*t;i is the secondly normalized GWL
for the ith observation well at time t; GWLimin and GWLimax are the
minimum andmaximum observed GWL at the ith observationwell,
respectively; GWLt;min and GWLt;max are the minimum and
maximum groundwater levels for all observations at time t,
respectively.
ii. Training. After normalization, a sample input vector from the
data matrix is selected to iterative training procedures to form
the SOM. The random weights are initially assigned, and the
Euclidean distance between the input vector and weight w is
then computed as follows.

��y�wj
�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

t¼1

�
yt �wj;t

�
vuut (3)

inwhich, j stands for the jth neuron. Through comparing each of the
SOM neuron weight vectors with the present input pattern, a type
of competitive and unsupervised learning is applied. The neuron
with the closest match is called winner neuron or Best Matching
Unit (BMU). Then, the weight vector of the BMU and its topologi-
cally neighboring neurons are updated by changing the weights at
each training iteration to further reduce the distance between the
weights and the input vector (Nourani et al., 2015). The most
commonly used neighborhood function for updating the weights is
the Gaussian (Kohonen, 1997). This training process is repeated
until convergence. In this study, the SOM training was accom-
plished based on SOM Toolbox 2.0 (http://www.cis.hut.fi/
somtoolbox/). Moreover, the Kohonen map has been chosen as a
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hexagonal lattices with number of nodes determined according to
Astel et al. (2007) and Yang et al. (2012).

iii. Application of the trained SOM map. Once the training is
finished, post-processing can proceed based on the resulting
SOM. Herein, it is employed to identify the spatial clusters of
GWL fluctuations, and locate the representative piezometers.
In order to achieve this, the non-hierarchical K-means clas-
sification algorithm is used to help determine the number of
optimal clusters for the GWL piezometers, in which the
David-Bouldin index is chosen as criterion (Davies and
Bouldin, 1979). Then, the SOM lattices is subject to a
second-level clustering into a given number of clusters, and
subsequently, the Euclidean distance is calculated for each
cluster to find the representative GWL well (central
piezometer), which is closest to the centroid.
3.2. Stepwise cluster multisite inference model

According to the principle of SCA (Huang et al., 2006), it makes
an effort to build a classification tree in the sense of probability
based on a series of cutting or mergence processes under given
statistical criteria (Sun et al., 2009). To obtain reliable and accurate
GWL predictions, both empirical design and careful configurations
would be very necessary when SCA is considered. Thus, a stepwise
cluster multisite inference model based on SCA specifically for
regional GWL prediction would be necessary. In accordance with
SCA, the primary objective of proposed inference model is also to
characterize the nonlinear relationships between multiple pre-
dictors and multisite GWL observations through generating clus-
tering trees and classifying the observation samples into various
groups (Li et al., 2015b).

The training samples should be prepared in advance to
construct a cluster tree for prediction. Firstly, the training set is
formed by combining all the predictors and predictands of n sam-
ples, which are then cut and merged progressively until conver-
gence or criterion being violated. The essence of training process is
actually to cut the training set into two and to merge two sets into
one, step by step, and thus to result in a clustering tree. Accordingly,
the training set is divided into many smaller sets, and n samples are
finally classified. The clustering criterion used is the F test based on
Wilks' likelihood-ratio criterion (Wilks, 1963). Through the cut-
merge loop, the training procedure is completed when all hy-
potheses of further cutting or merging are rejected, and the cluster
that cannot be cut or merged is called an end node. More details on
the operation could refer to previous literature (Huang, 1992; Li
et al., 2015b; Sun et al., 2009).

