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Abstract: Soil moisture content (SMC) is a key hydrological parameter in agriculture, meteorology
and climate change, and understanding of spatio-temporal distributions of SMC in farmlands is
important to address the precise irrigation scheduling. However, the hybrid interaction of static and
dynamic environmental parameters makes it particularly difficult to accurately and reliably model
the distribution of SMC. At present, deep learning wins numerous contests in machine learning and
hence deep belief network (DBN), a breakthrough in deep learning is trained to extract the
transition functions for the simulation of the cell state changes. In this study, we used a novel
macroscopic cellular automata (MCA) model by combining DBN to predict the SMC over an
irrigated corn field (an area of 22 km?)in the Zhangye oasis, Northwest China. Static and dynamic
environmental variables were prepared with regard to the complex hydrological processes. The
widely used neural network, multi-layer perceptron (MLP), was utilized for comparison to DBN. The
hybrid models (MLP-MCA and DBN-MCA) were calibrated and validated on SMC data within four
months, i.e. June to September 2012, which were automatically observed by a wireless sensor
network (WSN). Compared with MLP-MCA, the DBN-MCA model led to a decrease in root mean
squared error (RMSE) by 18%. Thus, the differences of prediction errors increased due to the
propagating errors of variables, difficulties of knowing soil properties and recording irrigation
amount in practice. The sequential Gaussian simulation (sGs) was performed to assess the
uncertainty of soil moisture estimations. Calculated with a threshold of SMC for each grid cell, the
local uncertainty of simulated results in the post processing suggested that the probability of SMC
less than 25% will be difference in different areas at different time periods. The current results
showed that the DBN-MCA model performs better than the MLP-MCA model, and the DBN-MCA
model provides a powerful tool for predicting SMC in highly non-linear forms. Moreover, because
modeling soil moisture by using environmental variables is gaining increasing popularity, DBN
techniques could contribute a lot to enhancing the calibration of MCA-based SMC estimations and
hence provide an alternative approach for SMC monitoring in irrigation systems on the basis of
canals.
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Soil moisture content (SMC) plays an important role in meteorology, agriculture and climate
change. Accurate modeling of the spatio-temporal distributions of surface soil moisture in
farmlands is especially essential for precise irrigation scheduling due to the influence of soil
moisture on water migration in terms of runoff and infiltration (Sadler et al., 2005). Besides, it
also could be integrated with up-to-date techniques of accurate irrigation systems, such as lateral
moving irrigators and centre pivot (Kim et al., 2008).

The matching of water inputs to crop requirements is required in precision agriculture, which
especially becomes critical to accurately simulate the spatial variability of soil moisture (Stafford,
1996). A stable simulated technique is necessary to predict the complex dynamic of SMC, so that
sustainable water management can be utilized to decrease the increasing irrigation water
requirement in arid regions. However, SMC in agricultural lands presents heterogeneous change
both in space and time, resulting from the superposition of soil, terrain, evapotranspiration,
precipitation, irrigation, soil management and fertilization. Recently, many distributed
hydrological models were developed and successfully applied at various scales (Famiglietti and
Wood, 1994). However, an accurate assessment of SMC might be restricted by the lack of
adequate soil water measurements at the scale of interest, and the retrieval of SMC from local
direct measurements of distributed and accurate information is costly and time-consuming.

Till now, great details of surface-subsurface groundwater interactions have been studied by
using hydrological models (Furman, 2008; Sulis et al., 2010). However, few of which focused on
the simulation of the hydrological system in a more comprehensive way and the reproduction of
the complex interactions of the vegetation and atmospheric boundary layer (Ivanov et al., 2008).
Even if the ecohydrological model considering the feedbacks of water and energy processes might
be the perfect simulation tool, the idealized analytical solutions are hard to be implemented and
great deployment in monitoring instruments also will be required (Tague and Band, 2004;
Mendicino et al., 2013).

