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Abstract: Soil organic matter content in water-stable aggregates (WSA) in the arid ecosystems 
(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined 
the WSA sizes and stability, and soil organic carbon (OC) and nitrogen (N) contents in agricultural 
lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of 
Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in 
abandoned agricultural lands were compared to those in cultivated land (the control). Agricultural 
land abandonment significantly (P<0.05) influenced the distribution of MWD (mean weight diameter), 
and OC and N contents. There were significant increases in MWD and the proportion of 
macroaggregates (sizes >0.25 mm) as the age of agricultural land abandonment increased. The 
effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC 
and N accumulation in WSA sizes >2 mm. The total OC and N contents presented a stratification 
phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly 
at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes <0.053 
mm had the highest soil OC and N contents (accounting for 51.41%–55.59% and 42.61%–48.94% 
of their total, respectively). Soil OC and N contents in microaggregates (sizes 0.053–0.25 mm) were 
the dominant factors that influenced the variations of total OC and N contents in abandoned 
agricultural lands. The results of this study suggested that agricultural land abandonment may result 
in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay (<0.053 mm) 
and microaggregate fractions to the macroaggregate fractions. However, agricultural land 
abandonment did not increase total soil OC and N contents in the short-term. 
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The relationship of soil aggregate characteristics with soil organic carbon (OC) and nitrogen (N) 
has been reported extensively (Six et al., 2000a; Lützow et al., 2006). The concept of aggregation 
involving different organic binding agents at different scales was pioneered by Tisdall and Oades 
(1982). Subsequently, Waters and Oades (1991) introduced the concept of aggregate hierarchy and 
provided that organic matter is key to soil aggregate stability, and in turn is affected by aggregate 
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destabilization and turnover rate (Zagal et al., 2013). Determining OC pools in aggregates can 
provide important information on soil OC sequestration and mineralization in aggregate size 
fractions, and aggregate stability can be protected by using appropriate soil and crop management 
practices (Whalen and Chang, 2002). 

Water-stable aggregates (WSA) are the foundation of both water and fertility conservation (Sui 
et al., 2012). Soil aggregate stability is influenced by land use change (e.g. agricultural 
abandonment) in the way that changes the proportion of WSA sizes (John et al., 2005; Ashagrie et 
al., 2007) and mean weight diameter (MWD) (Bonifacio et al., 2006). Microaggregates, however, 
seem to be less influenced by land use change (Puget et al., 2000). WSA and MWD fractions 
increase with increasing organic matter content (Onweremadu et al., 2007). Carter (1996) and 
Haynes (2000) noted that soil OC content is often associated with WSA percentage and 
macroaggregate stability. Jastrow (1996) observed that macroaggregate formation occurs first and 
develops rapidly in soil. Therefore, WSA and MWD can be used as indicators for evaluting the 
influence of land use change (e.g. agricultural land abandonment) on soil quality (Sui et al., 2012). 
Thus, accurate evaluation of the effects of land use change (e.g. agricultural abandonment) on soil 
OC and N contents is required to monitor the WSA and MWD dynamics. 

Soils with higher WSA percentage and MWD often have high OC and N contents because such 
soils are likely to have greater resistance to degradation and erosion (Celik, 2005; Onweremadu et 
al., 2007). When agricultural abandonment occurs, soil properties such as organic matter content, 
structure and infiltration rate may be improved, resulting in more effective protection against soil 
erosion (Kosmas et al., 2000). These results may benefit soil evolution. Investigating the soil OC 
after agricultural land abandonment, as expressed in OC content in different size fractions of WSA 
is more crucial than studying the overall soil OC, because it leads to an improved understanding of 
soil OC dynamics. Thus, studies are needed on the influence of agricultural land abandonment on 
aggregate-associated soil OC representing the soil OC pool with different aggregate stabilities, 
especially in degraded soils with poor soil structure, low OC and N content, and compacted layers 
in semi-arid regions (Wiesmeier et al., 2012). 

Recently, extensive areas of cultivated land have been abandoned in many countries worldwide 
(Cramer et al., 2008; Prishchepov et al., 2012; Six and Paustian, 2014). This phenomenon also 
happened in the interior northwestern provinces of China as a result of environmental degradation 
as well as economic and social changes (Yang and Li, 2000; Jin et al., 2008; Deng et al., 2013; 
Zhang et al., 2014). To date, studies on soil OC or N and WSA in abandoned agricultural lands 
focus either on the dynamics of soil OC pools or the changes of WSA (Novara et al., 2014; 
Gabarrón-Galeote et al., 2015). Limited information is available on the long-term changes of WSA 
stability and OC in different WSA sizes at different soil depths of abandoned agricultural lands, 
especially in Northwest China. Thus, the main objectives of this study were to: (1) characterize 
WSA fractions and stability in different soil layers; (2) determine the contents of OC and N within 
WSA at various soil depths; and (3) assess the dominant factors affecting soil OC, N and WSA 
stability after agricultural land abandonment.  

