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This study used a combination of the wavelet cross-correlation technique and numerical analysis of
vegetative feedback to study the role of climate–vegetation feedback from 1981 to 2009 in the northern
Tianshan Mountains, Xinjiang Province, China. The study area included the Irtysh River, the Bortala
and Ili River valleys, the northern slopes of the Tianshan Mountains, and the western Junggar Basin.
The feedback effects of changes in vegetation on precipitation appeared to vary in these five regions
when different time scales are used to examine them. The most useful time scale was generally found to
be 4–6 months. Time lag was another characteristic of this process, and the optimal time lag was 3–4
months. Nevertheless, optimal time scale and time lag did not differ significantly in these five regions. In
this way, the correct time scale of the effects of variations in vegetation on precipitation in this cold, arid
area was found. This time scale and time lag can be assessed through wavelet cross-correlation analysis.
Then numerical analysis can be used to improve the accuracy of the analysis.

1. Introduction

A correlation exists between climate and vegetation
on regional and even global scales, where climate
controls the spatial distribution of types of vege-
tation. However, vegetation can affect climate by
affecting air exchange in the atmosphere (Brovkin
et al. 2006; Davin and De Noblet-Ducoudré 2010;
Zhang et al. 2013). In the current study, climato-
logical models were used to evaluate the interac-
tions between climate and vegetation. One of the
limitations of such models is that the ideal time
scale for the evaluation of this relationship has not

yet been identified (Zeng 2003; Paeth et al. 2009;
Pitman et al. 2009; Alo and Wang 2010; Wu et al.
2011). The simplification of traditional dynamics
and theoretical analysis rarely involves analysis
of the time scales of climate–vegetation feedback
when they deal with the relationship between vege-
tation and atmosphere. However, identifying the
response time of changes in climate and vegetation
is very important. This assessment may provide an
observational benchmark that can be tested by
coupled global vegetation–climate models. They
will be very important in providing further under-
standing of and better insight into the mechanisms
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of climate–vegetation feedback and the possible
effects of the land use changes in current regional
climate changes.
In recent years, remote sensing technology has

continued to develop; this permits scholars to use
long-term observational data related to vegetation
indices and climate to study the relationships bet-
ween climate and changes in vegetation on different
spatial scales (Zhang et al. 2003; Liu et al. 2006;
Hua et al. 2008; Mao et al. 2008; Wang et al. 2010;
Zuo et al. 2010; Wu et al. 2011). Studies in many
parts of the world have shown that vegetation
changes have a positive feedback relationship with
average monthly temperature, monthly maximum
temperature, and the degree of variation in average
monthly temperature (Wu et al. 2011). On an inter-
annual time scale, Liu et al. (2006) and Li et al.
(2008) demonstrated that the positive feedback
effect that changes in vegetation on precipi-
tation is very pronounced in northeastern Brazil,
eastern Africa, eastern Asia, and northern Aus-
tralia. On a seasonal scale, changes in vegetation
cover have some negative feedback effects on the
frequency of light rain and on the onset of the late
period in agriculture in the ecotones and grass-
lands of northern China (Mao et al. 2008). The
normalized difference vegetation index (NDVI) in
winter has a distinctly positive correlation with the
amount of precipitation that falls on the Tibetan

Plateau and in central China during the follow-
ing summer. The spring NDVI also has a correla-
tion with the amount of precipitation that falls on
the Tibetan Plateau and in the arid and semi-arid
regions in the eastern part of northwestern China
during the following summer (Zhang et al. 2003;
Hua et al. 2008). The research discussed above was
usually conducted using monthly and seasonal time
scales for cross-correlation analysis under different
time delay conditions, but the changes in vegeta-
tion and climate showed multiple time scale charac-
teristics. For this reason, revealing feedback effects
of changes in vegetation as they are related to pre-
cipitation has proved helpful. This can be done
by studying the correlations between NDVI and
changes in precipitation using different time scales
and different regional conditions.
The numerical simulation calculation method is

