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Abstract: Water resource availability is one of the primary limiting factors with regard to ecosystems 
in the western China. Having a clear understanding of multi-scale drought patterns in this region is a 
key step for adaption and mitigation to climate change. The Palmer Drought Severity Index (PDSI) is 
a widely applied index to assess drought conditions. In this study, long-term monthly self-calibrated 
PDSI data from 1951 to 2012 were examined for drought spatiotemporal variations in the western 
China. The results clearly indicated that apparent spatial heterogeneities were evidenced between 
two sub-regions (arid land with annual precipitation less than 200 mm and semiarid land with annual 
precipitation between 200 to 500 mm) as well as in the entire region of the western China. Ensemble 
empirical mode decomposition (EEMD) analyses on monthly PDSI and other atmospheric variable 
time-series obtained from the Department of Civil and Environmental Engineering, Princeton 
University revealed that all monthly time-series of variables could be completely decomposed into 
eight intrinsic mode functions (IMFs) and a trend (residual). This indicates that the monthly PDSI and 
atmospheric variables of the semiarid area in the western China contain eight quasi-period 
oscillations on various timescale spanning, seasonal to decadal cycles and a trend of a larger 
timescale from 1951–2012. The multi-scale drought patterns identified in this research could be 
powerful supports for decision-making regarding coping with droughts in this region. 
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Accumulating evidence suggests that global climate change is accelerating according to the most 
recent report from the Intergovernmental Panel on Climate Change (IPCC, 2013), which estimates 
that the globally averaged combined land and ocean surface temperature data increased with a linear 
warming trend at ca. 0.72°C in 1951–2012 (Stocker et al., 2013). Although the warming trend 
varied considerably in both spatial and temporal contexts, it was particularly strong in the cold 
season (November to March) with an increase of 2.4°C per 50 years in the mid-latitude semiarid 
area of Asia, where the annual precipitation was 200 to 600 mm during 1901–2009 (Huang et al., 
2012). Similarly, it was reported that patterns of precipitation have also been changing: arid and 
semiarid regions are becoming drier, while other areas, especially mid-to-high latitudes, are 
becoming wetter. Moreover, it is clear that all components of the climate system are undergoing 
further changes. 

Arid land, which covers about 30% of the Earth’s surface, is highly vulnerable to climate change 
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with less available water and a dramatic expanding of water consumption (Li et al., 2007). Central 
Asia accounts for a large proportion of global arid land area and is characterized by extremely low 
precipitation, fluctuating humidity and high summer temperatures (Zheng and Wang, 2014). Water 
resource availability is the primary limiting factor with regard to the ecosystem in this region (Fang 
et al., 2013), in which drought and water scarcity apparently have significant impacts on 
agricultural, ecological and economic development (Geng et al., 2014). 

Assessing drought severity is not a straightforward and easy task for it is dependent not only on 
the duration, intensity and geographical extent of a specific drought episode but also on the 
demands made by human activities and by the vegetation on a region’s water supplies (Wilhite and 
Glantz, 1985). Among drought assessment approaches, drought indices are indispensable tools to 
detect, monitor and evaluate drought events (Niemeyer, 2008). A drought index used for assessment 
should be able to quantify: (1) the moisture condition of a region and, thereby, to detect the onset 
and measure the severity of drought events; and (2) the spatial extent of a drought event, thereby, 
allowing a comparison of moisture supply conditions between regions (Alley, 1984; Quiring and 
Papakryiakou, 2003).  