The Minqin Oasis in Northwest China was selected as the study area because of the presence of 
different successional stages of abandoned agricultural lands and the existence of distinct 
vegetation patterns as a result of arid climate. This study may be useful in identifying the 
mechanisms responsible for WSA formation and stability in relation to soil OC and N 
sequestration after cessation of cultivation. The study can also enhance the understanding of the 
role played by soil spontaneous recovery ability in abandoned agricultural lands in arid regions, 
which is crucial to environmental quality and regional agricultural sustainability.  

1  Materials and methods 

1.1  Study area 

The Minqin Oasis (38°03'–39°27'N, 101°49'–104°12'E) is located in the Shiyang River basin of 
Gansu province, Northwest China. It has a land area of 159.107 km2 and a population of 
approximately 306,900. The elevation of the region ranges from 1,295 to 1,460 m, with the terrain 
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generally downward from southwest to northeast. The oasis is surrounded by the Badain Jaran 
Desert to the west and north and the Tengger Desert to the east. The area is characterized by an arid 
continental climate with an annual mean temperature of 7.8°C (average maximum of 23.2°C in July 
and average minimum of –9.6°C in January). The mean annual precipitation is 110 mm with uneven 
distribution, but the annual potential evaporation exceeds 2,664 mm (Sun et al., 2006) because of the 
arid climate in the area. The Minqin Oasis is one of the most severely desertified regions in China, 
and the ecosystems of the oasis are extremely fragile. 

In this study, the agricultural lands with abandonment ages of 0 (control, cultivated land), 3, 12, 
20, 30 and 40 years with well-known land use history and current management practices were 
selected in the northeastern part of the Minqin Oasis within a radius of 6 km. We used the historical 
records and aerial photos of the study area to determine the cultivation and management histories 
before and after land abandonment. The information and photos showed that all the abandoned and 
cultivated lands experienced similar tillage and cultivation practices in the cultivated years, and the 
lands were arable for many decades (Table 1).  

All the studied lands have the same topography and soil type (anthropogenic alluvial soil), and 
the farming and tillage practices before abandonment were commonly conventional tillage with 
irrigation. Now, the abandoned lands are covered by natural vegetation and devoid of tree species. 
The selected lands were cultivated with mostly barley and cotton before abandonment and were kept 
fallow after abandonment.  

Table 1  Cultivation time, dominant species and plowing methods in agricultural lands with different abandonment 
ages 
Age of agricultural land 

abandonment (a) 
Cultivation 

time 
Dominant species Plowing method 

0 
1989 to 
present 

Hordeum vulgare, 
Gossypium spp. 

Conventional ploughing in autumn and rotary tillage in 
spring 

3 1983–2009 
Poa annua,  
Suaeda glauca 

Conventional ploughing in autumn and rotary tillage in 
spring before abandonment 

12 1967–2000 
Halogeton glomeratus, 
Achnatherum splendens 

Conventional ploughing in autumn before abandonment 
and light grazing by sheep after abandonment 
 
 

20 1968–1992 
Kalidium foliatum, 
Salsola passerina 

30 1957–1982 
Nitraria sphaerocarpa, 
Reaumuria songarica 

40 1953–1972 
Nitraria sphaerocarpa, 
Ephedra przewalskii 

 

1.2  Soil sampling 

In April 2012, a total of 18 sampling plots (6 chronosequence×3 replications) were selected within a 
distance of 1.0–1.5 km to avoid pseudoreplication. Five soil sampling sub-plots with each area of 10 
m×10 m were randomly established at each sampling plot with a minimum separation distance of 
100 m. Fifteen soil cores were randomly collected in each sub-plot at depths of 0–20, 20–40 and 
40–60 cm by a sample probe. In each sampling plot, 25 sub-samples from the same depth (i.e. 5 soil 
cores for each depth in each sub-plot×5 sub-plots) were mixed to form one composite sample to 
reduce the effect of natural micro-variability. A total of 54 composite soil samples (i.e. 18 sampling 
plots×3 composite soil samples per sampling plot) were used for the analysis. Visible roots, coarse 
plant debris and stone fragments were removed manually at the time of sampling. In each sub-plot, 
we collected three additional soil samples to determine bulk density using ring method at depths of 
0–20, 20–40 and 40–60 cm. Soil samples were crushed and divided into two portions. One portion 
was used to analyze aggregate-size distribution, and the other was used to determine the total soil 
OC and N contents, and other physical-chemical properties. 