a common means of studying the inter-relationships
and feedback between climate and vegetation. This
method has been shown to be very precise in studies
of climate–vegetation feedback (Liu et al. 2006;
Notaro and Liu 2008). However, the method focus-
ses on the feedback inter-relationships between cli-
mate and vegetation at a single time scale, selects
a single analysis scale, and ignores time lag. There-
fore, it cannot fully reflect the effects of feedback
on changes in vegetation on precipitation, if those
effects have multiple times-cale characteristics.
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Figure 1. Location of the northern Tianshan Mountains, Xinjiang, China. The white dots indicate meteorological data
collection sites.
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The northern Tianshan Mountains are located in
Xinjiang Province, which includes the Irtysh River
Basin, the Bortala valley, Ili River valley, the Jung-
gar Basin, the northern slopes of the Tianshan
Mountains, and the mountains in the western part
of the Junggar Basin. The region lies far from the
ocean and is surrounded on three sides by the Tian-
shan, Tarbagatai, and Altai mountains (figure 1).
This basin allows the formation of a unique local
climate system providing an ideal environment
for the study of regional climate–vegetation
interactions (Zhang and Deng 1987; Zhang 2001;
Shi et al. 2002).
The wavelet analysis (WA) method can be used

to perform integrated analysis of non-stationary
time series, making it applicable to studies of
complex systems that vary across multiple time
scales (Li 2000; Wang et al. 2009). Methods based
on wavelet cross-correlation analysis can facili-
tate quantitative descriptions of the relationships
between two non-stationary time series for spe-
cific time scales and time lags. This has advantage
over ordinary relative analysis and cross-spectral
analysis, allowing it to be used to determine cross-
correlations of vegetation and climate on multiple
time scales. In recent years, the WAmethod has been
widely used in studies of climate change (Paluš
et al. 2005; Rehman and Siddiqi 2009; Brunsell
2010) and to analyse changes in hydrology and
water resources as well as changes in vegetation
(Gao and Li 1993; Li and Loehle 1995; Xie and
Liu 2010; Hudson et al. 2011; Kisi 2011; Wang
et al. 2011). However, WA has seldom been used
in studies of vegetation–climate relationships.
In the present study, numerical analysis of feed-

back information from vegetation, combining WA
and cross-correlation techniques, was used to study
the feedback effect of the changes in vegetation
on precipitation on different time scales and time
lags. It was also used to study the character-
istics of the effects of changes in vegetation on
precipitation over a 30-year period (1981–2009)
in the northern Tianshan Mountains, Xinjiang
Province, China. Then, the feedback relationship
between changes in vegetation and precipitation
over time was summarized. These results may
improve on use of the numerical analysis method
in the analysis of the feedback effects of changes in
vegetation.

2. Methods

2.1 Data pre-processing

The Junggar Basin region covers a large area
with only three meteorological stations. Precipita-
tion is a spatially noisy climate variable, an aver-
age of precipitation from the three meteorological

stations would probably not be representative of
the entire Junggar region. In this region, vege-
tation was sparse, and the feedback effects on
precipitation were weak. Therefore, this research
focussed on five regions: (1) the Irtysh River
Basin, (2) the Bortala valley, (3) the Ili River
valley, (4) the northern slopes of the Tianshan
Mountains, and (5) the mountains in the western
part of the Junggar Basin (figure 1). We selec-
ted 18 of the available weather stations and eva-
luated daily meteorological data from January
1, 1981 to December 31, 2009 to guarantee
the uniformity and stability of the meteorolog-
ical data analysed. The National Meteorological
Information Center of the China Meteorological
Administration (http://www.nmic.gov.cn/) provi-
ded meteorological data.
Satellite data used here consisted of NOAA/

