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a b s t r a c t

The community dynamics of ground beetles as a dominant group in arid ecosystems are strongly affected
by land-use change associated alterations in vegetation and soil conditions. However, little is known
about the relative effects of altered vegetation and soil, or their interactions, on the composition and
diversity of beetle functional groups. To address this question, we collected data on the species richness
and activity abundance of ground carabid and tenebrionid beetle functional groups (predators, herbi-
vores, and detritivores), along a gradient of land-use conversion from natural grassland to pure and
mixed plantations of two shrub species (Haloxylon ammodendron and Tamarix ramosissima) in an arid
region of northwestern China. Additionally, we collected key variables related to the vegetation (shrub
cover, height, herbaceous plant biomass, and species richness) and soil (soil pH, texture, and salinity).
Variation partitioning showed that vegetation changes had stronger effects on the functional group
composition than changes in the soil did. However, vegetationesoil interactions explained more of the
composition variation in the beetle functional groups than vegetation or soil alone. Shrub cover and
herbaceous species richness were the best predictors of species composition of detritivores and herbi-
vores. For predator species composition, shrub height and cover were the best predictors. Structural
equation models showed that changes in vegetation and soil influenced beetle abundance and diversity
through both direct and indirect effects, and the strength of this influence varied among the functional
groups. Overall, we conclude that vegetation and vegetationesoil interactions are important de-
terminants of beetle community assemblies.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Beetles, especially three groups of ground-dwelling beetles
(Carabidae, Scarabaeidae, and Tenebrionidae), comprise one of the
most conspicuous and predominant groups of arthropods in the
Asian steppes and deserts (Konstantinov et al., 2009). Many
ground-dwelling beetle species are restricted to arid ecosystems
(Paknia et al., 2013), where they play key functional roles in pro-
cesses such as pollination (Steffan-Dewenter et al., 2001), pest
search Station, Cold and Arid
stitute, Chinese Academy of
control (Suenaga and Hamamura, 2001; Zaller et al., 2009), seed
dispersal (Andresen and Feer, 2005; Griffiths et al., 2015), and the
decomposition of dung and dead organic material (Wu and Sun,
2010). In addition, they serve as food sources for insectivorous
birds, mammals, and arthropods (Jennings and Pocock, 2009). The
magnitude of these functional roles is critically linked to the beetle
abundance, diversity, and community composition.

The temperate arid regions of northwestern China, which
occupy approximately 2 million km2, are experiencing extensive
land-use and land-cover changes due to anthropogenic activities.
These activities include land reclamation for urban and agricultural
development (Chen, 2008; Wang et al., 2010), and land-cover
conversion from natural to planted vegetation (Li et al., 2014).
Artificial oases, which account for approximately 5% of the arid
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land, are themain sites of agriculture and human settlement (Wang
and Liu, 2013). Conservation of these ecologically fragile oasis
habitats generally consists of surrounding the human-inhabited
oases with 500e1000 m wide protective shrub shelterbelts
(Chang et al., 2014). Over the past few decades, natural grassland at
the margins of many arid region oases have been converted into
structurally simple shrub shelterbelts through oasis conservation
programs (Pan and Chu, 2012). Because this conversion alters the
vegetation type, cover, and structure, the subsequent alterations in
surface albedo and other biogeophysical parameters can change the
microclimate and soil properties as well (Bright, 2015).