Various drought indices, each having a variety of data input requirements, were developed to 
quantify drought (Quiring and Papakryiakou, 2003), for example, the Palmer Drought Severity 
Index (PDSI) (Palmer, 1965), the Rainfall Anomaly Index (RAI) (Van Rooy, 1965), the Crop 
Moisture Index (CMI) (Palmer, 1968), the Bhalme-Mooley Index (BMDI) (Bhalme and Mooley, 
1980), the NOAA Drought Index (NDI) (Titlow, 1987) and the Standardized Precipitation Index 
(SPI) (McKee et al., 1993, 1995). Among these indexes, the PDSI is the most prominent one, which 
can be attributed to the fact that it provides decision makers with a measurement of the abnormality 
of recent weather for a region, an opportunity to place current conditions in historical perspective 
and spatial and temporal representations of historical droughts (Alley, 1984; Agwata, 2014). The 
PDSI has been widely used for a variety of applications in drought monitoring and quantifying 
long-term aridity changes (Zhai and Pan, 2003; Zou et al., 2005; Zhai et al., 2010; Dai, 2011a). A 
number of previous studies have proved its applicability in northern China (Wei et al., 2003; Zhang 
et al., 2007). 

Previous index-based studies on precipitation/evapotranspiration mainly focused on seasonal or 
annual scale drought in northern China since the 1950s (Li et al., 2006; Ding et al., 2013; Huo et 
al., 2013; Li et al., 2013; Li et al., 2014). However, most recently, it has been proposed that, in 
addition to robust multi-decadal warming, global mean surface temperature exhibits substantial 
decadal and interannual variability (Stocker et al., 2013). Furthermore, strong decadal and 
interannual moisture variations in China during 1951–2005 were also reported (Li et al., 2009). 
Accordingly, as a result of climate change, drought may exhibit decadal and interannual oscillations 
as well. Long-term continuous drought could produce a more complex web of impacts on ecology, 
economy and society. Thus, long-term variation patterns should be classified to mitigate any 
possible impacts. 

The main objectives of the study were to: (1) reveal the trend of drought in recent decades in the 
western China; (2) examine multi-decadal oscillation patterns of drought in the western China; and 
(3) explore the effects of climate factors (precipitation, total incident solar radiation, surface air 
temperature and specific humidity) on multi-decadal oscillation patterns of drought in the western 
China. The western China, in this study, was defined as the region with mean annual precipitation 
below 500 mm, including both arid and semiarid areas. 

1  Materials and methods 

1.1  Study area 

Arid and semiarid land in the western China covers an area of 5.2×106 km2, accounted for nearly 
half the territory of China. This region is severely drought prone with an annual precipitation less 
than 500 mm (Zheng and Wang, 2014). The elevation of this region ranges from –179 to 8,614 m. 
Different ecosystems, croplands, forests, shrub lands, grasslands and deserts, are included in this 
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region. Recent rapid population growth and migration to the marginal semiarid and arid areas 
exacerbated the land degradation and water depletion in this region (Huo et al., 2013). Traditionally, 
this region was further separated into two sub-regions defined as arid land and semiarid land 
according to the annual precipitation (<200 and 200–500 mm, respectively; Fig. 1). 

 

Fig. 1  Location of the study areas based on digital elevation model (DEM) 

1.2  PDSI and climate parameters 

The PDSI has been proven to be the most effective way in determining long-term drought (Palmer, 
1965; Alley, 1984). The PDSI is a standardized measure with values varying roughly in –6.0–6.0. 
A score of zero is considered normal and a drought is shown in terms of negative numbers while 
wetness is shown with positive values. PDSI values below –2 represent moderate to extreme 
drought, for example, –2 is moderate drought, –3 is severe drought and –4 is extreme drought 
(Palmer, 1965; Dai, 2011a). 

The PDSI is a soil moisture algorithm calculated using precipitation and temperature data as well 
as the locally available water content of the soil. From the inputs, all the basic terms of the water 
balance equation can be determined including evapotranspiration, soil recharge, and runoff and 
moisture loss from the surface layer (Agwata, 2014). 

PDSI data used in this study are monthly, self-calibrated PDSI with potential 
evapotranspiration estimated using the sophisticated Penman-Monteith equation based on 
historical data (Dai, 2011a, b, 2013). An updated version of these data from 1951–2012 
(http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html) were used in this study. The data 
are organized into 2.5°×2.5° grids and globally cover the land area from 60°S to 77.5°N. 
These data were calculated from observed monthly precipitation and surface air temperature 
data of 1850–2010, and were self-calibrated using local climate conditions instead of the 
(fixed) coefficients used by Palmer (1965) based on data from the central United States, 
which is claimed to be more spatially comparable than the original PDSI (Dai, 2011a; Qian 
and Zhou, 2013). 