Advanced Very High Resolution Radiometer
(AVHRR) NDVI digital images (1981–2001) pro-
vided by the Environmental and Ecological Science
Data Center for Western China (http://westdc.
westgis.ac.cn, at a spatial resolution of 1 km×1 km
and at a 10-day interval) and SPOT-4 VEGETA-
TION NDVI digital images (1998–2010) provided
by VITO in Belgium (http://free.vgt.vito.be, at a
spatial resolution of 1 km × 1 km and at a 10-day
interval). The processing techniques addressed
radiometric calibration, geometric corrections, the
reduction of the effects of variable cloud cover, and
recalibration during the data preparation phase.
NDVI composites were created using the maximum
value composite (MVC) technique, which select the
highest NDVI at each pixel from daily images taken
over a period of 10 days to minimize the effect of
cloud cover. To assure that high quality data were
used, we employed only datasets that had already
seen widespread use in the study of global and
regional changes in vegetation (Goetz et al. 2006;
Kaptué Tchuenté et al. 2011). International gen-
eral MVC were used to calculate the NDVI values
on different time scales (Stow et al. 2007). This
approach is based on the logic that low-value obser-
vations are either erroneous or have less vegetation
vigor for the period under consideration (Holben
1986).
Because the data from NOAA/AVHRR and

SPOT-4 involved two different sensors, we con-
firmed the consistency of the data and found the
correlation coefficient of these two types of data
to be 0.932 which exceeded the selected confidence
level (p< 0.05), indicating a high level of data
consistency (Zhang et al. 2011).
The analysis of the relationships between NDVI

and precipitation was performed based on regions.
The precipitation series was formed by averaging
stations data in all regions. The NDVI data for
each meteorological stations were extracted from

http://www.nmic.gov.cn/
http://westdc.westgis.ac.cn
http://westdc.westgis.ac.cn
http://free.vgt.vito.be
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the mean of 5 × 5 pixels around the location of
the stations, according to the geographical posi-
tion, using ArcGIS. The NDVI series was formed
by averaging station NDVI data in all regions. The
time resolution of NDVI and precipitation were
both 10 days. The 10-day anomalies of both NDVI
and precipitation were further calculated as the
departures from their climatological annual cycles.
Finally, the data were linearly de-trended.

2.2 Mann–Kendall (MK) test for trend

The Mann–Kendall (Mann 1945; Kendall 1975)
test is a non-parametric trend analysis for identi-
fying the increasing and decreasing pattern in time
series of the data. Non-parametric test treatment
methods are based on low-precision data, so that
they can handle almost any types of data. Mann–
Kendall method is a non-parametric statistical test.
For a time series X = {x1, x2, . . . , xn}, in which

n >10, the standard normal statistic Z is estimated
as:

Zc =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S − 1
√
var (S)

, S > 0

0, S = 0
S + 1

√
var (S)

, S < 0

(1)

where

S =
n−1∑

i=1

n∑

k=i+1

sgn(xk − xi)

sgn(θ) =

{
1, θ > 0
0, θ = 0
−1, θ < 0

var[S] =
[n(n− 1)(2n+ 5)−

∑
t t(t− 1)(2t+ 5)]

18
(2)

The presence of statistically significant trend is
evaluated using the Z value. At a 5% significance
level, the null hypothesis of no trend is rejected if
|Z|>1.96. A positive value of Z denotes an increasing
trend, and the opposite corresponds to a decreasing
trend.
The MK non-parametric test is widely applied

for determining the occurrence of abrupt change
points of meteorological and hydrologic series. Ad-
vantage of the method is not only simple calcu-
lation but also confirmation of the starting time
of abrupt changes and identification of the area
of abrupt changes. Let x1,x2, . . . , xn be the data
points. For each element xi, the numbers ri of ele-
ments xj preceding it (j < i) such that xj < xi are
computed. Under the null hypothesis (no abrupt
change point), the normally distributed statistic Sk

can be calculated via the following formula:

Sk =

k∑

j=1

ri, 2 ≤ k ≤ n. (3)

Mean and variance of the normally distributed
statistic Sk can be given by the following formula:

S = E (Sk) =
k (k − 1)

4
,

var(Sk) =
k (k − 1) (2k + 5)

72
. (4)

The normalized variable statistic UF k is estimated
as follows:

UFk = (Sk − S)
√
var(Sk) (5)

The normalized variable statistic UF k is the for-
ward sequence, and the backward sequence UBk

is calculated using the same equation but with a
reversed series of data. When the null hypothesis
is rejected (i.e., if any of the points in the forward
sequence is outside the confidence interval), the
detection of an increasing (UF k>0) or a decreas-
ing (UF k<0) trend is indicated. The sequential
version of the test used here enables detection of
the approximate time of occurrence of the trend by
locating the intersection of the forward and back-
ward curves of the test statistic. If any intersection
appears in the confidence interval, it indicates an
abrupt change point.