After the training is done, the derived cluster tree can be
employed for prediction, where the chosen predictors are used
progressively as the cutting criteria. When a new sample is being
input, thus, the predictor values against the criteria would help
reach an end node along a cutting and merging route. Moreover,
the predictand value at each end node can be expressed as:

yp ¼ y2p±R
2
p (4)

where yp
2 is the derived mean value of predictand yp, and Rp

2 stands
for the radius of yp for end node 2, calculated respectively as follows.

y2p ¼ 1
n2

Xn2

k¼1

y2p;k (5)
R2p ¼
h
max

�
y2p;k

�
�min

�
y2p;k

�i.
2 (6)

Correspondingly, the predictions at end node are not precise
results, and various percentile values can also be obtained.

To perform GWL predictions for the study area of interest, many
empirical variables are used as the candidate input predictors for
the inference model based on the available data. Due to the GWL
observations collected at the beginning of each month, the infer-
ence model is trained to predict the GWL elevations 30 days into
the future at the central piezometers. As shown in Table 1, 32
candidate input predictors at a monthly step are considered as well
as antecedent GWL observations for central piezometers. Needless
to say, interactions among input predictors would lead to signifi-
cant influence on the predictions. To address such dilemma, the
trial and error method coupled with empirical evidence are adop-
ted to further determine input predictors as well as to configure the
models, in which the Nash-Sutcliffe efficiency is chosen as the
criteria.

3.3. Autoregressive (AR) error model

Model errors always reflect the limitations of models in
mimicking the hydrological processes as well as inaccuracies in
data used to drive the models (Li et al., 2015a), so post-processors
or updating procedures are often applied to correct forecasts
based on the latest available observations and their difference from
simulations. As a popular approach for updating forecasts, autore-
gressive (AR) error models investigate the “memory” of errors in
hydrological simulations and use a simple linear regression func-
tion to estimate errors in a forecast period based on the known
errors at previous time steps (Brockwell and Davis, 1996). Then,
forecasts are updated according to the estimated errors. Let yt and
yt
M represent the observed and simulated GWL, respectively. A lag-1

AR (AR(1)) model can be formulated as:

εt ¼ yt � yMt (7)

εt ¼ a$εt�1 þ b (8)

in which, εt represents the residual of yt and yt
M; a and b denote the

coefficients of linear regression function.
The AR model is considered to update the GWL predictions, and

the accuracy is expected to increase through incorporating the AR
error model with the stepwise cluster inference model. To allow for
hydraulic characteristics in the irrigation area and the lead time for
GWL prediction, the AR(1) model would be applied in this study.

3.4. Model performance indicators

The data was split into two series of samples for training and
validation, corresponding to 1998e2005 and 2006e2010, respec-
tively. Comparisons of training and validation simulations against
observations were then carried out, respectively. Moreover, model
performance was evaluated both visually using the hydrographs/
regressive chart and statistically for its general “goodness of fit” in
terms of Nash-Sutcliffe Efficiency (NSE), Correlation coefficient (R),
Deviation of Volume (DV) and Root Mean Square Error (RMSE).

In order to analyze the simulation uncertainty, the upper and
lower bounds of predictions as well as the 50 Percent Prediction
Uncertainty (50PPU) would be visualized in the GWL hydrographs
(Han et al., 2014a). Besides, two indicators are used to evaluate the
uncertainty, i.e., Average Relative Interval Length (ARIL) and the
percent of observations bracketed by the prediction band (PCI) as
follows (Jin et al., 2010).



Table 1
List of candidate input predictors.