Additionally, monthly climatic factors including precipitation (PRECT), total incident 
solar radiation (FSDS), surface air temperature (TBOT) and specific humidity (QBOT) 
provided by the Department of Civil and Environmental Engineering, Princeton University 
(http://hydrology.princeton.edu/data.pgf.php) were also used in this study. This dataset 
blends reanalysis data with observations and disaggregates in time and space, which can be 
used to drive models of the terrestrial hydrologic and ecological processes for the study of 
seasonal and interannual climate variability (Sheffield et al., 2006). 
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1.3  Ensemble empirical mode decomposition 

The ensemble empirical mode decomposition (EEMD) method is similar to the windowed Fourier 
transformation or wavelet transformation, but is more suitable for analyzing nonlinear and non-
stationary time-series (Liu et al., 2014). It is an adaptive data analysis method to decompose any 
complicated data series into a finite and often small number of amplitude-frequency modulated 
oscillatory components, including intrinsic mode functions (IMFs) and residual (RES) (Qian et al., 
2011). In this study, the EEMD method has been applied to decompose the monthly PDSI or 
atmospheric variables into various time-scale components from 1951 to 2012. 

The principle of EEMD is simple as the added white noise would populate the time-frequency 
space uniformly with the constituting components at different scales. When the signal is added to 
this uniform background, the bits of signals of different scales are automatically projected onto 
proper scales of reference established by the white noise. Although each individual trial may 
produce very noisy results, the noise in each trial is canceled out in the ensemble mean of enough 
trials and the ensemble mean is treated as the true answer (Huang and Wu, 2008; Wu and Huang, 
2009). 

The main steps of the EEMD analysis can be illustrated as follows: (1) adding a white noise 
series to the targeted data; (2) decomposing the data with added white noise into IMFs; (3) repeating 
the steps 1 and 2 over and over with a different white noise series each time; and (4) obtaining the 
(ensemble) means of corresponding IMFs of the decompositions as the final result (Huang and Wu, 
2008). More details concerning the EEMD analysis can be found Huang and Wu (2008) and Wu 
and Huang (2009). 

2  Results 

2.1  PDSI patterns 

According to the classification of wet and dry periods based on PDSI (Palmer, 1965), the percentage 
frequency of each class, which represent a certain degree of drought, of the western China, as well 
as in the two sub-regions during 1951–2012, were calculated and illustrated in Fig. 2, which shows 
the percentages of PDSI frequency in arid and semiarid regions, and of the western China as well. 

 

Fig. 2  Histogram of monthly PDSI of the western China and the two sub-regions 

A normal distribution of PDSI during 1951–2012 was recognized for the western China, in which 
about 60% of PDSI showed negative values, representing dry periods. Similar distributions with 
the central frequency near zero were also noted for the two sub-regions. Even so, there existed 
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some discrepancies among different regions. About 10% of mild drought and 18% of incipient 
drought periods were identified for the arid region where the annual precipitation is < 200 mm. As 
a comparison, in the semiarid region with the annual precipitation between 200–500 mm, the 
percentage frequency of mild drought periods and incipient drought periods reached 22% and 23%, 
respectively. What’s more, much more extreme drought periods (2%) were identified for the arid 
region while more severe drought and moderate drought periods were identified for the semiarid 
region, reaching about 1%, and 5%, respectively. 

Long-term variation patterns of spatially statistical PDSI are illustrated in Fig. 3, which shows 
the box and whisker plot of annual PDSI values calculated using monthly PDSI of the western 
China in 1951–2012. The line inside the boxes represents the median and the cross mark inside the 
boxes represents the average values. The upper and lower lines of the boxes indicate the 75th and 
25th percentiles, respectively. Furthermore, the upper and lower parts of the whiskers indicate the 
respective maximum and minimum values of the PDSI. Outliers are data with values beyond the 
ends of the whiskers. 