2.3 Wavelet cross-correlation analysis

The traditional cross-correlation coefficient r,
which is a measure of linear association between
two variables, is defined as:

r =

∑n

i=1

(
xi −X

) (
yi − Y

)

√
∑n

i=1 (xi − x)
2
(yi − y)

2
. (6)

The traditional cross-correlation analysis is not
very useful for analysing non-stationary series
because it fails to describe the frequency content
of a series at a particular time.
The WA method can be used to perform inte-

grated analysis of non-stationary time series. A
wavelet is a basis function characterized by two
aspects. One is its shape and amplitude, which is
chosen by the user. The other one is its scale (fre-
quency) and time (location) relative to the sig-
nal. Continuous wavelet transform (CWT) can be
used to generate spectrograms which show the fre-
quency content of signals as a function of time.
A continuous-time wavelet transform of x(t) is
defined as:

CWT XΨ =
1

√
|a|

∫ ∞

−∞
x (t)Ψ∗

(
t− b

a

)

dt,

{a, b ∈ R, a �= 0} . (7)
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In the above equation, Ψ(t) is a continuous func-
tion in the time domain as well as the frequency
domain called the mother wavelet and Ψ*(t) indi-
cates the complex conjugate of the analysing
wavelet Ψ(t). The parameter ‘a’ is termed as the
scaling parameter and ‘b’ is the translation param-
eter. The transformed signal XΨ(a, b) is a func-
tion of the translation parameter ‘b’ and the scale
parameter ‘a’. In wavelet transform (WT), sig-
nal energy is normalized by dividing the wavelet
coefficients by |a|−1/2 at each scale.
The Morlet wavelet transform belongs to the

CWT family. It is one of the most popular wavelets
used in practice and its mother wavelet is given by:

Ψ(t) =
1
4
√
π

(
ej w0t − e−(w2

0/2)
)
e−(t2/2) (8)

In the above equation, w0 refers to the central
frequency of the mother wavelet. The term e−(w2

0/2)

involved in the above equation is specifically
used for correcting the non-zero mean of the com-
plex sinusoid, and in most cases, it can be negligible
when w0 > 5. Therefore, when the central fre-
quency w0 > 5, the mother wavelet is redefined as
follows:

Ψ(t) =
1
4
√
π
ej w0te−(t2/2). (9)

Methods based on wavelet cross-correlation anal-
ysis can facilitate quantitative descriptions of
the relationships between two non-stationary time
series for specific time scales and time lags.
Wavelet cross-correlation analysis (WCCA) is

developed from the wavelet transforms and tradi-
tional cross-correlation analysis. The wavelet cross-
covariance was defined as WC x,y(a, k), and the
Morlet wavelet function was used to perform the
wavelet transform (Sang et al. 2010). The contin-
uous wavelet transform coefficient was found to
have two important variables, a real variable and
a module variable (Wang et al. 2011) as shown in
equations (10) and (11), respectively:

WCxy(a, k)

=
√

R(W covxy(a, k))2 + I(W covxy(a, k))2, (10)

W covxy (a, k)=E [Wx (a, b)Wy (a, b+ k)] , (11)

whereWx(a, b) andWy(a, b) are continuous wavelet
transform coefficients of the time series x(t) and
y(t), respectively. For the scale a, k is the time
lag; R( ) is the real part and I( ) is the imaginary
part of the variables in parentheses; E[ ] is the
mean of results in square brackets; and WC xy(a, k)
is the wavelet cross-covariance of the sequence x(t)
and y(t) in time scale (a) and time lag (k).
We then analysed the wavelet cross-correlation

of the time series x(t) and y(t) for definition of the

corresponding wavelet cross-correlation coefficient
WRxy(a, k) using equation (12):

WCxy (a, k)