Label Parameter Label Parameter Label Parameter

X1 Monthly precipitation, DH* X12 Monthly sunshine hours, YM X23 Monthly average runoff, Yumen hydrometric Station
X2 Monthly average daily air temperature, DH X13 Monthly sunshine ratio, YM X24 Monthly inflow into Changma Reservoir
X3 Monthly minimum daily air temperature, DH X14 Monthly average relative humidity, YM X25 Monthly outflow from Changma Reservoir
X4 Monthly maximum daily air temperature, DH X15 Monthly precipitation, GZ* X26 Monthly inflow into Chijinxia Reservoir
X5 Monthly sunshine hours, DH X16 Monthly average daily air temperature, GZ X27 Groundwater extraction in south of the irrigation district
X6 Monthly sunshine ratio, DH X17 Monthly minimum daily air temperature, GZ X28 Groundwater extraction in east of the irrigation district
X7 Monthly average relative humidity, DH X18 Monthly maximum daily air temperature, GZ X29 Groundwater extraction in north of the irrigation district
X8 Monthly precipitation, YM* X19 Monthly sunshine hours, GZ X30 Groundwater extraction in west of the irrigation district
X9 Monthly average daily air temperature, YM X20 Monthly sunshine ratio, GZ X31 Groundwater extraction in the main canal area
X10 Monthly minimum daily air temperature, YM X21 Monthly average relative humidity, GZ X32 Total groundwater extraction in the irrigation district
X11 Monthly maximum daily air temperature, YM X22 Monthly runoff, Changma Station X33~ Antecedent GWL observations at representative wells

Note: DH, YM and GZ stand for Dunhuang, Yumen and Guazhou Station.

J.-C. Han et al. / Journal of Environmental Management 182 (2016) 308e321314
ARIL ¼ 1
n

X LimitUpper;t � LimitLower;t

Robs;t
(9)

where LimitUpper,t and LimitLower,t are the upper and lower boundary
values of the predictand; n is the number of time steps; Robs,t is the
observed GWL elevation.

PCI ¼ NQin

n
� 100% (10)

where NQin is the number of observations which are contained in
the prediction interval bracketed by the upper and lower bounds.

4. Results & discussions

4.1. Results of SOM

For the SOM output layer, hexagonal discrete lattices are usually
preferred for visualization (Kalteh et al., 2008). In order to
accomplish spatial clustering of GWL piezometers, a lattice with
6 � 5 hexagons was utilized to illustrate the similarities of GWL
observations for 30 wells in the study area (Fig. 3). In this study, a
30 � 156 matrix (i.e., 156 normalized GWL records for each
piezometer from 1998 to 2010) comprised the high dimensional
inputs into the SOM training process. Fig. 5(a) shows the neighbor
weight distances obtained by the two dimensional SOM output
layer. The dark hexagons represent the BMU neurons with one
connecting input vector at least, indicating that a GWLwell or more
wells would be clustered as shown in Fig. 5(b). In addition, the
colors in the regions denote the relative distances between adja-
cent neurons. Thus, a total of nineteen BMUs or clusters are first
generated based on thirty series of the GWL observations, and
Fig. 5(b) presents the resulting SOM with neurons marked by the
observation wells. Therefore, it can be found that several GWL pi-
ezometers are directly grouped onto a hexagonal neuron, indi-
cating high similarities between them. According to the obtained
neighbor weight distance, the smaller it is, the more likely the
adjacent neurons can be clustered. Hence, further clustering of the
SOM neurons could be undertaken based on the neighbor weight
distances, but the appropriate number of clusters should be
necessarily designated herein.

With the help of non-hierarchical K-means classification algo-
rithm, the Davies-Bouldin index was calculated to determine the
optimum number of clusters, which was set in the range of [2,19]
according to the SOM results. A lower value of Davies-Bouldin index
indicates that the clustering is better, so the best clustering scheme
essentially minimizes the DavieseBouldin index (Davies and
Bouldin, 1979). To achieve robust simulations, 1000 runs of non-
hierarchical K-means clustering operation were implemented
simultaneously. As a result, 1000 clustering schemes were ulti-
mately derived. Accordingly, frequencies for the resulting number
of clusters were computed as illustrated in Fig. 6, and hence, the
optimum number of clusters would be 6 for the GWL piezometers.