Cellular automata (CA) are discrete dynamic systems, in which space is divided into several
regular cells with a finite number of states (von Neumann, 1966). The global evolution of each
cell is derived from the simultaneous application based on a transition function governing the
interactions among each cell and its neighborhoods. Different from the classical CA, macroscopic
cellular automata (MCA) use the discrete approach to model various fluid dynamics of soil
moisture from the macroscopic perspective (Mendicino et al., 2006; D’Ambrosio et al., 2007,
Avolio et al., 2013). Under this framework, numerous studies were performed focusing on
different physical problems. D’Odorico and Rodriguez-Iturbe (2000) studied the spatio-temporal
variations of soil moisture through the water balance equation at the mesoscale level. With the
aim of modeling complex surface-subsurface ecohydrological dynamics, an initial MCA model
was presented by adding vegetation dynamic models at the catchment scale (Mendicino et al.,
2006), which was tested against both field data and numerical benchmarks (Cervarolo et al.,
2010). Recently, Mendicino et al. (2013) added the schematization of flow routing and runoff
generation to the aforementioned system (Mendicino et al., 2006; Cervarolo et al., 2010), aiming
to develop a full-coupled modeling of surface-subsurface ecohydrological dynamics. For the
overland flow model, numerical stability analysis was also performed with respect to the fully
coupled ecohydrological system (Mendicino et al., 2015).

Transition function, as one of the most important parts of MCA, addresses the state change of
each cell at discrete time steps. Over the past few decades, artificial neural networks (ANNs) have
shown considerable advantage for solving the problems with very high degree of complexity, and
have often been integrated with CA model for supporting the dynamic modeling of complicated
systems, such as aerodynamic modeling (Wu and Kareem, 2011), artificial intelligence (Kim and
Cho, 2006; Oku and Aihara, 2010) and land use change modeling (Wang and Li, 2011; Li et al.,
2013a).

In recent years, as a new technique of machine learning research, deep learning has won
numerous contests (Hinton and Salakhutdinov, 2006; Schmidhuber, 2015) and brilliant
achievements in technologies, and has already devoted to making advanced applications available
to the public (Ji et al., 2014; Li et al., 2014). The potential benefit of the deep learning is that
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many hidden layers of feature representations can be stacked in a deep network, and hence are
more capable of modeling the complex structures in the data. Deep belief networks (DBNs) are
currently the dominant techniques for modeling the architectural depth of brain, which are often
effectively trained in a greedy layer-wise supervised learning manner. However, to date, only few
studies have attempted to use these techniques to model the SMC dynamics with respect to the
environmental variables.

It is quite evident that a simulation model is required for the estimation of soil moisture content
under changing irrigation conditions in the human controlled agro-ecosystems especially the
artificial oases. Motivated the prominence of deep learning, this study proposed a DBN (deep
belief network)-based MCA (DBN-MCA) model to predict the spatio-temporal patterns of SMC
over an irrigated corn field. DBNs were employed to achieve the transition functions depending
on climate, topography, soil properties and evaporation. Besides, the hybrid DBN-MCA model
was tested based on the observed SMC data during the period from 1 June to 30 September, 2012.
The widely used neural network, multi-layer perceptron (MLP)-based MCA (MLP-MCA) model
was also carried out for comparison to proposed DBN-MCA model, and the results were
evaluated at different scales.

1 Study area and data collection

1.1 Study area

The study area (38°52'15"N, 100°21'47"E; Fig. 1), covering an irrigated corn field with an area of
about 22 km?, is located in the Zhangye oasis, Gansu province, Northwest China. This area is
characterized by a typical temperate arid climate with relatively low precipitation and high
evaporation. The average annual precipitation varies from 100 to 250 mm, whereas annual
potential evaporation ranges from 1,200 to 1,800 mm, which is 10 times higher than annual
precipitation (Li et al., 2013b). The major crop of the observation matrix is seed corn (accounting
for 68.6% of the total cropland). Other land cover types, including wheat and vegetable fields,
villages and irrigation canals, are randomly interspersed in the crop fields.
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Fig. 1 Geographical locations of soil sampling sites and soil moisture sensors in the study area. The prohibited
area is covered by villages.
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Irrigation water in the study area is mainly supplied from the middle reaches of Heihe River.
With many canals, the well-developed irrigation systems were formed. The traditional water
supply systems based on canals are managed by many smallholder farmers and the agriculture is
mainly depended on flooding irrigation, which often leads to serious water waste. During the
growing season, most of the crop field is irrigated four times (Zhu et al., 2015), while only a small
unit with areas of about 600—2,000 m? is irrigated once. The soil properties (bulk density, texture
and organic content) vary in the study area, and soil samples are considered as silt loam with sand
(9%—-36%), silt (56%—-81%) and clay (5%—19%). Based on regular and nested sampling, we
conducted a soil field survey in July 2012. Eighty-nine soil samples in the topsoil layer of 0-20
cm were taken (Fig. 1). Soil samples were analyzed for soil organic matter content, sand content,
silt content, bulk density and soil porosity.