Ground beetles are a dominant component of the soil food web
in China's temperate arid ecosystems (Liu et al., 2012; Ren and Yu,
1999). Their abundance, diversity, and community composition can
be affected by alterations in vegetation and soil conditions caused
by land-use and land-cover change. Over the past decades, ecolo-
gists have assessed the effects of land-use change associated
changes in plants, soils, and other environmental factors on beetle
diversity and community composition (Antvogel and Bonn, 2001;
Pakeman and Stockan, 2014; Parmenter et al., 1989; P�etillon et al.,
2008; Ruggiero et al., 2009; Schweiger et al., 2005; Slobodchikoff,
1983; Stapp, 1997; Woodcock et al., 2010). However, a complete
understanding of the direct and indirect effects of different envi-
ronmental variables on ground beetle diversity and community
composition patterns, and how these effects may vary among
ground beetle functional groups at different trophic levels, is still
lacking. Different ground beetle functional groups are expected to
respond differently to land-use change induced alterations in
vegetation and soil, largely because of differences in their trophic
position (Van Nouhuys, 2005), and different ecological re-
quirements (Homburg et al., 2014). It is therefore important to
quantify the relative effects of altered vegetation and soil condi-
tions on beetle community structure, especially in terms of
different functional groups. This will enable us to predict the im-
pacts of anthropogenic environmental changes on local ground
beetle community assemblages better.

Overall, the bottom-up effects of plant community composition,
productivity, and diversity on arthropod communities have been
well documented for a broad range of arthropod taxa, including
beetles, spiders, ants, mites, and springtails (Andow, 1991; Barton
et al., 2016; Botha et al., 2015; Brose, 2003; Haddad et al., 2009;
Harvey et al., 2008; Koricheve et al., 2000; Sabais et al., 2011;
Schaffers et al., 2008; Scherber et al., 2010; Siemann, 1998;
Wenninger and Inouye, 2008; Zou et al., 2013). Nonetheless, such
relationships have been hardly investigated for different functional
groups of ground beetles, especially in the temperate arid ecosys-
tems of northwestern China.

For this study, we collected data on the species richness and
activity abundance of ground carabid and tenebrionid beetle
functional groups (predators, herbivores, and detritivores), along
an existing gradient of land-use change in an arid region of
northwestern China. Simultaneously, we collected key vegetation
variables (shrub cover, shrub height, herbaceous plant biomass, and
herbaceous species richness) and soil variables (soil pH, soil
texture, and salinity). The gradient in this study included four land-
use types: planted stands of a long-lived shrub species (Haloxylon
ammodendron or Tamarix ramosissima), a mixed plantation of both
species, and the natural, pre-conversion, grassland. The main ob-
jectives of this study were (1) to identify how the species compo-
sition of three beetle functional groups is affected by land-use
change associated changes in plants and soils, using variation par-
titioning; (2) to investigate the direct and indirect effects of these
vegetation and soil variables on the activity abundance and species
richness of the beetle functional groups, using structural equation
models. More specifically, we expected that (1) the relative effects
of vegetation and soil variables on the structure of beetle com-
munities would vary among the functional groups, and that (2) the
strength and direction of the direct and indirect effects of vegeta-
tion and soil variables on beetle abundance and diversity would
vary across the different functional beetle groups as well.

2. Materials and methods

2.1. Study area

The study was conducted in a temperate arid region in the
western Gansu Province, northwestern China (39�210 N, 100�070 E;
1384 m a.s.l.; Fig. 1). The study area has a continental arid climate,
with a mean annual temperature of 7.6 �C (mean monthly tem-
perature ranges from �10.4 �C in January to 23.9 �C in July). Mean
annual precipitation is 117.0 mm, with 12.6%, 28.4%, 19.1%, and
16.6% of annual rainfall occurring in June, July, August, and
September, respectively (data from the meteorological station of
the Linze Inland River Basin Research Station, Chinese Ecosystem
Research Network,1995e2014). Furthermore, the mean annual pan
evaporation is approximately 2390 mm, which is 20 times higher
than the annual precipitation. Finally, the area's soil is classified as
grey-brown desert soil, developed on gravelly diluvial-alluvial
materials of denuded monadnock, and the natural vegetation is a
shrub-dominated desert steppe (Zhang and Shao, 2014).