 

Fig. 3  Box and whisker plots of annual PDSI values in the western China in 1951–2012 

It is clear that the annual averaged PDSI of the western China varied from about –6.6 to 8.7 
during the analysis period. The annual spatially averaged PDSI fluctuated between –1.4 and 1.2, 
with the minimum and maximum PDSI values in 1965 and 2003, respectively. 

There are great differences between the lower and upper parts of the whiskers (especially after 
1987). Additionally, many PDSI outliers can be identified in Fig. 3, which generally represent 
extreme events in specific areas (cells). These suggest that great spatial heterogeneity of PDSI can 
be captured in the western China and PDSI patterns in different separated spatial regions should be 
discussed. 

2.2  Multi-scale temporal variation patterns of spatially averaged PDSI 

2.2.1  The western China in its entirety 
The temporal variation of spatially averaged PDSI in the western China during 1951–2012 is shown 
in Fig. 4a. Wetter periods can be identified before 1965 and during 1986–2005. Extreme drought 
events were apparent in 1966, 2007 and 2010 as PDSI values were lower than –2. 

Figure 4 shows that the PDSI is completely decomposed into eight modes (IMFs) and a 
trend (RES) by the EEMD method. Each IMF component denotes the variation at different 
timescales. It clearly indicates that the monthly PDSI variation of the western China contains eight 
quasi-period oscillations at different timescales during 1951–2012, with a decreasing trend before 
1990 and an increasing trend after 1990. Table 1 presents the cycles of variance contribution rates 



 JOURNAL OF ARID LAND   

 

of the Intrinsic Mode Functions (IMFs) decomposed from the monthly PDSI time-series in the 
western China and their correlation coefficients with the monthly PDSI time-series. The first and 
second IMFs were apparently standing for the monthly and seasonal variations of PDSI. For longer 
time scales (>1 year), the third to the eighth IMFs represented different periods of 1.5, 3.0, 5.4, 
12.4, 25.0 and 60.0 years, respectively, with relative variance contribution rates of 15.03%, 20.01%, 
18.56%, 14.63%, 5.95% and 2.58%, respectively. This suggests that the temporal variation of 
spatially averaged PDSI was jointly determined by IMF3, IMF4, IMF5 and IMF6 with an 
accumulated variance contribution rate of about 70%. 

 

Fig. 4  The intrinsic mode functions (IMFs) obtained from PDSI values in the western China 

Table 1  The cycles of variance contribution rates of the intrinsic mode functions (IMFs) decomposed from the 
monthly PDSI time-series in the western China and their correlation coefficients with the monthly PDSI time-series 

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 RES 

Cycles (a) – – 1.5 3.0 5.4 12.4 25.0 60.0 – 

R2 0.0845 0.2119 0.2874 0.336 0.2923 0.1726 0.1095 0.0038 0.0492 

VC (%) 10.14 13.1 15.03 20.01 18.56 14.63 5.95 2.58 0.00 

Note: VC, variance contribution rate; –, data not available. 

2.2.2  Arid region 
As with the arid region only, the temporal variation of spatially averaged PDSI during the period is 
shown in Fig. 5a. The results show that arid land in the western China was affected by more severe 
drought from 1960 to 1985, as PDSI values were relatively low. Extreme drought events were 
apparent around 2009 with PDSI values lower than –5. 
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EEMD revealed that the temporal variation of spatially averaged PDSI of the arid region also 
contains eight quasi-period oscillations at different timescales and a mild decreasing trend during 
the period (Fig. 5). Table 2 presented the cycles of variance contribution rates of the IMFs 
decomposed from the monthly PDSI time-series of this area and their correlation coefficients with 
the monthly PDSI time-series. For a scale longer than one year, the third to eighth IMFs have about 
1.4-, 2.8-, 5.0-, 10.0-, 35.0- and 62.0-a periods with variance contribution rates of 16.07%, 22.95%, 
13%, 7.97%, 6.34% and 22.47%, respectively. 