1.2 Data

Environmental variables can be classified into static or physical and dynamic variables. The
dynamic variables vary spatially and temporally, while the static variables do not change
temporally.

1.2.1 Soil moisture data

Jin et al. (2014) designed an ecohydrological wireless sensor network (WSN) to model the
variations of soil moisture both in space and time. Without any spatial autocorrelation assumption,
a hybrid sampling method was proposed to optimize the deployment of WSN by Kang et al.
(2014). In this study, three WSNs, namely WATERNET, SoilNet and Beijing Normal University
Sensor Network (BNUNET) were implemented. These sensor networks are an important part of
the Heihe Watershed Allied Telemetry Experimental Research (HIWATER) (Li et al., 2013b; Gao
et al., 2014). In this study, a total of 172 sensor nodes were installed primarily for observing soil
temperature and moisture to the depth of 4 cm, and these nodes were randomly divided into
calibration (n=129; from 1 June to 31 July, 2012) and validation (n=43; from 1 August to 30
September, 2012) datasets (Fig. 1). Detailed design of sensor network and the data
communication implementation were referred to Jin et al. (2014) and Kang et al. (2014).

Soil moisture data were expressed as volumetric soil water content (%; v/v), and the
meteorological data were collected from June to September in 2012. The magnitude of instrument
errors for each type of WSN ranged from 1% to 2% measured by laboratory calibration using the
gravimetric method (Wang et al., 2014). Soil moisture observations were conducted at 10-min
intervals, but it was noted that the prediction procedure was applied to the daily mean SMC data.
The calibration experiments indicated that the consistency between sensors is greater than 95%
and the accuracy of the surface radiative temperature is 0.15°C.

1.2.2 Dynamic variables

The dynamic environmental variables included evapotranspiration, leaf area index (LAI),
meteorological information (precipitation, global radiation, air pressure and humidity), land
surface temperature (LST), neighborhood states and irrigation time, which were collected from 1
June to 30 September, 2012. Daily meteorological data were recorded by a superstation located
within the corn field (Li et al., 2013b; Fig. 1). Processed meteorological measurements were
employed in all variables because of the flat terrain and the close proximity of wireless sensors
towards the superstation.

The collection of daily image data and uncertainty of the LST retrievals prohibited the use of
LST data. Since the temporal dynamics of LST can be captured by the WSN (Jin et al., 2014), the
daily spatial distribution of LST was interpolated by the ordinary kriging approach (from 1 June
to 30 September, 2012). The monthly LAI data were retrieved from the Huanjing satellite charge
coupled device (HJ-CCD) images at a 30-m spatial resolution (Liao et al., 2013). In this study, the
HJ-CCD data from the following four days were employed: 19 June, 8 July, 14 August and 6
September, 2012. The daily actual evapotranspiration data estimated by ETWatch algorithm (Wu
et al., 2012) with a 30-m spatial resolution from May to September 2012 were obtained from the
Heihe Plan Science Data Center (http://www.heihedata.org). In addition, the missing data were
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infilled by the ETMonitor dataset with a 250-m spatial resolution (Hu and Jia, 2015).

Irrigation data play irreplaceable roles in estimating the surface soil moisture in irrigated fields
(Bertoldi et al., 2014). In the study area, the irrigated cropland mainly depends on the flooding
irrigation. Hence, the soil moisture will abruptly increase to saturation and might last for several
hours. The exact irrigation data (including irrigation time and water amount) were unavailable
due to the fragmental ownership of crop fields. Thus, an alternative retrieval of irrigation data
from real-time observed SMC was carried out based on two principals: (1) there was no
precipitation within few hours; and (2) the SMC increased sharply by at least 5%. The new
irrigation data were a Boolean variable, in which value 1 indicates an irrigation event and value 0
denotes no irrigation. Furthermore, the daily distribution of irrigated values will be achieved, as
one point can represent the status of an independent irrigated field.