2.2. Sampled sites

The overall study site is an artificial oasis zone, called the Linze
oasis, which covers approximately 6000 km2. This zone consists of
several small, isolated oases, three of which were chosen for this
study (Fig. 1). The three oases ranged in size from 600 to 800 km2.
The four major land-cover types were selected at the margins of
each oasis, and consisted of planted H. ammodendron stands (HAP;
21 years old), planted T. ramosissima stands (TRP; 20 years old), a
mixed plantation of both shrub species (MP; 20e21 years old), and
the original natural grassland (NG). Distances between the four
habitats in each oasis ranged from 500 to 1000 m.

The sampled NG patches were dominated by the shrub species
Calligonum mongolicum, Nitraria sphaerocarpa, and Nitraria sibirica,
along with herbaceous species such as Bassia dasyphylla, Halogeton
glomeratus, Agriophyllum squarrosum, and Echinops gmelinii. The
sampled HAP, TRP, andMP standswere plantedwith seedlings from
the local nursery; they were irrigated for three years after planting,
but not after that. Once established, these deep-rooted shrubs can
survive as long as current-year precipitation and the plants’ access
to groundwater are sufficient (Tian et al., 2014; Zhang et al., 2011).
The herbaceous layer in HAP was dominated by B. dasyphylla,
Halogeton arachnoideus, Salsola ruthenica, Chloris virgata, and A.
squarrosum. The herbaceous layer in TRP was dominated by Ono-
pordum acanthium, H. arachnoideus, B. dasyphylla, Peganum har-
mala, Atriplex centralasiatica,Mulgedium tataricum, and Cynanchum
chinense. Finally, the herbaceous layer in MP was dominated by H.
arachnoideus, S. ruthenica, B. dasyphylla, Eragrostis minor, C. virgate,
Corispermum hyssopifolium, E. gmelinii, Phragmites australis, Che-
nopodium album, A. squarrosum, Artemisia desterorum, and C.
chinense.

2.3. Sampling of ground-dwelling beetles

We sampled ground-dwelling beetles with pitfall traps. In each
oasis, three 30 m � 50 m plots, located at least 100 m apart, were
established in each of the four habitats. In each plot, 10 pitfall traps
filled with 75% ethanol as a lethal and preservative agent were
placed. Five traps per plot were placed beneath the shrubs, and five



Fig. 1. The study area is located in the middle reaches of the Heihe River Basin, in the western Gansu Province, northwestern China. Pictures show the landscapes of the four studied
habitat types: A) natural grassland, B) planted monoculture stand of Tamarix ramosissima, C) planted monoculture stand of Haloxylon ammodendron, and D) planted stand of T.
ramosissima and H. ammodendron mixed.
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in the open areas between the shrubs. In total, we placed 90 traps in
each habitat, and 360 traps in the overall study. Each trap consisted
of two cups, an outer permanent cup made of PVC pipe
(8.5 cm � 20.0 cm) buried level with the soil surface, and a
removable plastic cup inside the PVC pipe. Traps were set in the
spring (May 8e15) and summer (August 10e17) of 2012. The traps
were emptied at the end of each week-long sampling period, and
specimens were preserved in 70% ethanol in a sealed jar.

The captured beetles were counted and identified to the species
or genus level (Ren and Yu, 1999; Ren and Ba, 2010; Wang et al.,
2008; Zheng and Gui, 1999). Although more than 10 beetle fam-
ilies were recorded, we selected the families Carabidae and Tene-
brionidae, which were well represented by pitfall trappings before
(Spence and Niemela, 1994). The remaining families were excluded
from further analysis. The carabid and tenebrionid species (see
Appendix A) were subsequently categorized to one of three func-
tional groups (predators, herbivores, and detritivores/omnivores),
based on field observations (Liu et al., 2010) and literature
(Lawrence et al., 1999; Liang and Yu, 2000; Ren and Ba, 2010; Wang
et al., 2008; Zhang, 2005).