The GWL piezometers could be then classified into the given
number of clusters as shown in Table 2. Regarding the specific lo-
cations of piezometers, the clusters seem to have no direct rela-
tionship with the direction of main stream flow (Fig. 3), which has
been being altered for several years due to construction of irriga-
tion canals and increasing human activities in the irrigation district,
especially for unregulated pumping extractions. Nevertheless, in-
teractions between groundwater and surface water including
springs cannot be neglected as well. In order to identify predomi-
nant piezometers, which can best represent the GWL fluctuation
pattern of the study area, the Euclidean distance was adopted to
identify the central piezometer for each cluster. As a consequence,
six central piezometers were then obtained for reflecting regional
GWL fluctuations (Table 2). Therefore, emphasis should be imposed
on them to understand the relationships between groundwater
resources with economic and social behaviors and ecological pro-
cesses for reliable and effective groundwater management of the
plain. Also, these six central piezometers were focused to demon-
strate stepwise cluster GWL predictions.
4.2. GWL prediction

With respect to six central piezometers, antecedent GWL ob-
servations for SL29, SL37, SL43, SL31, SL21 and SL50 were also
assigned as candidate predictors X33~X38, respectively. Thus, a
total of 38 predictors were used as candidates for the inputs into
stepwise cluster inference model. In addition to predictors, two
independent parameters should be set before the training of
stepwise cluster inference model. The first parameter is the mini-
mum number of samples (Nmin) for the end node, and the second is
the level of significance for the F-test. Through trial and test in
conjunction with empirical evidence, appropriate set of candidate
predictors was ultimately selected as inputs for stepwise cluster
inference. Hence, six stepwise cluster inference models were
established for the central piezometers, and six cluster trees were
built accordingly. Fig. 7 illustrates an example of the resulting
cluster tree for well SL50. As presented in the figure, there are
totally 22 end nodes, which are highlighted with blue background,
and under each end node, the values of predictand are expressed as
mean ± radius as described above. As for nodes which are split into
two nodes at lower layer, the cutting criteria is also notated as to
which predictor is applied. For instance, Node #1 is cut into Nodes
#2 (left branch) and #3 (right branch) by comparing the normal-
ized value of X4 with 0.92,927. When the normalized value is less
than 0.92,927, the left branchwill be taken, and otherwise, the right



Fig. 5. 2-Dimensional SOM analysis of GWL data. (a) SOM neighbor weight distance; (b) projected observation wells.

Fig. 6. Optimal clusters based on K-means clustering algorithm (1000 runs).

Table 2
The resulting classification of GWL observations and corresponding central
piezometer for each cluster.

Cluster GWL piezometers Central piezometers

1 SL29 SL41 SL22 SL33 SL35 SL39 SL29
2 SL28 SL44 SL45 SL30 SL32 SL37 SL37
3 SL47 SL43 SL27 SL43
4 SL23 SL34 SL51 SL31 SL48 SL40 SL31
5 SL21 SL26 SL52 SL21
6 SL49 SL42 SL36 SL50 1997 SL38 SL50
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branch is taken until the end node.
Table 3 shows the final settings of stepwise cluster inference

models and the total number of end nodes for the resulting cluster
trees as well as the behavioral predictors, which are defined herein
as the predictors playing a part in GWL forecasting according to the
cluster tree. The minimum number of samples for clusters at each
end node is required to be greater than 2, but it was found that no
better predictions could be ensured to produce the maximum end
nodes through keeping a minimum number as 3. Especially for
SL31, of which the determined minimum number is 6, only 11
clusters/end nodes were generated for prediction. Hence, on the
one hand, it is difficult to accurately capture the fluctuation pattern
of GWL for SL31 compared to other piezometers, indicating high
uncertainty for the GWL predictions. On the other hand, it further
reveals that the simulation efficiency was significantly subject to
the observation data since the proposed model is data-driven.
Consequently, it would reflect that high uncertainties exist in the
GWL observations due to complex interactions among multiple
influencing factors. Nevertheless, the proposed method still dem-
onstrates its superiority relative to predictions only using the mean
value of observations because the best model performance was
obtained at a minimum number of not greater than 6 rather than
only one cluster for the predictand. As discussed above, to increase
the level of significance for the F-test would help lead to more
cutting, and as a result, more clusters/end nodes for predictions
would be probable. Besides, merging operations might be reduced,
which would also contribute to more end nodes for prediction.
Based on the results as shown in Table 3, increasing stepwise
clusters for GWL predictionwould be not positive for improving the
accuracy of predictions, and again, there exists an optimal level of
clusters for GWL time series prediction. When it comes to the
behavioral predictors, the resulting input structures for central pi-
ezometers differed a lot from each other, suggesting distinct GWL
fluctuation patterns for six clusters of GWL wells. However, it
should be worth emphasizing that the predictors are subject to
screening before they are used during training. Therefore, the in-
teractions among candidate predictors still need to be discussed
according to the implications of predictors on GWL predictions.