The states of the neighboring cells were difficultly measured in situ. We used the von Neumann
two-dimensional neighborhood to identify the neighborhood states of each cell, aiming to account
for the subsurface lateral flow and the surface runoff (Brocca et al., 2007). The daily SMC maps
were interpolated by using the ordinary kriging approach. These predicted SMC maps were
applied to derive the neighborhood states, which were based on the observed soil moisture data
during the MCA model training. Nevertheless, at the model validation stage, this variable will be
calculated by using the simulated SMC maps based on MCA model at a previous time. The
amount of neighboring cell which was larger than that of central cell was recorded and saved at
the corresponding location of a new raster. A daily variable was generated after the moving
three-by-three window across the SMC grid. The auxiliary layer (statistics of neighborhoods),
even though with certain uncertainty concerning the measured values, could offer additional
information of lateral water movement for the SMC modeling.

1.2.3 Static variables

The land cover map produced from orthophotos at a 10-m spatial resolution was taken into
account in the predicting process of SMC, which was acquired from the Heihe Plan Science Data
Center. Digital elevation model (DEM) data were derived from airborne light detection and
ranging (LiDAR, pixel size of 2 m) and resampled to a 10-m spatial resolution. Topographic
properties, elevation, slope aspect, slope gradient and SAGA TWI (System of Automated
Geoscientific Analyses Topographic Wetness Index), were derived in SAGA GIS
(http://saga-gis.org/). Euclidean distances in the entire area from the canals were calculated and
saved in separated TIFF files. Multivariate geostatistical approach, i.e. kriging with an external
drift, was utilized for estimating the thematic soil maps at a 10-m spatial resolution, following by
a principal component analysis.

All the aforementioned variables were converted to a TIFF format, and resampled to a 10-m
resolution. Variables were selected by stepwise regression in both directions (forward and
backward), using Akaike information criterion (Akaike, 1974). Then the selected variables were
incorporated in MLP-MCA and DBN-MCA models.

2  Methods
2.1 MCA framework and procedure

There are few states controlled by simplified transition function in the classical CA, which cannot
deal with macroscopic phenomena. Using complicated transition rules, the MCA is developed so
as to represent plenty of states. A formal definition of MCA can be found in Mendicino et al.
(2015), and the basic structure can be characterized as follows:

MCA=(E’, X, P, O, 0, y). (1)
Where, EY denotes cells set, X the neighborhood set influencing the cell states, P the global
constant parameters for each cell, O the finite set of cell states given by the Cartesian product
with several sub-states (Q=Q1x(0>x...x0y), o the deterministic transition function of the MCA,
and y the finite set of functions defining the external covariates. The values of sub-states will be
changed in time either based on the interactions among sub-states inside the cells or local
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interactions among neighboring cells.

There are three phases in the structure of MCA model. The first phase is relative to the data
preparation of input data including calibration data, validation data and standardized variables to
ensure that all types of inputs are at the same scale. The second phase involves the transition
functions of cell states based on the calibration data. Various data mining techniques available
were proposed to extract the transition functions. In this study, DBN and MLP were mobilized to
serve as the weight optimization tool for the learning capacity of the model. In the last phase, the
generalization capacity of the model will be verified using the validation data.

2.2 MLP network

Artificial neural networks (ANNs) can simulate human learning processes through a flexible
mathematical structure. Among numerous ANN algorithms, MLP network with the
back-propagation training algorithm is perhaps the most popular model. It was selected for
simulating the dynamics of SMC in this study. There are three layers in the MLP network,
including input, hidden and output layers, each with a set of interconnected neurons working in
parallel to transform the input data into output values (Fig. 2). In the input layer, the neurons have
equal amount to the variables; whereas neurons in the hidden layer, which carry weights
representing the linkages between the variables and SMC, are determined based on both the
calibration and validation data. The output layer only comprises a single neuron that represents
the output SMC values, which can be expressed as:

yl.:Zwij+b,-, (2); Y=F(). ()
j=1

Where, y; is the sum of weighted nodes, w;; the weight of connection between nodes i and j, x; the
value of node j, b; the bias, Y the node output and F the transfer function.

Input layer Hidden layer Output layer
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Fig. 2 Architecture of the MLP (multi-layer perceptron) neural network. LST, land surface temperature; LAI,
leaf area index; TWI, topographic wetness index; SOM, soil organic matter; SMC, soil moisture content.