=

√

R (W covxy (a, k))
2
+ I(W covxy (a, k))

2

or

WRxy (a, k)

=

√

R (W covxy (a, k))
2
+ I (W covxy (a, k))

2

√
|W covxx (a, 0)| |W covyy (a, 0)|

. (12)

In WRxy(a, k), the corresponding cross-correla-
tion degree of time series x(t) and y(t) were
quantitatively described for time scale (a) and time
lag (k). To confirm the significance of the cross-
correlation coefficient, a T -test was used for the
test standards.
We drew an isogram of the wavelet cross-

correlation coefficients and used it to quantita-
tively analyse the cross-correlation of different time
series from whole to parts for a corresponding time
scale and time lag for the purposes of integrated
time-frequency analysis of the mutual relationship
between the time sequences. Among them, both
the maximum time scale and maximum time lag
required 36 ten-day periods. We took into account
the inter-annual cycle of vegetation, the basic cycle
of which takes one year in the regions studied.

2.4 Numerical analysis of the feedback effects
of changes in vegetation on climate

We used the method described by Liu et al. (2006)
to conduct a numerical analysis of the feedback
effects of changes in vegetation on climate. In gen-
eral, the abnormal state variable of precipitation
P (t+ dt) can be expressed as equation (13):

P (t+ dta) = λAV (t) +Na(t+ dta), (13)

where λAV (t) represents the atmospheric response
to changes in vegetation V (t) after time dta. The
parameter λA represents the forcing efficiency, or
feedback efficiency, of the vegetation on the atmo-
sphere and will be referred to as the vegetation
feedback parameter. Na(t + dt) represents the cli-
mate noise generated internally by the atmosphere
independent of vegetation.
Multiplying equation (13) by V (t−τ), allows τ to

represent the time lag. During analysis, the selec-
tion of time lag generally requires consideration of
the correlation between early vegetation and veg-
etation at time t. The sample covariance (denoted
by regular brackets [ ] in equation (14)) was calcu-
lated, and the noise tended towards zero because
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atmospheric noise cannot affect early changes in
vegetation,

[V (t− τ), Na(t+ dta)] = 0, for τ > dta > 0.

[V (t− τ), P(t+ dta)]

= λA [V (t− τ), V(t)]+[V (t− τ), Na(t+ dta)] (14)

Considering that the response time of precipita-
tion can be negligible when compared to the dura-
tion of the change in vegetation (dta = 0), we can
use equation (15) to approximate the feedback
coefficient of the vegetation on the precipitation.

λA = [V (t− τ), P (t)]/[V (t− τ), V (t)](dt ≈ 0).
(15)

In theory, the estimator (equation 15) is indepen-
dent of lag (as long as τ > 0) because the changes
with lag in the numerator and denominator cancel
out. In practice, the sampling error of the estimator
tends to increase with the lag because the dimin-
ishing denominator due to de-correlation tends to
amplify the sampling error in the numerator. This
is particularly true when the vegetation memory is
not too much longer than the atmospheric memory.
Therefore, it is best to use the estimation only for
the first few lags. The sampling error also varies
with the memory of the vegetation, with a longer
vegetation memory giving a smaller sampling error.
To confirm the significance of vegetation feed-

back, a bootstrap approach with 1000 iterations,
95% of which were used for the test standards,
was used to determine that the λA of the original

sequence calculation was greater than the proba-
bility λA of the random sequence, which can reach
a significance level of λA.
The variance percentage of vegetation feedback

can be explained as equation (16):

σ2 [λAV (t)]

σ2 [P(t)]
, (16)

where σ2[λAV (t)] and σ2[P (t)] represent the vari-
ance of monthly precipitation owing to vegeta-
tive feedback and the total variance of monthly
precipitation, respectively.