1.3  Laboratory analyses 

1.3.1  Water-stable aggregate (WSA) fraction  
WSA were fractionated according to the wet-sieving method (Six et al., 1998; Puget et al., 2000). 
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Briefly, 100 g soil was successively passed by 4 sieves with decreasing mesh diameter (2, 1, 0.25 
and 0.053 mm) and gently suspended in water for 5 min at room temperature. Then, aggregates 
were separated by moving the sieves up and down (3 cm) 50 times for 2 min. Finally, soil 
aggregates were separated into five size classes: >2, 1–2, 0.25–1, 0.053–0.25 and <0.053 mm. In 
this study, we divided the size fractions of WSA into three classes: macroaggregates (>0.25 mm), 
microaggregates (0.053–0.25 mm; Miwa et al., 2014), and silt+clay particles (<0.053 mm; Manna 
et al., 2007). After a 2-min cycle, WSA remained on sieves were gently poured into pre-weighed 
aluminum pan, oven dried at 60°C for 48 h, weighed, and prepared for mean weight diameter 
(MWD) calculation. The MWD of each soil sample was calculated by Eq. 1 (Yamashita et al., 
2006; Spohn and Giani, 2011). 

                             .MWD
1 =

=
n

i jiWX                                (1) 

Where, Xi is the mean diameter of each size fraction, and Wj is the proportion of total sample 
weight in the corresponding size fraction. 
1.3.2  Sample analysis  
We sieved soils through a 2-mm mesh to analyze pH, electrical conductivity (EC) and soil particle 
composition, and a 0.25-mm mesh to analyze soil OC and N contents. Soil pH values were 
determined with a glass electrode using a 1:1 soil:water ratio. Soil EC was measured with an EC 
meter using a 1:5 soil:water ratio. Soil particle composition was determined by the hydrometer 
method (Institute of Soil Science, Chinese Academy of Sciences, 1978). Soil OC and N contents of 
the entire soil profile and in all size fractions of WSA were determined by the K2Cr2O7–H2SO4 
digestion method (Nelson and Sommers, 1996) and Kjeldahl procedure (Bremner, 1996), 
respectively. Measurement of root biomass is detailed in the study of DuPont et al. (2010). In this 
study, 6-cm diameter soil cores from each sub-plot were collected at depths of 0–20, 20–40 and 
40–60 cm (n=15 per plot). All root samples were hand-sorted in deionized water, and roots were 
recovered by filtering cleaned samples through a 0.25-mm mesh. Roots were dried at 50°C for 48 h 
and weighed for determining the root biomass. 
1.3.3  Statistical analysis 
We conducted Pearson correlation tests to examine the OC and N contents in WSA at different soil 
depths. We performed stepwise multiple-linear regression analysis to improve the understanding of 
how WSA fractions, and OC and N contents in different size fractions of WSA affected the MWD, 
OC and N in total soils. Two-way ANOVA was used to analyze the effects of abandonment age of 
agricultural lands, soil depth, and their interactions on soil properties, WSA sizes, MWD, and OC 
and N contents in different size fractions of WSA. All analyses were conducted using SPSS 19.0 
software for Windows (SPSS Inc., IL, USA). The results were presented as mean±SD (n=3). 
SigmaPlot 10.0 software was also used for graphics. 

2  Results  

2.1  Basic properties of soils 

The average soil pH and EC in abandoned agricultural lands at sampling depths were 8.04 and 
1.72 ms/cm, respectively, which were slightly higher than those in cultivated land at the 0–40 cm 
depth and lower than those in cultivated land at the 40–60 cm depth (Table 2). Agricultural land 
abandonment affected the distributions of silt and clay considerably. That is, agricultural 
abandonment made an increase of silt percentage from 20.01% in cultivated land to 45.94% in 
40-year abandoned agricultural land, and a decrease of clay percentage from 33.56% in cultivated 
land to 12.37% in 40-year abandoned agricultural land at the 0–20 cm depth (Table 2). Compared 
to the conditions in cultivated land, the total OC and N contents increased by 33.6% and 9.23% in 
the 20–40 cm soil layer after 40 years of agricultural land abandonment, respectively; however, the 
total OC and total N contents in the 0–20 and 40–60 cm depths decreased after agricultural land 
abandonment. Agricultural abandonment resulted in the soil bulk density decreased in the 0–40 cm 
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soil layer but increased in the 40–60 cm soil layer.  
The age of agricultural land abandonment and soil depth had significant effects on soil EC, bulk 

density, total OC and N contents, and particle size distribution (Table 2). The interaction of land 
abandonment age and soil depth had a significant (P<0.05) effect on soil physical-chemical 
properties at depths of 0–60 cm (Table 2).  