2.3 Deep belief network

Deep learning (also known as deep belief networks (DBNs)), proposed by Hinton (Hinton et al.,
2006), is a new branch of the machine learning. DBN comprises a generative probabilistic
architecture including several restricted Boltzmann machine (RBM) layers (Hinton and
Salakhutdinov, 2006).

2.3.1 RBM

As a special type of Markov random field, RBM is a bipartite undirected graphical model and
consists of a layer of visible units (random variables) vE {0, 1}”, and a layer of binary hidden
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units (random variables) h € {0, 1}, The visible units represent the observed data and the hidden
units learn to capture the higher-order features based on the input. Visible and hidden layers are
connected by a symmetrical weight matrix W& R"” whereas there are no connections within a
layer (Fig. 3). The joint distribution over the visible and hidden units is as follows:

p(v.h)=Zexpl-E(v.h). @

Z=Y"" exp(- £(v,h)) (5)

Where, Z is a normalization constant, and E(v, h) the energy of the state (v, h). The energy of an

observed state (v, h) can be obtained as Eq. 6.
-

v H o
E(V’h)Z—ZZW@/V% —ijhj —ZCiv[ . (6)
i=1 j=1 j=1 i=1
Where, v; and #4; are binary states of the visible unit i and the hidden unit j, b; and ¢; are hidden
and visible unit biases, respectively. As shown in Eq. 6, units of v and /4 are independent of each
other as there are no direct connections between units in the same layer (Fig. 3). That is, there are
no visible-visible or hidden-hidden connections. Conditioned on the visible layer, the hidden units
should be independent Bernoulli random variables if the values of hidden units are binary. In
addition, the visible units are conditioned on the hidden layer and are independent Gaussian
random variables if the visible units own real values.

Decoder

Y

eie
BN

2L

o

A

Encoder

Fig. 3 Architecture of a restricted Boltzmann machine (RBM). v; and 4, are binary states of the visible unit / and
the hidden unit j, respectively; b; and ¢; are hidden and visible unit biases, respectively; wi; is the weight of
connection between nodes i and ;.

2.3.2 DBN architecture and training

Feature activations can be implemented through RBMs and hence adopted to effectively learn
within DBN architecture (Fig. 4). The hidden layer will be visible to the next RBM if the previous
RBM was trained. The extent of the data’s negative log probability will be enhanced by adding
more layers and perceiving pattern representations (Hinton et al., 2006). If the stochastic gradient
ascent is carried out for the log-likelihood manifold, a new learning function of a weight w;; can

be achieved as follows:
dlog p(v) 0 .
AWy == :“’(<Vih.f>l’ _<Vih.f>l’9). (7
ij
Where, ¢ is a learning rate, p® the distribution of the data and p; the equilibrium distribution
defined by RBM. 6={W, b;, c¢;} includes all parameters needed to learn. The modeling accuracy
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of DBN with back-propagation layer totally depends on the output feature of the last DBN layer.
A DBN with 256-512-512-256-15 structure was trained in this study by using the training set to
exhibit the feature extracting ability.

1 1
‘Q.Q 0..”
1 1

g g g 4

_____________________________________________

@QQO OOQOb

Fig. 4 Deep belief network (DBN) with two hidden layers (41 and /2), and the RBM that is being trained for
layer v. If the layer v is trained, the RBM will be trained for 41 and /42 in turn. W is the weight vector between
visible unit and hidden unit.

2.4 Evaluation and uncertainty assessment of models

The estimation accuracy of models was assessed by the root mean square error (RMSE) according

to Eq. 8:
RMSE = /_Z(x —xf ®)
i=1

Where, x; is the predicted SMC expressed as volumetric soil water content (%) at location i, x;
the observed SMC at the same location and #» the number of instances presented to the model.

The uncertainty of predicted SMC was evaluated by the sequential Gaussian simulation (sGs)
(Goovaerts, 1997; Delbari et al., 2009). Local uncertainty of each cell is defined as the probability
of predicted SMC value less than a specific SMC threshold. In this study, the specific SMC
threshold was set to 25%. The spatial uncertainty is defined as the joint uncertainty concerning
multi-locations in the prediction, so that locations with similar uncertainty can be represented
through a specific probability (Zhao et al., 2005). If a specific probability (p) is defined, the
multi-locations (or an area) can be described as Prob[SMC<25%]>p. Hence, the joint uncertainty
can be calculated by n/N, where N denotes the total number of realizations generated and »n the
number of realizations, of which all the predicted SMC values at the same multi-locations are
with values less than 25% in each realization.