2.5 Analysis of the response relationship between
vegetation and precipitation and the tendencies

of the vegetative feedback effect

We obtained the feedback coefficient and wavelet
cross-correlation coefficient for different time scales
(a) and time lags (k) to characterize the cross-
correlation of the different time series throughout
the time domain and to indicate combinational
information of size and distribution of cross-
correlation (feedback factor) of the two time series
on different time scales. We calculated the sum of
wavelet cross-correlation (feedback coefficient) by
integrating the corresponding two time series in the
time lag (k) in the overall time domain by using
equation (17):

WRx(k) =

∫

WRxy(a, k)
2
da. (17)
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Figure 2. Mean annual NDVI versus relative annual precipitation (mm). Plots show partial effects of smooth trends based
on linear regression models. All effects were significant for mean annual NDVI (P < 0.05). The short dashed lines (rugs)
along the x-axis indicate annual precipitation. Changes in the annual precipitation and mean annual NDVI in the northern
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Then the weight coefficients of the wavelet cross-
correlation coefficient WRxy(a, k) (feedback coeffi-
cient λP ) can be defined using equation (18):

f(WRxy(a, k)) =
WRxy(a, k)

2

WRxy(k)
. (18)

Then, the wavelet cross-correlation WR(k)
(degree of feedback W λ(k)) of two time series was
defined using equation (19):

WR(k) =

∫

WRxy(a, k)f(WRxy(a, k)) da, (19)

where WR(k) (W λ(k)) characterizes the degree of
the cross-correlation (degree of feedback) of two
time series with respect to time lag (k) throughout

the time domain. The purpose of this characteriza-
tion was to calculate the weighed expected values
of the degree of cross-correlation (degree of feed-
back) of different time scales for the same time lag
(k). The analysis of two time series in time scale
(a) can be calculated using this method.

3. Results

3.1 Interannual trend analysis of the precipitation
and vegetation variation in the region

In this paper, the Mann–Kendall test (Mann 1945;
Kendall 1975) was used to characterize annual pre-
cipitation trends and mean annual NDVI trends.
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Figure 3. Mann–Kendall statistical curves of annual precipitation and mean annual NDVI in the northern Tianshan
Mountains (1981–2009).
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Mean annual NDVI varied with annual precipita-
tion (figure 2). Annual precipitation over the past
30 years showed an increasing trend in the northern
Tianshan Mountains (figure 3). The annual vari-
ation in NDVI was obviously distinct in the five
regions evaluated in this study, showing an uncon-
spicuous increasing trend in all regions except in
the Irtysh River valley and the northern slopes of
the Tianshan Mountains (figure 3). These values
were compared to inter-annual changes in precip-
itation and vegetation, and vegetation showed a
continuously increasing trend along with increas-
ing precipitation observed in the Ili (R2 = 0.325,
P < 0.05) and Bortala (R2 = 0.415, P < 0.05)
valleys (figure 2).

3.2 Analysis of the vegetative feedback effects on
precipitation

3.2.1 Analysis of the wavelet cross-correlation
coefficient isogram of the effects of feedback
of changes in vegetation on precipitation

In the northern Tianshan Mountains, the corre-
lation between early changes in vegetation and
subsequent precipitation has multiple time scale
characteristics, and all regions showed similar over-
all correlations on different time scales (figure 4a).
Significant differences were observed among the

changes of the same time lag on different time
scales. The positive and negative characteristics of
cross-correlation in different time scales were not
the same. Within any given time scale, the wavelet
cross-correlation coefficient fluctuated with the time
lag and gradually became very weak over time. The
duration of each fluctuation, during which wavelet
cross-correlation coefficient fluctuated with respect
to the time lag, increased gradually as the time
scale increased. When the time scale reached 30
ten-day periods (a = 30), cross-correlation showed
an extreme centre when k = 0 and k = 36 ten-day
periods (figure 4). When the time scale was 15
ten-day periods (a = 15), its extreme centre exists
at time lag k = 6 ten-day periods. We amplified
the regions for which the time scale a ≤ 15 ten-
day periods and time lag k ≤ 15 ten-day periods
(figure 4a). An extreme centre exists for which the
time scale a = 6 ten-day periods and the time lag
k = 3 or 9 ten-day periods (figure 4b).
When a > 12 ten-day periods, the similar-