Table 2  Soil physical-chemical properties at different soil depths in agricultural lands with different 
abandonment ages 

ALA 
(a) 

pH 
EC 

(ms/cm) 
BD 

(g/cm3) 
Total OC 

(g/kg) 
Total N 
(g/kg) 

Particle size proportion (%) 

Sand Clay Silt 

0–20 cm soil layer 

0 7.87±0.11a 0.91±0.11a 1.47±0.33a 5.94±0.12a 0.68±0.04a 46.43±0.47a 33.56±1.12a 20.01±1.73a 

3 7.95±0.15a 1.02±0.21a 1.46±0.94ab 4.89±0.21b 0.57±0.03b 48.90±2.64ab 16.40±0.73b 34.70±2.03b 

12 7.97±0.23a 1.97±0.24b 1.41±0.22bc 4.36±0.14c 0.51±0.01c 52.25±3.70b 14.20±2.20bc 33.54±3.74bc 

20 8.13±0.19a 2.12±0.31bc 1.34±0.42cd 3.98±0.11cd 0.47±0.03cd 57.09±1.14c 12.74±1.76bc 30.17±1.18c 

30 8.18±0.32a 2.79±0.76c 1.33±0.14cd 3.87±0.15d 0.45±0.01cd 46.19±1.61a 13.54±1.25bc 40.27±2.82d 

40 8.22±0.13a 3.12±0.35d 1.27±0.55d 3.82±0.15d 0.44±0.02d 41.69±3.86d 12.37±0.91c 45.94±2.56e 

20–40 cm soil layer 

0 7.81±0.15a 0.96±0.82a 1.54±0.25a 4.05±0.12d 0.59±0.04ab 33.29±0.85a 48.32±1.03a 18.39±2.61a 

3 8.01±0.25ab 1.09±0.38ab 1.50±0.17ab 4.07±0.17c 0.56±0.02b 52.56±2.20b 27.84±2.02b 19.60±4.10a 

12 8.09±0.08bc 1.18±0.26ab 1.49±0.17ab 4.12±0.18cd 0.54±0.02b 62.60±1.76c 12.53±2.74c 24.87±1.20b 

20 8.17±0.21bc 1.51±0.51ab 1.47±0.35ab 4.30±0.15cd 0.56±0.01ab 42.47±1.64d 19.38±2.91d 38.16±1.48c 

30 8.21±0.15c 1.64±0.12ab 1.46±0.50ab 4.80±0.14b 0.63±0.01a 34.27±3.15a 17.18±1.53de 48.56±2.42d 

40 8.23±0.12c 1.74±0.46b 1.45±0.35b 6.10±0.25a 0.65±0.05a 32.27±1.16a 14.38±1.83cd 53.36±1.65e 

40–60 cm soil layer 

0 8.04±0.12a 2.05±0.32a 1.52±0.12a 4.98±0.10a 0.67±0.05a 37.91±1.22ab 40.79±4.19a 21.30±5.22a 

3 7.98±0.12a 1.93±0.38a 1.53±0.21a 4.98±0.08a 0.59±0.03b 37.58±1.63ab 38.84±2.07a 23.58±2.81ab 

12 7.92±0.11a 1.74±0.15ab 1.53±0.33a 4.90±0.09a 0.57±0.01b 33.85±3.78bc 38.31±2.77a 27.84±4.03bc 

20 7.90±0.28a 1.48±0.75bc 1.54±0.42a 4.71±0.08ab 0.55±0.04b 31.91±0.54c 36.82±1.74a 31.27±1.67cd 

30 7.86±0.15a 1.29±0.74c 1.56±0.17a 3.77±0.12c 0.48±0.06c 34.89±4.26bc 31.87±3.53b 33.24±1.75bcd 

40 7.78±0.15a 1.15±0.69c 1.56±0.26a 4.01±0.11bc 0.49±0.03c 42.70±2.87a 20.48±6.28c 36.82±8.81d 

Least significant difference (LSD) 
ALA 
(A) 

1.70  2.12** 33.45*** 7.47** 5.18**  91.65***  47.48*** 85.36*** 

Soil 
depth 
(B) 

19.62*** 3.84* 10.04*** 19.76*** 51.33*** 184.20*** 343.26*** 24.91*** 

A×B 4.56* 18.31**  4.66*** 32.98*** 12.71***  30.65***  13.36*** 21.51*** 

Note: ALA, age of land abandonment; EC, electrical conductivity; BD, bulk density; OC, organic carbon; N, nitrogen. Lowercase letters 
indicate significance at P<0.05 level between different ages of agricultural land abandonment. Mean±SD, n=3. *, ** and *** indicate 
significance at P<0.05, P<0.01 and P<0.001 levels, respectively. 