Fig. 8 indicates the simulation results of GWL time series for six
central piezometers, which are demonstrated for both the training
and validation period. As shown in the figure, five statistics for the
predictand (the minimum, maximum, mean, 25th and 75th
percentile values of predictions) were obtained against the obser-
vations, which are denoted by the red dots. The mean predictions



Fig. 7. The resulting stepwise cluster tree (take SL50 for example).

Table 3
Results of stepwise cluster tree.

Piezometer Nmin Significance level End node Behavioral predictors

SL21 3 0.01 15 X33, X28, X23, X31, X20, X29, X4, X15, X7, X17, X26, X20
SL29 4 0.01 14 X34, X33, X2, X27, X26, X6, X7
SL31 6 0.01 11 X31, X35, X36, X18, X3, X19, X23, X6, X9, X25, X38, X13
SL37 5 0.1 14 X2, X36, X4, X34, X21, X7, X19, X28, X20
SL43 4 0.05 17 X29, X38, X31, X26, X27, X33, X36, X24, X25, X28, X6, X19, X2, X7
SL50 3 0.05 22 X4, X30, X10, X27, X28, X2, X24, X36, X35, X8, X37, X5, X25, X33, X23, X16
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and corrected predictions with the AR(1) model are depicted as
triangle and fork symbols, respectively. In addition, the maximum
and minimum values were described as the upper and lower
bounds, which are shown using two red lines in the figure. Besides,
the grey interval band of 50PPU was used to reflect the intervals
between 25th and 75th percentiles.