ity among the cross-correlations of the different
regional time scales changed with respect to time
lag and became more pronounced. In this case, it
became difficult to analyse differences in the feed-
back effects of changes in vegetation on precipita-
tion in different regions. However, when the time
scale a < 12 ten-day periods, then the differences in
these trends increased as the time scale decreased,
showing that the correlation changed with respect
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Figure 4. Wavelet cross-correlation coefficient isogram of NDVI and precipitation on a ten-day time scale (maximum time
scales: (a) 36 ten-day periods and (b) 15 ten-day periods).
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to time lag. The overall tendency of the regional
correlation was similar in all parts of the north-
ern Tianshan Mountains, although some obvious
differences were observed (figure 4b). First, the
time at which the extreme centre first emerged in
each region varied, showing that the most obvious
response relationship of precipitation to changes in
vegetation occurred with respect to time scales.
The tendency of the appearance of extreme points
in the time lag phase was similar to that of the
same time scale. However, the lag phase was differ-
ent when the time scale differed among the regions,
indicating that the speed of the response of pre-
cipitation to changes in vegetation differed across
regions.

3.2.2 Analysis of feedback effects of changes
in vegetation on precipitation

Figure 5 shows that (1) the explanation of veg-
etative feedback on changes in precipitation with
a time scale that matches the time lag; (2) the
time-scale most suitable to the analysis of the feed-
back effects of vegetation is different for different
regions; (3) the feedback effect changes with the
time scale and that a peak appears at 120–180
days, indicating that there is an optimal time scale
(or time scale range) for the study of the effects of
vegetative feedback on precipitation.
Figure 6 shows that (1) an explanation of the

effects of vegetative feedback on changes in precip-
itation changes with the time lag within the same
time scale, (2) the first peak in the changes within
a half-year cycle (18 ten-day periods) appears at
a time lag of 9–12 ten-day periods and the second
appears at a time lag of 26–29 ten-day periods.
Because the changes in precipitation and vegetation
are cyclical, the first maximum is the time lag most
suitable to analysis of vegetative feedback. Data
collected after the time lag are affected by the
cyclical nature of these changes and can conceal
vegetative feedback. An optimal time lag scale
(or range of time lag scales) can better indicate
the effects of the vegetative feedback on precip-
itation, and (3) the lag phase of the effects of
changes in vegetation on precipitation differs across
regions.

4. Discussion

The analysis of 30-year trends in the changes in
vegetation and precipitation in the northern Tian-
shan Mountains showed that precipitation is an
important driving force behind these changes in
vegetation. Although summarizing the effects of
changes in vegetation on precipitation over time
using a multi-year analysis of the regional trends is

difficult, analysing the role of vegetation feedback
using many time scales is necessary.
Studies have shown that changes in precipita-

tion and vegetation in this region are cyclic and
observable on multiple time scales. This may be the
source of multiple time scale characteristics of
the vegetation–precipitation relationship. Studies
of the response relationship of precipitation on
changes in vegetation have shown that the feed-
back effects of changes in vegetation on climate can
differ significantly with different time lags. These
studies have also verified the existence of these dif-
ferences through a variety of numerical simulations
(Liu et al. 2006; Notaro et al. 2008; Notaro and Liu
2008).
The effects of vegetation on precipitation involve