Data preparations, analyses and visualization were carried out using ArcGIS 10.0
(http://www.esri.com/) and software R version 3.1.1 (http://cran.r-project.org/) with its add-in
packages: “h20”, “RSNNS”, “gstat” and “raster”.

3 Results

3.1 Spatio-temporal variations of observed soil moisture

Figure 5 summarizes the main statistics of observed SMC on each day during the study period
(from 1 June to 30 September, 2012), suggesting considerable spatial heterogeneity in soil
moisture dynamics. There were several irrigation events which can be illustrated by the peak of
mean SMC. Variation of observed soil moisture was shown by the scatter plots in terms of the
standard deviation versus mean soil moisture for each day (Fig. 6). Along with the increase of
mean soil moisture, there was also an increase in the standard deviation. Even if all the
observations in this study were conducted under dry conditions, the present result concurred with
the previous studies (Ryu and Famiglietti, 2005; Sur et al., 2013). In addition, this study
suggested that more soil samples need to be required for arid region in the prediction of mean soil
moisture, which was also high-lighted in other related studies (Brocca et al., 2007, 2010; Wang et
al., 2008).
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Fig. 5 Statistics of soil moisture content (SMC) at the depth of 4 cm from 1 June to 30 September in 2012
observed by a WSN (wireless sensor network). SMC is expressed in terms of volumetric soil water content.
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Fig. 6 Relationship between mean SMC and standard deviation from 1 June to 30 September in 2012

3.2 Evaluation of variable importance

The increases in RMSEs as the dynamic and static variables excluded one by one are shown in
Fig. 7. It was noted that the RMSEs were generated by calibration data from 1 June to 31 July.
The importance of variables was judged by the increase of RMSEs after excluding each variable
from the model, as both MLP and DBN algorithms cannot reveal the functional correlations
between SMC and variables. Besides, the magnitude of increased RMSE suggested that the soil
bulk density plays the most important role in explaining the spatial variations of SMC in
MLP-MCA model. Broadly speaking, the contributions of different variables to the DBN-MCA
model were more or less the same. That was, their exclusion marginally decreased the prediction
error in terms of the RMSEs. This finding differed from previous study of SMC mapping based
on soil-landscape concept, in which soil porosity might be significantly correlated with hydraulic
conductivity under wet conditions (Famiglietti et al., 1998). Most of the previous studies on
neural network showed their low interpretability due to the black-box implementation depending
on the input and output data (Wang and Li, 2011). As the spatial variation of SMC cannot be
simulated by the standard geostatistical methods (Western et al., 2001), the learning model
provides an alternative technique for predicting SMC.

3.3 Performance of the spatial models

Generally speaking, the DBN-MCA model yielded the minimum prediction errors and generated
the reasonable results compared to the MLP-MCA model. The RMSE for the DBN-MCA model
(5.54%) was lower than that for the MLP-MCA model (6.77%; Fig. 8), indicating a modest
relative improvement of prediction accuracy by the DBN-MCA. Furthermore, the standard
deviations of estimated SMC from all models (3.15% and 6.76% for DBN-MCA and MLP-MCA



JOURNAL OF ARID LAND

models, respectively; Table 1) were lower than that of observed SMC (6.18%; Fig. 5), which
suggested that the MCA model generated better predictions than what was expected basing on the
observed values alone.

Table 1 Descriptive statistics of the estimated SMC basing on MLP-MCA and DBN-MCA models

Date Estimated SMC from MLP-MCA model (%) Estimated SMC from DBN-MCA model (%)
Maximum Mean Minimum SD Maximum Mean Minimum SD
1 Aug 39.04 26.13 8.36 5.78 37.57 23.37 15.67 3.64
15 Aug 34.94 26.89 13.66 5.02 36.96 28.20 18.32 3.27
1 Sep 39.96 30.24 18.62 6.72 39.20 28.02 19.98 425
15 Sep 38.86 24.90 14.60 5.61 29.84 23.86 15.58 2.53
Study period 51.27 25.88 8.36 6.76 49.52 24.01 11.23 3.15

Note: SMC, soil moisture content; MLP, multi-layer perceptron; MCA, macroscopic cellular automata; DBN, deep belief network; SD,
standard deviation.
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Fig. 7 Variable importance shown by increase in the RMSEs (root mean square errors) of the MLP (multi-layer
perceptron)-MCA (macroscopic cellular automata) and DBN (deep belief network)-MCA models in which one
variable was excluded once
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Fig. 8 Daily prediction errors of the SMC derived from the MLP-MCA and DBN-MCA models from 1 August
to 30 September, 2012. RMSE, root mean square error.