 

Fig. 5  The IMFs obtained from PDSI values of the arid area in the western China 

Table 2  The cycles of variance contribution rates of the IMFs decomposed from the monthly PDSI time-series of 
the arid area in the western China and their correlation coefficients with the monthly PDSI time-series 

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 RES 

Cycles (a) – – 1.5 3.0 5.4 12.4 25.0 60.0 – 

R2 0.0325 0.0999 0.0975 0.2424 0.3186 0.1837 0.1557 0.0389 0.0046 

VC (%) 5.76 5.44 16.07 22.95 13 7.97 6.34 22.47 0 

Note: VC, variance contribution rate; –, data not available. 

2.2.3  Semiarid region 
Similarly, the temporal variation of spatially averaged monthly PDSI of the semiarid area in the 
western China during 1951–2012 is shown in Fig. 6a. Wetter period can be clearly seen before 
1965. Extreme drought events occurred in year 2002 and year 2007 during the long-term drought 
period after 1980. 

The EEMD analysis suggested that the temporal variation of spatially averaged monthly PDSI 
in this region was also decomposed into eight modes (IMFs) and a trend (RES), indicating similar 
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eight quasi-period oscillations and a decreasing trend of larger timescale during 1951–2012 (Fig. 
6). Table 3 presented the cycles of variance contribution rates of different IMFs decomposed from 
the monthly PDSI time-series of the semiarid area only in the western China and their correlation 
coefficients with the monthly PDSI time-series. For scales longer than one-year, the third to eighth 
IMFs have about 1.5-, 2.7-, 5.2-, 11.0-, 18.0- and 35.0-year periods with variance contribution rates 
of 18.59%, 25.45%, 10.95%, 5.69%, 5.61% and 0.45%, respectively. 

 

Fig. 6  The IMFs obtained from PDSI of semiarid area in the western China 

Table 3  The cycles of variance contribution rates of the IMFs decomposed from the monthly PDSI time-series of 
semiarid area in the western China and their correlation coefficients with the monthly PDSI time-series 

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 RES 

Cycles (a) – – 1.5 2.7 5.2 11 18 35 – 

R2 0.1024 0.2633 0.316 0.3037 0.2869 0.1167 0.0791 0.0007 0.0855 

VC (%) 11.2 22.06 18.59 25.45 10.95 5.69 5.61 0.45 0 

Note: VC, variance contribution rate; –, data not available 

3  Discussion 

3.1  Diversity of drought trends 

Current results clearly show that different drought trends existed when the western China and 
different sub-regions were considered. Although spatially averaged monthly PDSI time-series may 
be decomposed into eight IMFs for both the western China and two distinctive sub-regions, the 
cycles of each IMF are different. In addition, the statistics of percentage frequency of dry and wet 
periods also deployed diverse patterns when different areas were considered. 
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Apparently, topography in different regions contributed to the diversity. It was convincing that 
topography exerted a strong dynamic force on the atmospheric circulations; and the land surface 
exchanged momentum, energy, water and chemical constituents with the atmosphere (Giorgi et al., 
2003). Besides, land-use and land-cover change was also suggested as an important factor that 
controlled water resources in both local and global scales for plants, which can reverse warming 
effects on the ecosystem-waterbalance (Zavaleta et al., 2003; Liu et al., 2008). In the western China, 
land surfaces are characterized by intense spatial heterogeneity. The elevation across the whole 
region is from –179 to 8,614 m, with the arid region from –179 to 8,179 m and the semiarid region 
from 33 to 8,614 m. 

To reveal the topographic distinction between the two sub-regions, we illustrated the histograms 
of the digital elevation model (DEM) of the two sub-regions in Fig. 7, from which the distinctions 
in the elevation for the arid and semiarid regions can be captured. The area in the arid region with 
the elevation from 1,500 to 3,500 m covers 23% area of this region, which is much larger than the 
percentation of this area zone in the semiarid region (13%). The minimum and maximum in 
elevation of this zone are approximate to the lower and upper timberlines in the arid area of Central 
Asia (Troll, 1973; Dai, 1999; Wang et al., 2004; Geping et al., 2011). 