2.2  WSA sizes and stability 

In cultivated land, the average MWD of WSA at soil depths of 0–20, 20–40 and 40–60 cm was 
0.106±0.01, 0.152±0.03 and 0.150±0.06 mm, respectively. It increased to 0.435±0.09, 0.596±0.02 
and 0.487±0.02 mm at soil depths of 0–20, 20–40 and 40–60 cm after 40 years of agricultural 
abandonment (Fig. 1). Agricultural land abandonment and the interaction of land abandonment age 
and soil depth had significant effect on MWD at depths of 0–60 cm (P<0.001; Table 3). 

Soil depth had no impact on the proportion of WSA >2 mm; however, the age of agricultural 
land abandonment and interactive effect of land abandonment age and soil depth significantly 
affected the proportions of all WSA fractions (P<0.001; Table 3). The increment of MWD of 
aggregates in abandoned agricultural lands is caused by an increase in the proportion of aggregates 
with sizes 0.25–2 mm. The proportion of WSA sizes <0.053 mm decreased with increasing 
abandonment age at soil depths of 0–20, 20–40 and 40–60 cm (Fig. 1). The proportion of WSA 
sizes >2 mm remained less than 9% in all analyzed samples. 
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Fig. 1  WSA (water-stable aggregates) proportion and MWD (mean weight diameter) at different soil depths in 
agricultural lands with different abandonment ages. Values were calculated from three independent samples per 
sub-plot. Error bars depict standard deviations. Different lowercase letters indicate significance at P<0.05 level 
between different land abandonment ages. 

Table 3  Two-way ANOVA for effects of agricultural abandonment age and soil depth on the proportion of WSA 
and MWD 

Variable 

Proportion of WSA 

MWD Macroaggregates Microaggregates Silt+clay particles 

>2 mm 1–2 mm 0.25–1 mm (0.053–0.25 mm) (<0.053 mm) 

Abandonment age (A) 210.99*** 203.19*** 58.69*** 14.23***        18.01*** 219.51*** 

Soil depth (B) 2.36  13.35*** 82.69*** 27.71***        28.10*** 3.18 

A×B    7.61***  10.98*** 4.34** 9.16***         4.38**   8.72*** 

Note: WSA, water-stable aggregates; MWD, mean weight diameter. The F-ratio is indicated for abandoned agricultural lands (excluding 
cultivated land). ** and *** indicate significance at P<0.01 and P<0.001 levels, respectively. A×B: interactive effect of land abandonment 
age and soil depth. 

2.3  Soil OC and N contents in WSA 

Generally, the soil OC and N contents increased with decreasing sizes of WSA, and a majority of 
soil OC and N were concentrated in WSA sizes <0.053 mm across all depths over long-term 
agricultural land abandonment (Fig. 2). Soil OC content in WSA sizes <0.053 mm across the three 
depths ranged from 2.03 to 3.26 g/kg, accounting for 51.41% to 55.59% of the total soil OC 
content. Soil N content in WSA sizes <0.053 mm ranged from 0.21 to 0.33 g/kg, occupying 
42.61% to 48.94% of the total soil N content.  

At the depth of 0–60 cm, soil OC and N contents in WSA sizes >2 mm increased with increasing 
age of agricultural abandonment. A significant positive linear relationship (P<0.01) was observed 
between soil OC content in WSA sizes >2 mm and age of agricultural land abandonment. However, 
a significant negative relationship (P<0.01) was observed between soil OC content in WSA sizes 
<0.053 mm and land abandonment age. Agricultural abandonment increased soil OC and N contents 
in WSA sizes 0.25–2 mm at the 20–60 cm soil depth but decreased their contents at the depth of 
0–20 cm (Fig. 2). The changes of soil OC and N contents in agricultural lands with different land 
abandonment ages were approximated with a linear function. Age of agricultural land abandonment, 
soil depth, and interactive effect of agricultural abandonment age and soil depth significantly 
affected the distributions of soil OC and N contents almost in all size fractions of WSA (Table 4). 
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Fig. 2  Soil organic carbon (OC; the left vertical axis in each graph) and nitrogen (N; the right vertical axis in 
each graph) contents in different sizes of WSA at different soil depths in agricultural lands with different 
abandonment ages. Values were calculated from three independent samples per sampling plot. Error bars depict 
standard deviations. The black line indicates the relationship between soil OC content in WSA and age of 
agricultural land abandonment, and the gray line indicates the relationship between soil N content in WSA and age 
of agricultural land abandonment. 