2.4. Measurements of vegetation and soil variables

We measured vegetation and soil variables that are known to
affect beetle distribution and activity patterns in all plots in late
August 2012, the time of year when plant biomass and diversity are
highest (Liu et al., 2010). Plot shrub cover was determined with the
line intercept method (Mueller-Dombois and Ellenberg, 1974).
Furthermore, shrub height per subplot was determined on five
randomly selected shrubs, by measuring their height from the
ground surface to the highest point of the plant. Average canopy
size of the same shrubs was determined by averaging their long and
short canopy diameters (Li et al., 2005). The cover of the herbaceous
understory layer was estimated visually, using five 1-m2 subplots
that were located at least 8 m apart. In addition, we identified and
counted all herbaceous plant species. Furthermore, the herbaceous
plant biomass was determined by clipping all herbaceous plants
per subplot at 2e3 cm above the ground. The harvested samples
were oven-dried at 80 �C for 24 h and weighed afterwards.

After the aboveground plant harvest from these subplots, we
took 10 cm deep soil cores, using a 5-cm diameter soil auger. The
five soil cores from each plot were pooled and mixed thoroughly to
form one composite sample. Roots and stones were removed by
sieving the soils with a 2-mm mesh, and the resulting composite
samples were analyzed for soil pH, particle size distribution, and
electrical conductivity. Soil pH was determined with a pH meter in
a 2:5 soil:water solution (Mettler Toledo 320-S, Mettler-Toledo
Instruments Co. Ltd., Shanghai, China), whereas soil electrical
conductivity was determined with a conductivity meter in a 1:5
soil:water solution (DDSJ-308A, INESA Scientific Instrument Co.
Ltd., Shanghai, China). Furthermore, particle size distribution was
determined with a particle size analyzer (Microtrac S3500, Micro-
trac Inc., USA). The pooled sample's percentage of coarse sand
(2.0e0.25 mm), fine sand (0.25e0.05 mm), and silt plus clay
(<0.05 mm) was subsequently calculated per air-dried soil weight.

2.5. Statistical analyses

For the three functional groups of beetles, we considered their
activity abundance (number of individuals in each plot), and spe-
cies richness (number of species in each plot) as response variables.
The explanatory variables included four plant-related parameters,
which were shrub cover (SC), shrub height (SH), herbaceous plant
biomass (HPB), and herbaceous species richness (HSR). We addi-
tionally included three soil-related parameters as explanatory
variables, which were soil pH (pH), soil sand (coarse plus fine sand)
content (SSC; as a proxy of soil texture), and soil electrical con-
ductivity (EC; as a proxy of soil salinity). One-way ANOVAs were
used to test for the effects of habitat type on the response and
explanatory variables. Post-hoc Tukey's tests were used for multi-
ple comparisons, with a significance level of P < 0.05. Data were log
(x þ 1)-transformed prior to analysis, in order to meet the ANOVA
assumptions of normality and equal variance. All analyses were
conducted using SPSS Statistics forWindows, Version 17.0 (Chicago,
SPSS Inc.).

Structural equation modeling (SEM) was used to quantify the
magnitude and direction (i.e., positive or negative) of the direct and
indirect effects of the seven explanatory variables on the response
variables of the three beetle functional groups (Grace, 2006). A
direct effect indicates how much a response variable changes in
response to changes in an explanatory variable, with all other
explanatory variables being controlled for. This corresponds to the
standardized direct path coefficient in the SEM model (Shipley,
2009). An indirect effect indicates how much an explanatory vari-
able influences a response variable by affecting one or more other
explanatory variables. This corresponds to the standardized indi-
rect path coefficients in the SEM model. As a result, the total effect
of an explanatory variable is the sum of its indirect and direct ef-
fects, which corresponds to the net effect, or trade-off between the
direct and indirect effects. With the results of the individual ana-
lyses, an SEM diagramwas generated, depicting the magnitude and
direction of all significant direct and indirect effects on the activity
abundance and species richness per functional group. These ana-
lyses were performed using the AMOS version 17.0 software
package (Arbuckle, 2007).