 

Fig. 7  Histogram of elevation values of a DEM of two sub-regions in the western China 

Similarly, different proportions of four main ecosystems (cropland, grassland, forest and desert) 
in the two sub-regions clearly revealed the ecosystem distribution diversities of the regions. Large 
areas of grasslands are distributed in the semiarid region, covers about 56% of this region. More 
croplands, grasslands and forests are distributed in the semiarid land than those in the arid land, 
while the desert covers about 41% of the arid region. Thus, diversities of ecosystem distribution in 
the arid and semiarid regions should be another important factor contributing to the diversity of 
PDSI patterns derived from EEMD in these two sub-regions. 

3.2  Potential climate factors causing long-term drought changes 

To explore the primary effects of atmospheric variables leading to different long-term scale 
variations of PDSI in the western China as well as in the two sub-regions, we used the monthly 
reanalysis derived data, including PRECT, FSDS, TBOT and QBOT data of 1951–2012. First, they 
were decomposed into various time-scale components. Then the pre-whitening procedure was 
applied to each component derived from EEMD to remove the serial correlation (Von Storch, 1999; 
Yue et al., 2002; Bayazit and Önöz, 2007) before a correlation analysis on the decomposed IMFs 
and residual of atmospheric variables. PDSI was conducted to determine the effects of each variable 
on PDSI in each time-scale. 
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Eight similar IMFs and a trend (RES), ignorant of different regions considered (the western 
China and the two sub-regions), were identified from the EEMD analyses for monthly atmospheric 
variable during that period. The correlation coefficients between PDSI and atmospheric variables 
of monthly time-series and each IMF derived from EEMD in the western China are presented in 
Table 4. No significant correlation can be identified on the monthly to annual scale (monthly time-
series, IMF1, IMF2) between PDSI and all atmospheric variables. Substantial correlations can be 
captured on over one-year scales (IMF1 to IMF8) between PDSI and some atmospheric variables. 
On about 1.5- (IMF3) and 5.4-a scales (IMF5), QBOT is the main positive factor causing the 
patterns of PDSI (correlation coefficient, 0.29 and 0.17, respectively). On 3.0-a scale (IMF4), 
PRECT and QBOT show positive impacts on PDSI. The TBOT, QBOT and PRECT show 
corresponding correlations with PDSI on 12.4-a scale with correlations of 0.63, 0.46 and 0.54, 
respectively. For the long-term timescale (RES), PDSI is significantly and negatively correlated 
with PRECT and TBOT. 

Table 4  Correlation coefficients between PDSI and atmospheric variables on time scales in the western China 

 Monthly IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 RES 

PRECT  0.03   0.13** –0.03  0.08*  0.40**  0.13**  0.63** 0.22**  0.90** –0.96** 

FSDS  0.00 –0.07*  0.03  0.03 –0.08* –0.17**  0.25** 0.20**  0.71** 0.30 

TBOT –0.03  –0.10** –0.03 –0.01 0.00 –0.21**  0.46** 0.36**  0.15** –0.84** 

QBOT  0.01 –0.02 –0.02   0.29**  0.38** 0.17 0.54 0.27** 0.60  0.11** 

Note: *, significance level at P<0.05; **, significance level at P<0.01; PRECT, precipitation; FSDS, total incident solar radiation; TBOT, 
surface air temperature; QBOT, specific humidity. 

Table 5 presents the correlation analysis results for the arid region, where, at 5.0-a scale (IMF5), 
the QBOT is also the main factor causing the pattern of PDSI (correlation coefficient, 0.55). At 1.4- 
(IMF3) and 2.8-a (IMF4) scales, PDSI is negatively correlated with TBOT. At 10.0- (IMF6) and 
62.0-a (IMF8) scales, PRECT shows higher correlation coefficients with PDSI than any other 
variables. The temporal variation of PDSI at 35.0-a (IMF7) scale is patterned by joint effects of 
FSDS, QBOT and TBOT. 