2.4  Relationship of MWD with soil OC and N contents 

As shown in Table 5, at depths of 0–20 and 20–40 cm, total soil OC and N contents were 
significantly correlated with soil OC and N contents in WSA sizes 0.053–0.25 mm, respectively. At 
the depth of 40–60 cm, total soil OC content was significantly correlated with soil OC content in 
WSA sizes <0.053 mm, and total soil N content was significantly correlated with N content in 
WSA sizes 0.053–0.25 mm. At depths of 0–20 and 20–40 cm, MWD was positively correlated 
with soil OC and N contents in WSA sizes >2 mm (P<0.001). At the depth of 40–60 cm, MWD 
was negatively correlated with soil OC content in WSA sizes <0.053 mm (P<0.001) and positively 
correlated with soil N content in WSA sizes >2 mm (P<0.001). 
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Table 4  Two-way ANOVA for effects of land abandonment age and soil depth on soil OC and N contents in 
different sizes of WSA 

Variable  
Soil OC content in different sizes of WSA 

>2 mm 1–2 mm 0.25–1 mm 0.053–0.25 mm <0.053 mm 

Age of agricultural abandonment (A)  76.12***  8.86*** 52.99***   9.83***  10.48*** 

Soil depth (B) 461.81*** 29.99*** 54.01***  30.23***  0.81 

A×B   5.79*** 10.95*** 72.01*** 103.09***  0.49 

Variable 
Soil N content in different sizes of WSA 

>2 mm 1–2 mm 0.25–1 mm 0.053–0.25 mm <0.053 mm 

Age of agricultural abandonment (A)  286.23*** 0.441  35.41*** 2.03  4.62** 

Soil depth (B)  264.24***  16.93*** 120.65***  15.40*** 2.04 

A×B   4.35**  93.49***  68.43***  13.14*** 0.33 

Note: The F-ratio is indicated for abandoned agricultural lands (excluding cultivated land). ** and *** indicate significance at P<0.01 and 
P<0.001 levels, respectively. n=15. A×B: interactive effect of land abandonment age and soil depth. 

Table 5  Stepwise regression analyses between soil OC content in WSA sizes and total soil OC content, soil N 
content in WSA sizes and total soil N content, MWD and WSA, MWD and soil OC and N contents in WSA sizes at 
different soil depths in abandoned agricultural lands (excluding cultivated land) 

Dependent variable Regression equation R2 

0–20 cm soil layer 

Total OC content Total OC content=2.88+2.58(OC0.053–0.25 mm) 0.862*** 

Total N content Total N content=0.403+10.65(N0.053–0.25 mm) 0.671*** 

MWD 

MWD=0.129+0.051(WSA>2 mm) 0.975*** 

MWD=1.25(OC>2 mm)–0.03 0.634*** 

MWD=13.187(N>2 mm)–0.062 0.875*** 

20–40 cm soil layer 

Total OC content Total OC content=3.77+9.17(OC0.053–0.25 mm) 0.924*** 

Total N content Total N content=0.446+0.934(N0.053–0.25 mm) 0.658*** 

MWD 

MWD=0.049(WSA>2 mm)+0.165 0.967*** 

MWD=0.38(OC>2 mm)–0.09 0.927*** 

MWD=24.48(N>2 mm)–0.01 0.889*** 

40–60 cm soil layer 

Total OC content Total OC content=0.90+3.59(OC<0.053 mm) 0.781*** 

Total N content Total N content=0.7131.43(N0.053–0.25 mm) 0.807*** 

MWD 

MWD=0.028+0.057(WSA1–2 mm) 0.853*** 

MWD=0.505–0.20(OC<0.053 mm) 0.878*** 

MWD=0.087+15.07(N>2 mm) 0.920*** 

Note: OC>2 mm, OC0.053–0.25 mm and OC<0.053 mm refer to soil organic carbon in WSA sizes >2, 0.053–0.25 and <0.053 mm, respectively. 
N>2 mm and N0.053–0.25 mm refer to soil nitrogen content in WSA sizes >2 and 0.053–0.25 mm, respectively. WSA>2 mm and WSA1–2 mm refer 
to the proportions of WSA with size fractions of >2 and 1–2 mm, respectively. *** means significance at P<0.001 level. 

2.5  Relationship of soil properties with soil OC and N contents   

Soil OC and N contents in WSA sizes <0.053 mm were linearly positively correlated with 
silt+clay content (P<0.001; Fig. 3); however, soil OC and N contents in WSA sizes >2 mm were 
negatively correlated with silt+clay content. Soil EC was significantly negatively correlated with 
soil OC and N contents in WSA sizes 0.053–2 mm (P<0.01), and the relationship was linear. Soil 
bulk density had significant negative correlation with soil OC and N contents in WSA sizes >2 
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mm (P<0.001), and positive correlation with soil OC and N contents in WSA sizes <0.053 mm 
(P<0.01 for OC and P<0.05 for N). The root biomass was positively exponentially correlated with 
soil OC and N contents in WSA sizes 0.25–2 mm (P<0.001), and negatively correlated with soil 
OC and N contents in WSA sizes <0.053 mm with a linear function (P<0.01 for OC and P<0.05 
for N). 