Furthermore, variance partitioning was used to quantify the
relative contribution of the vegetation and soil variables to the
variation in the beetle functional group composition, and to iden-
tify key drivers of changes in these compositions. First, separate
variance partitioning analyses were performed, in order to assess
the relative contribution of each of the seven explanatory variables.
The relative contribution of each explanatory variable was deter-
mined by considering all other explanatory variables as covariates.

Second, to quantify the relative importance of changes in
vegetation and soil, the seven explanatory variables were grouped
into two groups: one for vegetation (SC, SH, HSR, and HPB), and one
for soil (pH, SSC, and EC). Subsequently, separate variance parti-
tioning analyses for these two groups were conducted to determine
their relative contribution (i.e., conditional effects) to the variation
in beetle functional group assemblage composition. The condi-
tional effects of the vegetation variables were calculated by
considering the soil variables as covariates, and vice versa. The
significance of both the individual explanatory variables and the
conditional effects was tested by a permutation test, performed on
the relevant pRDA. Data were log (x þ 1)-transformed before
analysis. These analyseswere performed using the CANOCO version
5.0 software package (Ter Braak and �Smilauer, 2012).

3. Results

3.1. Variations in vegetation, soil properties, and beetle functional
groups

The conversion of NG to HAP, TRP, andMP resulted in significant
changes in vegetation and soil properties (Table 1). Shrub cover and
height were significantly lower in the NG habitat than in the HAP,
TRP, and MP sites, respectively. The number of herbaceous plant
species in NG sites was similar to that in HAP sites, but significantly
higher than for TRP, and lower than for MP sites. Furthermore,
herbaceous plant biomass was consistently significantly higher in



Table 1
Vegetation variables, soil variables, and the performance of three beetle functional groups in natural grassland (NG), and after conversion from natural grassland to planted
stands of pure Haloxylon ammodendron plantation (HAP), pure Tamarix ramosissima plantation (TRP), and mixed plantation of both shrub species (MP). F represents the F-
values from one-way ANOVAs performed on the variables for the different habitats.

Variables NG HAP TRP MP F

Vegetation and soil variables
Shrub cover (%) 15.8 ± 0.6c 51.0 ± 3.2a 57.4 ± 3.7a 30.3 ± 0.9b 123.59***

Shrub height (m) 0.9 ± 0.1c 2.2 ± 0.2b 3.2 ± 0.1a 2.1 ± 0.1b 87.94***

Herbaceous species richness (number of species m�2) 2.1 ± 0.1b 1.9 ± 0.1b 1.4 ± 0.1c 4.3 ± 0.1a 110.46***

Herbaceous plant biomass (g m�2) 67.3 ± 5.6a 31.4 ± 2.3c 1.5 ± 0.3d 44.1 ± 2.5b 329.98***

Soil pHwater 9.05 ± 0.04a 8.7 ± 0.1b 8.4 ± 0.1c 8.8 ± 0.1ab 16.12***

Soil sand content (2e0.05 mm, %) 98.8 ± 0.1a 98.7 ± 0.1a 97.3 ± 0.2b 96.7 ± 0.2b 55.33***

Soil electrical conductivity (ms cm�1) 108.9 ± 4.7c 264.5 ± 19.6b 411.3 ± 33.5a 244.2 ± 15.6b 109.57***

Performance of beetle functional groups
Detritivores
Number of individuals plot�1 52.0 ± 4.7a 1.8 ± 0.2b 1.3 ± 0.2b 50.5 ± 3.1a 509.95***

Number of species plot�1 6.0 ± 0.0a 4.2 ± 0.2b 4.3 ± 0.2b 6.4 ± 0.2a 30.88***

Herbivores
Number of individuals plot�1 1.8 ± 0.1b 0.7 ± 0.2c 1.2 ± 0.2bc 3.8 ± 0.5a 28.77***

Number of species plot�1 2.9 ± 0.1ab 2.6 ± 0.2b 3.4 ± 0.2a 2.8 ± 0.1b 5.49**

Predators
Number of individuals plot�1 0.7 ± 0.1a 0.1 ± 0.1b 0.2 ± 0.1b 0.1 ± 0.1b 26.14***

Number of species plot�1 2.0 ± 0.0a 1.2 ± 0.3a 2.0 ± 0.5a 1.1 ± 0.4a 2.31n.s.