positive feedback (Zhou and Wang 1999; Strengers
et al. 2010). Transpiration decreases when vegeta-
tion cover is reduced, and this reduces convective
cloud cover and rainfall. Reduced rainfall further
reduces transpiration. When surface albedo increa-
ses, surface temperatures will drop, reducing tran-
spiration and then rainfall (Bala et al. 2007). The
loss of vegetation reduces rainfall by reducing sur-
face roughness, surface transpiration, and sensi-
ble heat flux (Matthews et al. 2003). In addition,
reduced vegetation cover results in increased levels
of atmospheric CO2, increased surface temper-
atures, and increased transpiration through the
greenhouse effect. However, the increased concen-
tration of CO2 allows plants to obtain CO2 from
the atmosphere more easily. Plants respond by clos-
ing their stomata, with the ultimate effect appear-
ing as a decline in vegetative transpiration (O’ishi
et al. 2009; Li et al. 2013). The present study found
that the effects of vegetation feedback on precip-
itation take place on multiple time scales. When
the duration of each phase exceeds 12 ten-day peri-
ods, the regions tend to change in the same way.
When the duration of each phase is less than 12
ten-day periods, the effects of vegetative feedback
vary from region to region. Possible causes of these
distribution characteristics are as follows: First, the
scale used in this study to evaluate these effects
may have been too large. The use of smaller units
of time may show the effects better. The feedback
effects of changes in vegetation on later precipita-
tion are dispersed. The large units of time used
here to evaluate changes in the periodic variations
in vegetation and the multiple time scale character-
istics of precipitation may have affected the results
of the study. This occurred because the multiple
time scale characteristics of the vegetative feedback
effect are similar to the periodic changes in the veg-
etation at time scales of 36 ten-day periods. Sec-
ond, the differences among the various regions of
the northern Tianshan Mountains within any given
climate context and regional moisture source are
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Figure 5. (a) Results of numerical calculation explaining the effects of vegetative feedback on changes in precipitation with
a time lag that matches the time scale. (b) Results of wavelet cross correlation showing patterns of the cross correlation of
time scale to precipitation.

very small. Third, in winter, precipitation comes
mainly in the form of snowfall in this cold and
arid region, vegetation is sparse, and the NDVI
value approaches zero, which also affects the veg-
etation feedback effects. When the time scales are
less than 12 ten-day periods, it appears that the
differences of precipitation among regions must be
evaluated using smaller units of time, which may

ignore the effects of different forms of precipitation
observed in each region. This issue merits further
study.
The results of the study on the response relation-

ship during the study period were consistent with
those of previous studies on feedback effects (Zhang
et al. 2003; Liu et al. 2006; Hua et al. 2008;Mao et al.
2008; Wang et al. 2010; Zuo et al. 2010). The effects
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Figure 6. (a) Results of numerical calculation explaining the effects of vegetative feedback on changes in precipitation with
a time scale that matches the time lag. (b) Wavelet cross correlation showing patterns of the cross correlation of time scale
to precipitation.

of vegetative feedback on precipitation were found
to involve multiple time scales. Although, the con-
clusions of the wavelet cross-correlation analysis
were the same as the results of the correlation anal-
ysis between the early changes in vegetation and
later precipitation, the cross-correlation analysis
included not only the feedback effects of the early
changes in vegetation on later precipitation but
also the effect of changes in change on vegetation.
In this way, the wavelet cross-correlation analysis

indicated a correlation exists between changes in
vegetation and precipitation on different scales of
analysis and with different time delay correlations.
In contrast, numerical calculations of the vegeta-
tive feedback primarily analyse the feedback effects
of changes in vegetation on later precipitation.
Although the method involves only one time scale,
this method has been proven very accurate in the
analysis of feedback effects of changes in vegetation
on precipitation.
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5. Conclusion

The analysis of 30-year trends in the changes in
vegetation and precipitation in the northern Tian-
shan Mountains showed vegetation and precipita-
tion have the same tendencies everywhere in the
study region except on the northern slopes of the
Tianshan Mountains. It also showed that precipi-
tation is an important driving force behind these
changes in vegetation. Numerical analysis of feed-
back information from vegetation, combining WA
and cross-correlation techniques, was used to study
the feedback effect of the changes in vegetation on
precipitation on different time scales and time lags.
The effects of feedback appeared to vary in these
five regions when different time scales were used
to examine them. The most useful time scale was
generally found to be 4–6 months. Time lag was
another characteristic of this process, and the opti-
mal time lag was 3–4 months. Nevertheless, the
optimal time scale and time lag did not differ sig-
nificantly in these five regions. The present study
showed that the wavelet cross-correlation analy-
sis is specific and superior to an analysis using
multiple time scales. It can provide a reference
for numerical calculations of vegetative feedback.
In this way, wavelet cross-correlation analysis can
specify the distinct time scales and time lags of
the effects of changes in vegetation on the precip-
itation. This facilitates identification of the opti-
mal time scale and time lag of vegetation feedback
using numerical analysis.
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