 
Fig. 3  Correlations of soil properties with soil OC and N contents in different size fractions of WSA in 
abandoned agricultural lands (excluding cultivated land). EC, electric conductivity. *, ** and *** indicate 
significance at P<0.05, P<0.01 and P<0.001 levels, respectively. The black line indicates the correlation of soil OC 
content and soil properties, and the gray line indicates the correlation of soil N content and soil properties. 

2.6  Relationship of soil properties with MWD and C:N ratio of total soil  

The MWD was significantly negatively correlated with soil silt+clay content, EC and bulk density, 
and exponentially positively correlated with root biomass (P<0.001; Fig. 4). The C:N ratio of total 
soil declined with increasing soil EC values. Moreover, there was no significant correlations of 
C:N ratio of total soil with silt+clay content, bulk density and root biomass. 
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Fig. 4  Correlations of soil properties with MWD and C:N ratio of total soil in abandoned agricultural lands 
(excluding cultivated land). * and *** indicate significance at P<0.05 and P<0.001 levels, respectively.  

3  Discussion 

3.1  WSA sizes and stability  

The results of this study showed that MWD increased with increasing age of agricultural land 
abandonment because of a significant restoration of the proportion of WSA sizes >0.25 mm and a 
decrease of the proportion of WSA sizes <0.053 mm. The increment of soil WSA stability was 
caused by the bonding of microaggregates and silt+clay particles, which resulted in an increase in 
the proportion of macroaggregates in abandoned agricultural lands. This study further 
demonstrated that WSA stability increased with increasing organic matter content enriched in 
macroaggregates (P<0.001; Table 5).  

Large soil aggregates have high stability and persistence because they are strongly cemented by 
organic matter (Six et al., 2000b), which means that ploughing (compared with agricultural 
abandonment) has a stronger impact on the stability of WSA with larger sizes (Chrenková et al., 
2014). This finding demonstrated that the proportion of soil aggregates with sizes >2 mm appeared 
to be a suitable indicator for evaluating the effect of land use change on soil aggregation (Huang et 
al., 2010). Cultivation can physically disrupt the formation of WSA with larger sizes and therefore 
soils become more susceptible to degradation and erosion (Ayoubi et al., 2012), especially in 
semi-arid areas. Soils with larger MWD are more likely to have greater resistance to soil 
degradation and erosion (Celik, 2005). Accordingly, the abandonment of cultivation has the 
potential to prevent the soils from wind erosion. 

In this study, the MWD exhibited a linear negative correlation with silt+clay content and bulk 
density (P<0.001), a logarithmic negative correlation with EC (P<0.05), and an exponential 
positive correlation with root biomass (P<0.001). Therefore, we concluded that the silt+clay 
content, EC and bulk density have a limited intrinsic capacity for soil aggregation, while the root 
biomass contributes to soil aggregation in abandoned agricultural lands (Fig. 4). 

3.2  Soil OC and N contents in abandoned agricultural lands 

As in the cases of many studies in the other regions (e.g. Knops and Tilman, 2000), we had no data 
on vertical distributions of soil OC and N contents within particle size fraction before agricultural 
land abandonment. In addition, the temporal patterns of soil OC and N dynamics after agricultural 
abandonment in the study area was not well-documented. Thus, we compared the abandoned 
agricultural lands to the adjacent long-term agricultural lands, and assumed that the abandoned 
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agricultural lands had the similar conditions on the basis of planting and farming practices before 
abandonment with the cultivated lands.  

The variation of soil organic matter in abandoned agricultural lands of semi-arid area was 
debated over the years because of differences in soil background, aboveground and belowground 
biomass, as well as management practices. Novara et al. (2014) reported that the organic matter 
content increased by 13% after 15 years of vineyard abandonment in a semi-arid environment. A 
similar increase of OC stocks in soils after cropland abandonment was reported recently for large 
areas of abandoned lands (Kurganova et al., 2014; Shang et al., 2014). However, these results 
should be interpreted with caution. According to our data, abandoned agricultural lands contained a 
lesser amount of OC and N contents than the cultivated land at depths of 0–20 and 40–60 cm 
(Table 2). Presumably, the lack of rainfall in the study area causes low vegetation productivity and 
reduces the return of root biomass, resulting in low replacement rate of organic matter pool. This 
finding is inconsistent with the results of a study in the same climatic region (Li et al., 2006), yet 
the reasons for the difference are still not understood. The increase of total OC and N contents at 
the depth of 20–40 cm with increasing land abandonment age indicated that soil organic matter 
content exhibited vertical difference in abandoned lands. This information is essential to predict 
total soil OC and N contents, as well as the vegetation regeneration potential.  