The predicted SMC values of this study might be influenced by many factors like measurement,
laboratory, statistical and random errors. For example, the soil properties and LST used as
variables were interpolated by kriging; the LAI data were retrieved with a mean error of 0.46
(Liao et al., 2013); and the daily actual evapotranspiration data produced the best performance
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with determination of 0.87 (Hu and Jia, 2015). Thus, those associated interpolation errors were
propagated to the subsequent SMC estimations. The more variables we utilized from different
sources, the more uncertainty the predicted model might be involved.

3.4 Spatial prediction and mapping of SMC

The spatial distribution of SMC on 1 August, 15 August, 1 September and 15 September
simulated by MLP-MCA and DBN-MCA models with a 10-m spatial resolution is shown in Fig.
9, in which soil moisture of each point was assumed to be homogeneous. The maps showed
similar macro-patterns on different days from a qualitative perspective, where low SMC values
appeared in the northeastern part and high values in the southwest. Besides, the SMC at the
depth of 4 c¢m, estimated by DBN-MCA model, ranged from 11.23% to 49.52% with a mean
value of 24.01%. Compared with DBN-MCA, the MLP-MCA model estimated a higher average
SMC (25.88%; Table 1). All SMC maps derived from DBN-MCA model showed more details
than those from MLP-MCA model. The detailed maps derived from DBN-MCA model
suggested that this approach provided reasonable and good results compared to the MLP-MCA
model. It was interesting to find that the SMC maps on 15 August were obviously different
between the two models, and the wetness in SMC map based on MLP-MCA model appeared to
be more homogeneous. The converse results suggested that there was certain uncertainty within
the predicting model, and the uncertainty should be discussed further. Furthermore, it was easy
to observe an obvious overlap between irrigated canals (Fig. 1) and spatial variation of soil
moisture (Fig. 9). It was also suggested that the lateral redistribution of soil water led to a
significant influence on SMC, which was implied by the connected architecture (Western et al.,

1998).

(€)1 Sep (MLP-MCA)  (f) 1 Sep (DBN-MCA)  (g) 15 Sep (MLP-MCA) (h) 15 Sep (DBN-MCA)

SMC (%)
- 40
L BT

Fig. 9 Spatial distribution maps of SMC simulated by MLP-MCA (a, c, e, g) and DBN-MCA (b, d, f, h) models
on 1 August (a, b), 15 August (c, d), 1 September (e, f) and 15 September (g, h). Note that masked areas are
colored white in each map.

3.5 Uncertainty evaluation of SMC

The simulation based on the sGs was executed for 100 times with the same probability of SMC
prediction at a 10-m spatial resolution, and hence one hundred SMC maps were produced. Those
SMC maps were post processed for the calculation of probability map and the joint probability.
The distribution of probability of SMC less than 25% on certain days is shown in Fig. 10. Broadly
speaking, there will be a high degree of uncertainty for the cell with a moderate range of
probability, because the simulated SMC values significantly changed (larger or less than 25%)
during the multiple realizations (e.g. probabilities between 40%—-60% in Fig. 10). The SMC less
than 25% was mainly found in the northern part of the study area on all days except 15 August.
Probabilities of SMC on 15 August were less than 50% for 97% of the pixels, illustrating a low
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uncertainty evaluation of SMC.

By linking Figs. 9 and 10 together, it was clearly found that there were similar distributions of
both the predicted SMC and probabilities on 1 and 15 September. It may also imply that the
prediction of SMC based on MLP-MCA and DBN-MCA models can be validated partially in the
upper part of the study area with a relatively lower uncertainty (Fig. 10). We utilized the spatial
uncertainty (joint probability) of SMC to evaluate the stability of multi-location uncertainty
measures, where SMC threshold was 25% and two given critical probabilities were 60% and 80%.
All the joint probabilities of those four days were zero, which also illustrates the high spatial
uncertainty.