According to the GWL hydrograph, the stepwise cluster infer-
ence model accurately reproduced the rising and falling tendencies
of GWL elevations. However, the range of GWL fluctuations is
highly dependent on the observation sites, and the training results
confirms a good match between observations and simulations
when the mean value (green triangle) was chosen to predict the
GWL elevations. Thus, the mean value would be a reliable alter-
native for GWL prediction in comparison with the other statistics.
By contrast, it seems that no comparable simulations were pro-
duced for the validation period relative to the training, and more-
over, predictions are relatively poor for SL31. It might be attributed
to complex hydrogeological conditions and varying human activ-
ities, which were not reflected sufficiently in the model (Han et al.,
2014b). Besides, well pumping and groundwater extractionwas not
effectively considered, and unauthorized wells have also been
found to be digged and operated by the farmers in this region. Such
influences on hydrologic regime cannot be accurately represented
in the model due to lack of reliable records and data availability.
Especially for piezometers with small range of GWL fluctuations
such as SL50, GWL has a range of fluctuations not greater than 0.3m
for the training period, while the maximum amplitude of GWL
fluctuations for the validation period is nearly as high as 0.5 m.
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Some observations are even beyond the upper/lower bounds,
signifying inconsistent hydrologic regime of GWL. The identical
phenomenonwould also be found for SL43, SL37 and SL31. Hence, it
is too difficult to accurately represent the varying pattern of GWL
fluctuations without sufficient consideration of inconsistent GWL
changes. Nevertheless, the primary changing trend of GWL could
still be captured at a satisfying level through applying the mean
value for prediction based on the evaluation indicators in Table 4. In
order to improve the predictions, the AR(1) error model was then
integrated with the inference model to correct the predictions, and
the corresponding results were represented by the asterisk sym-
bols in Fig. 8. As for the simulation results, the newly obtained
predictions apparently approach closer to the observations, espe-
cially for the validation period. Consequently, such post-processing
procedure as the AR(1) model would help to increase the modeling
Fig. 8. GWL simulation results through stepwise clus
efficiency of GWL prediction. In addition to the illustration of GWL
hydrograph, the model performance were further evaluated for
both training and validation. As shown in Table 4, the predictions
based on the mean values corrected with the AR(1) model were
compared with those using the mean value. According to the rec-
ommendations of Moriasi et al. (2007), the mean values corrected
with the AR(1) model for the simulation error would result in
“good” GWL predictions for all the central piezometers. By contrast,
estimation of the GWL elevation using only the mean value is
relatively poor, although most of them for the training period are
very good. For instance, the obtained NSE values for the GWL pre-
diction of well SL31 for training and validation are 0.917 and �0.29,
respectively. While after AR correction, the values become 0.862
and 0.767. In the meanwhile, the value of RMSE for validation de-
creases from 0.206 to 0.087 m. Such issue, on one hand, could be
ter inference for six representative piezometers.
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attributed to the limits of assigned training samples, which might
be inadequate for demonstrating future changes of GWL elevations.
On the other hand, inconsistent hydrologic regime would lead to
such deficiency as previously discussed. Besides, short-term tran-
sient pumping changes, which were not captured in the ground-
water extraction records, would also cause apparent predictive
errors. Regardless of slight or even negative improvements on GWL
predictions for SL29, SL37 and SL43, it could still be generalized that
more reliable and robust predictions were obtained using the cor-
rected mean values based on the evaluation of model performance.
Therefore, incorporation of the AR(1) model would contribute to
better GWL predictions into the future.

Fig. 9 illustrates predictions using the mean values as well as the
corrected values with the AR(1) model against the observed, and
corresponding fitting lines are also plotted for the entire simulation
period. Besides, a solid black line of 45� is added for reference. The
closer the fitted line gets to 45�, the better the prediction would
perform. Thus, the GWL prediction using the correctedmean values
represented as the red dash line seems to be more reliable than the
dark dash line. Moreover, significant improvements on GWL pre-
dictions would be easily observed for SL21 and SL31. As for other
piezometers, general contribution of the AR(1) error model to GWL
prediction was also positive although it seems to be negligible.

4.3. Uncertainty analysis

Such indicators as ARIL and PCI were used to analyze the
simulation uncertainty of the stepwise cluster inference model.
According to the obtained results as indicated in Table 5, GWL
predictions for SL21 and SL29 show high uncertainty relative to
other piezometers. It is mainly caused by remarkable changes of
GWL elevations during the simulation period. Nonetheless, the
values of ARIL are not greater than 0.47 m. It is interesting that the
ARIL value decreases generally from east to west as delineated by
SL21-SL37 and SL43-SL50 (Fig. 3), which is consistent with the di-
rection of surface water flow. In addition, the GWL fluctuations for
SL43 and SL50 in the north were also found to be lower than those
for piezometers in the southwest. However, special attention
should be paid to GWL changes of well SL21, which has a distinct
difference from its physically neighboring piezometer of SL43. It
might be caused by complex interactions between groundwater
and surface water, i.e. canal construction and irrigation operation,
which has dramatically altered the natural flow regime. By contrast,
the predictions for SL29, situating at edge of the alluvial fan, also
present prominent uncertainty. Such results would be attributed to
frequent exchanges between surface water and groundwater,
which often overflows as springs.