In abandoned agricultural lands, soil OC and N contents in silt+clay particles decreased linearly 
with increasing land abandonment age (P<0.01). The silt+clay content was significantly correlated 
with organic matter (P<0.001). This may be due to the greater contents of silt+clay particles and 
the stronger bond between microaggregates and silt+clay particles (Huang et al., 2010). In addition, 
the silt+clay particles can protect soil OC and N from microorganises decomposition (Li et al., 
2006; Grüeneberg et al., 2013). An important consideration in this study was that the silt+clay 
particles are susceptible to soil erosion by wind, resulting in the loss of soil organic matter. In our 
study, agricultural land abandonment resulted in soil OC and N shifting from silt+clay particles to 
macroaggregates. The larger size particles were found to be more stable than the smaller ones in 
deeper soil layers because the cementing agent involved in macroaggregates was dominantly 
inorganic in nature (Barral et al., 1998). The C:N ratio at the 0–20 cm depth decreased with 
increasing age of agricultural abandonment, which indicated that abandoned agricultural lands own 
the recalcitrant organic matter pools than agricultural land in the study area (Knops and Tilman, 
2000).  

According to our findings, soil OC and N contents in microaggregates and silt+clay particles 
were the dominant factors influencing the variations of total OC and N contents in abandoned 
agricultural lands (Table 5). Our results confirmed that microaggregates rather than 
macroaggregates protect the soil organic matter in the long-term (Six and Paustian, 2014). Soil EC 
was negatively correlated with soil OC and N contents in microaggregates (P<0.01), implying that 
OC and N in microaggregates were more sensitive to the influence of salinization.  

3.3  Relationship of WSA stability with soil OC and N contents 

Stepwise regression analysis revealed that the differences of aggregate stability caused by 
agricultural land abandonment mainly resulted from the differences in the contents of OC and N in 
macroaggregates with sizes >2 mm (Table 5). Root biomass was significantly positively correlated 
with soil OC and N contents in macroaggregates with sizes 0.25–2 mm (P<0.001; Fig. 3). 
Therefore, roots seemed highly important for the formation of macroaggregates (Fig. 4). This 
finding is in accordance with the hierarchical model by Tisdall and Oades (1982) and the recent 
research by Linsler et al. (2013).  

In this study, the soil OC and N contents increased with increasing size of WSA, which 
indicated the important effect of agricultural abandonment on organic matter dynamics and 
aggregate stability (Six et al., 2000a; Zhu et al., 2010). These results are in agreement with the 
concept of aggregate hierarchy that microaggregates are bound together into macroaggregates by 
transient binding agents (Six et al., 2000b; Ayoubi et al., 2012). Thus, OC and N likely play a 
major role in improving soil WSA stability. Furthermore, the amount of macroaggregates and 
subsequent aggregate stability were greater in abandoned agricultural lands than in cultivated lands. 
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This fact demonstrated that the recovery of macroaggregates may protect the organic matter 
against microbial mineralization and losses, and facilitate the OC and N accumulation in soils. In 
turn, the physically protected soil organic matter may foster the formation of WSA to improve the 
soil structure (Ahn et al., 2009; Raiesi, 2012). In general, the different distributions of soil OC and 
N contents across different sizes of WSA as a result of agricultural land abandonment reflected the 
differences in formation mechanisms and water stability of aggregates in arid region of the Minqin 
Oasis. 

4  Conclusions 

Our findings demonstrated that abandoned agricultural lands tend to change the soil particle 
composition, resulting in higher WSA stability. Total soil OC and N contents presented the 
phenomenon of stratification across soil depths. Agricultural land abandonment contributed to the 
accumulation of soil OC and N in macroaggregates with sizes >0.25 mm. Soil OC and N contents 
in macroaggregates with sizes >2 mm were the key factors that affected the MWD in abandoned 
agricultural lands. Moreover, the majority of soil OC and N still contained in microaggregates 
(0.053–0.25 mm) and silt+clay particles (<0.053 mm), which are the dominating factors 
influencing the variations of total OC and N contents in abandoned agricultural lands. The 
mentioned OC and N in WSA sizes <0.25 mm were relatively more sensitive to the influences of 
salinization dynamics, silt+clay content, bulk density and root biomass after agricultural 
abandonment. The potential for soil OC and N sequestration in silt+clay particles suggested that 
smaller particle sizes play a key role in the formation and stabilization of organic matter in 
abandoned agricultural lands in arid ecosystems. 
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