(a) 1 Aug 4 (b) 15 Aug

I 20%—40%
I 40%—60%
0 I 60%-80%

(d) 15 Sep

Fig. 10 Distribution maps of probability of SMC less than 25% on 1 August (a), 15 August (b), 1 September (c)
and 15 September (d)

4 Discussion

The validation results of this study demonstrated that the proposed deep learning-based MCA
model can accurately estimate the spatio-temporal patterns of SMC by combining field
measurements and environmental variables together. Different from relative studies about soil
hydrological model (Schwirzel et al., 2009) and numerical simulations (Bertoldi et al., 2014), the
presented MCA model in this study provided a new management opportunity for controlling SMC
changes in the field irrigation. The knowledge between soil moisture and environmental variables
enhanced the estimation quality. The validation results also showed that the proposed models
were comparable to the sensors-based techniques in the range of visible and
near/shortwave/thermal infrared (Sanchez-Ruiz et al., 2014) and ground penetrating radar
(Ardekani, 2013) regions. As many dynamic variables were necessary for the input, the proposed
models involved a fair complex pre-process and was less intuitive than those regressions obtained
between variables and SMC (Paloscia et al.,, 2013). However, MCA models are not only
insensitive to missing data, but also can be available over vegetated terrains. From a practical
point of view, this model is promising for the real-time soil moisture simulation based on WSN.
Due to the fragmental ownership of fields, an alternative retrieval of irrigation data was
achieved through the artificial WSN, as one point represented the status of an independent
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irrigated field. The pre-processed Boolean variable of irrigation data played an important role in
the prediction in terms of validation at the plot scale (data not shown), even if the variable
importance was not significant (Fig. 7). Bertoldi et al. (2014) also revealed that the irrigation data
could significantly affect the prediction of SMC. Through the case studies reported in this paper,
it was clear that the spatial variation and magnitude of soil moisture depended on the function of
irrigation amount and simulated models in question.

Furthermore, the predicted SMC maps could also be compared with other maps constructed by
other learning models (e.g. multi-layer perceptron). By comparison, it was observed that the deep
learning was capable of modeling the SMC variation in spite of the generally qualitative and
quantitative nature of hydrological data as noisy and highly variable. The achieved findings were
consistent with other studies that the deep learning is a powerful modeling technique to learn the
non-linear and complex behaviors of datasets (Schmidhuber, 2015).

In this study, the MCA models generated better predictions than what were expected, because
the standard deviations of the predicted SMC values from all MCA models were lower than those
of the observed values. However, there were several uncertainties that should be pointed out and
paid much more attention in the further application of quasi real-time soil moisture monitoring as
the following reasons. (1) Soil moisture data were collected from a hybrid WSN, in which
different types of sensors may be resulting in various calibration errors. (2) There were certain
uncertainties within the variables, e.g. soil properties and neighborhood states predicted by
geostatistics. (3) Intraday dynamic variables were substituted by historical data, since the daily
remote sensing data were hard to be collected.

The observed SMC data in this study presented an almost normal frequency, and the
autocorrelation analysis showed that SMC data were well spatially correlated. Whereas the
predicted maps on four days did not derive a smoothing effect (Fig. 9). The 100-times realization
of sGs revealed that there might be several uncertainties of SMC prediction, which was similar
to the conclusion of Delbari et al. (2009). Moreover, the knowledge of spatial uncertainty might
be helpful to optimize the designing of WSN with respect to the representative sampling (Kang
et al., 2014). Concerns about the lack of prior information of soil moisture may also arise.
Although the simulation based on the sGs approach was working in hindsight, a more
representative WSN regarding hierarchical SMC variation might be achieved at several scales,
which took up a little time and energy for the field sampling to avoid the frequent uncertainty
within some local areas.

5 Conclusions

In this study, a novel DBN-MCA model was presented and thus applied to a prediction of SMC
over an irrigated corn field in the Zhangye oasis. DBN was trained to extract the transition
functions for the simulation of the cell state changes. After the incorporation of static and
dynamic variables, DBN-MCA model led to a reduction in RMSE by 18% in comparison with the
MLP-MCA model. Cross validation results showed that MCA model is a promising technique for
modeling the temporal and spatial variations of SMC. Furthermore, it was also found that the
predicted biases were probably due to the difficulties in collecting the irrigation amount. If the
detailed environmental variables could be employed, the MCA model would achieve a more
accurate simulation.
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