PCI is always used as an indicator to evaluate the reliability of
model. From Table 5, the PCI value varies from well to well, and
notable differences could also be observed for training and vali-
dation. In comparison with satisfying PCI levels for the training
Table 4
Evaluation of stepwise cluster inference model performance for both training (C) and te

Prediction Indicator Sl21 SL29 SL3

C V C V C

Mean value corrected by AR(1) NSE 0.688 0.617 0.958 0.813 0.8
R 0.840 0.813 0.980 0.917 0.9
DV (%) �0.0045 0.007 �0.0015 0.0024 0.0
RMSE 0.277 0.290 0.174 0.204 0.0

Mean value NSE 0.714 0.449 0.956 0.805 0.9
R 0.846 0.798 0.978 0.910 0.9
DV (%) �0.00012 0.015 �0.0020 0.0029 �0
RMSE 0.265 0.348 0.178 0.209 0.0

Note: C and V stand for training and validation, respectively.
period, the obtained PCI values for the validation period seem to be
relatively poor, especially for SL50 and SL31. Thus, other than SL29
and SL37, the modeling reliability for predicting the GWL into the
future is quite susceptible to inconsistent fluctuations of GWL due
to such changes as land cover and groundwater usage. Corre-
spondingly, prediction uncertainty in the future should be carefully
addressed as a result of changing environmental conditions. It
would further suggest that post-processing procedures for accurate
GWL predictions would be crucial. Besides, it is worth mentioning
that hydrologic predictions using such black box models were
highly dependent on historic records. As such, it would result in
modeling deficiencies when varying and different conditions
occurred compared to those during calibration. Accordingly,
promising alternatives would be recommended to assimilate both
the advantages of black box models and process-based models to
make useful predictions.

In the process of stepwise cluster inference, the appropriate set
of predictors plays an important part in improving the model's
efficiency for both steps of training and validation. As aforemen-
tioned, 38 candidate predictors were prepared for selection as in-
puts to the stepwise cluster inference model. When all the
candidate predictors were used as inputs, inappropriate predictors
might take the roles of behavioral predictors, and lead to unrea-
sonable inference. To get rid of adverse effects of noisy predictors,
therefore, screening process was firstly required to select approx-
imate predictors. For instance, to predict GWL fluctuations for SL21,
predictors such as antecedent GWL observations for other pie-
zometers should be removed. If not, predictions for SL21 would
become relatively poor due to the introduction of these predictors
as cutting criteria. It is consistent with the conclusions of Chen et al.
(2010), who found no better performance of six-site model was
achieved than that of four-site model, and too much information
could not help improve the generalization ability of the GWL pre-
diction model. Thus, an experience based trial and error method
was applied to help determine behavioral predictors in this study
(Table 3). For each cutting operation of stepwise cluster training,
only one predictor would be determined as the best criteria for
splitting the clusters into two sub-clusters. Once the introduced
noisy predictor might be chosen as behavioral, modeling efficiency
or reliability would diminish because of insufficient accounting of
interactions among predictors. According to the resulting cluster
trees for GWL elevation predictions using only behavioral pre-
dictors and all 38 candidate predictors as inputs, it was found that
the modeling efficiency decreased to various extents. Taking the F-
test for samples based on the predictand values into consideration,
both the minimum number of sample for end node and the level of
significance have significant influences on the model performance.
Li et al. (2015b) investigated the sensitivity of a daily flow predic-
tion model on such parameters, and found that both of them have
significant impacts on the shaping of the cluster tree, and should be
carefully set to obtain accurate simulations, although various
st (V).

1 SL37 SL43 SL50

V C V C V C V

62 0.767 0.944 0.853 0.976 0.662 0.917 0.523
39 0.904 0.972 0.924 0.988 0.815 0.959 0.726
011 �0.0017 0 0.00012 �0.00037 0.00058 �0.00021 0.00032
539 0.0878 0.0253 0.0486 0.024 0.111 0.0166 0.0600
17 �0.29 0.942 0.849 0.976 0.636 0.929 0.417
58 0.786 0.971 0.922 0.988 0.803 0.964 0.657
.0003 �0.012 �0.00016 0 0 0.0012 �0.0001 0.0007
419 0.206 0.0259 0.049 0.0236 0.115 0.0154 0.066



Fig. 9. GWL predictions against observations using mean value coupled or not with AR(1) model.
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combinations might produce the same cluster tree for predictions
due to parameter uncertainty.