Table 5  Correlation coefficients between PDSI and atmospheric variables on time scales in arid land 

 Monthly IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 RES 

PRECT  0.09*  0.17** 0.07  0.00  0.18**  0.27**  0.49** –0.23**  0.98**   0.88** 

FSDS 0.01 –0.07* 0.06 –0.06 –0.24** –0.30** 0.01  0.82**  0.61**  0.95 

TBOT 0.00  –0.11** 0.05  –0.34** –0.31** 0.08*  0.49**  0.73** –0.92**  –0.77** 

QBOT 0.04  0.00 0.06  0.06  0.22**  0.55**  0.41**  0.63** 0.96 –0.05 

Note: *, significance level at P<0.05; **, significance level at P<0.01. 

The results for the semiarid region are presented in Table 6. At the 1.5-a scale (IMF3), QBOT 
remains the main factor causing the pattern of PDSI. At the 1.5-a scale (IMF3), QBOT is the main 
factor causing the pattern of PDSI (correlation coefficient, 0.15). At the 5.2-a scale (IMF5), PRECT 
shows much higher correlation coefficient value with PDSI than any other variables. In addition, 
PRECT exhibited the most critical impact at the 18.0-a scale (IMF7) variation of PDSI with a 
correlation coefficient of 0.9. At the 2.7-a scale (IMF4), PDSI had significant and positive 
correlations with PRECT and QBOT. QBOT also had a significant impact on 11.0- (IMF6) and 
35.0-a (IMF8) scales’ PDSI oscillations. 

Table 6  Correlation coefficients between PDSI and atmospheric variables on time scales in semiarid land 

 Monthly IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 RES 

PRECT  0.03   0.18**  –0.05  0.03   0.32**   0.44**  0.21**  0.90** –0.11** –0.94** 

FSDS  0.01  –0.07*  0.04 –0.02 –0.06 –0.07*  0.12** 0.04  0.48** 1.00 

TBOT –0.05  –0.08* –0.04 –0.02 –0.07  –0.25** 0.05 –0.21**  0.58** –0.99** 

QBOT  0.01 –0.01 –0.06   0.15**   0.38**   0.11**  0.21**  0.15** 0.59  0.99** 

Note: *, significance level at P<0.05; **, significance level at P<0.01. 
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3.3  Usage of identified long-term scale drought patterns 

Water is one of the major constraints in arid ecosystems and economies in the western China. The 
assessment of drought is of primary importance for water resource planning and management 
(Mishra and Singh, 2010). Long-term continuous drought could produce a more complex web of 
impacts on ecology, economy and society. Therefore, understanding multi-scale drought patterns 
in the western China, which requires knowledge of historical droughts in the region as well as 
potential factors causing such changes, will be in help for corresponding countermeasures to avoid 
damage from droughts. The drought patterns identified in this research could support decision-
making to cope with drought in this region. 

Temporal variation patterns of PDSI in the study areas derived from EEMD in this study can be 
directly used for long-term continuous drought identification and monitoring. Results also revealed 
that PDSI variations are diverse when different areas are considered, thus suggesting that water 
conditions vary in different regions. Multi-scale variation patterns of ecosystem functions in these 
regions should be discussed in future studies to reveal ecosystem responses to long-term drought 
and to provide the basis of adaptive management. 

4  Conclusion 

Drought patterns in the western China and its two sub-regions during 1951–2012 were explicitly 
examined using EEMD based on monthly PDSI and atmospheric variables time-series data. 
Monthly PDSI, as well as monthly time-series of all variables, can be decomposed into eight modes 
(IMFs) and a trend (RES), indicating that each variable contains eight quasi-period oscillations on 
various timescales that span seasonal to decadal cycles and a trend through the entire period. 
However, different dominant frequencies of oscillations were noted for both the arid and semiarid 
regions, which are apparently controlled by topographies. The controlling atmospheric factors were 
different when the different regions are considered. Such diversity of drought patterns may have 
important effects on the responses of various ecosystems in the regions. The multi-scale oscillations 
of the ecosystems should be discussed in further studies. 
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