5. Summary

In this study, a SOM-aided stepwise cluster multi-site inference
model was developed to make regional GWL predictions a month
ahead. To represent various patterns of GWL fluctuations, a self-
organizing map coupled with non-hierarchical K-means classifi-
cation method was applied to identify the optimal clusters for GWL
observation wells as well as the central piezometers. According to
the available data, there were totally 38 candidate predictors used



Table 5
Uncertainty analysis of the GWL simulation for the training (C) and test (V) as well as
the entire simulation (S) period.

Piezometer ARIL PCI

C V S C V S

SL21 0.3451 0.4612 0.3897 0.6042 0.4333 0.5355
SL29 0.4250 0.3855 0.4098 0.7812 0.6167 0.7226
SL31 0.1231 0.1343 0.1274 0.8021 0.11,667 0.5355
SL37 0.05621 0.05935 0.05742 0.6875 0.4333 0.5935
SL43 0.04469 0.04850 0.04615 0.4271 0.2333 0.3484
SL50 0.02505 0.02266 0.02413 0.5938 0.08333 0.40
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to predict the GWL. Based on the obtained predictions, several
conclusions would be generalized as follows.

(1) Six central piezometers were identified with varying GWL
fluctuations in the Changma irrigation district. Then, six
corresponding stepwise cluster inference trees were con-
structed to infer the range of GWL predictions through
comparing the predictor values with the cutting criteria. It
was found that the mean value of predictions would be
employed as a reasonable alternative for GWL prediction,
while incorporation of the AR(1) error model would further
improve the predictions, rendering the predictions more
accurate and reliable. Due to its simplicity and robustness,
the proposed model would be a useful tool to predict the
regional GWL fluctuations within a multisite forecasting
framework. Thus, such accurate prediction capability would
help develop appropriate wellfield operation policies while
mitigating environmental impacts such as aquifer overdraft,
streamflow depletion and downstream ecological flow based
on reservoir operation. As a future work, the resulting
inference modeling structure would be further extended to
predictions for other piezometers. Using interpolation and
estimation methods, in addition, sufficient GWL forecasting
coverage across the study area of interest would be able to
eventually support informed regional water resources deci-
sion-making.

(2) Various combinations of candidate predictors constitute the
behavioral predictors for six kinds of GWL fluctuation
pattern. However, predictors' screening procedure should be
first implemented to eliminate noisy predictors, which
would lead to irrational cutting in the cluster tree with re-
gard to the chosen criteria. Consequently, more predictors
being introduced would not ensure more reliable simula-
tions. To determine behavioral predictors, such advanced
correlation analysis methods as mutual information theory
might be a feasible alternative, and further works will be
advised on such issues in hydrological application. In addi-
tion to predictor selection, care should also be given to
configurations of significance level and the minimum num-
ber for end node, which would impose significant influence
on the structure of cluster tree as well as the resulting
predictions.

(3) As a result of background changes that are hard to account
for, inconsistent hydrological characteristics would make
accurate predictions even harder based only on historical
records. Although an AR(1) error model was applied to
timely correct the predictions, background changes such as
land cover changes due to human activities might not be
effectively reflected by modeling efforts, and moreover, it is
still difficult to capturemany extreme values according to the
validation results. In this regard, alternatives to improve
model performance would require more understandings of
the GWL time series, and hence, more deliberate pre-
processing and post-processing procedures would be help-
ful and highly recommended in the future. Also, the predic-
tion accuracy could further be improved through gaining
more insights into groundwater systems as provided by
data-driven and physical-based models.
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