Means (±standard error) with different letters in each variable indicate significant differences among habitats (***P < 0.001, **P < 0.01, n.s.P > 0.05).

Table 2
Results from structural equation models (SEM), quantifying the magnitude and di-
rection (positive or negative) of direct, indirect, and total effects of the seven
explanatory variables on the activity abundance and species richness of the sampled
carabid and tenebrionid beetle functional groups. Explanatory variables included
shrub cover (SC), shrub height (SH), herbaceous plant biomass (HPB), herbaceous
species richness (HSR), soil pH (pH), soil sand content (SSC), and soil electrical
conductivity (EC). Significant direct effects (P < 0.05) are shown in bold.

Explanatory Effects on activity abundance Effects on species richness

Variables Direct Indirect Total Direct Indirect Total

Detritivorous beetles
SC �0.473 �0.356 �0.829 �0.179 �0.124 �0.303
SH �0.061 �0.713 �0.774 �0.422 �0.167 �0.589
HPB �0.094 0.840 0.746 �0.272 0.833 0.561
HSR 0.468 0.250 0.718 0.510 0.105 0.615
SSC �0.251 0.165 �0.086 �0.294 0.076 �0.218
pH �0.067 0.733 0.666 �0.210 0.662 0.452
EC �0.439 �0.322 �0.761 �0.441 �0.125 �0.566
Herbivorous beetles
SC �0.030 �0.356 �0.386 �0.073 0.128 0.055
SH �0.367 0.072 �0.295 �0.405 0.527 0.122
HPB �0.477 0.817 0.340 �1.336 0.797 �0.539
HSR 0.584 0.015 0.599 0.205 �0.353 �0.148
SSC �0.291 �0.072 �0.363 �0.066 �0.138 �0.204
pH 0.184 0.134 0.318 0.205 �0.323 �0.118
EC �0.151 �0.130 �0.281 �0.071 0.237 0.166
Predatory beetles
SC �0.819 0.134 �0.685 0.062 �0.238 �0.176
SH 0.001 �0.645 �0.644 �0.681 0.418 �0.263
HPB �0.540 0.782 0.242 �1.015 0.887 �0.128
HSR �0.282 0.012 �0.270 0.092 �0.290 �0.198
SSC 0.137 0.264 0.401 0.101 0.036 0.137
pH 0.243 0.239 0.482 0.349 �0.125 0.224
EC �0.088 �0.498 �0.586 0.066 �0.280 �0.214
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NG plots than in the other ones. Soil pH was consistently highest in
the NG plots, whereas soil sand content in NGwas similar to that in
the HAP plots, and higher than in the TRP and MP plots. Finally, soil
salinity was significantly lowest in the NG habitat (Table 1).

In addition, the conversion of NG to the three shrub plantations
influenced the performance of the three beetle functional groups,
although the effects varied among the functional groups, and be-
tween the performance parameters (activity abundance and spe-
cies richness). Overall, converting NG to HAP, TRP, and MP had a
stronger influence on beetle activity abundance than on the species
richness, across the functional groups. Moreover, converting NG to
HAP and TRP had a stronger negative effect on the beetle perfor-
mance variable than a conversion to MP did (Table 1).

3.2. Direct and indirect effects of vegetation and soil variables on
beetle functional groups

The SEM model results showed that SC had a significant nega-
tive direct effect on activity abundance with a standardized path
coefficient of �0.68 (Table 2). HPB had a significant negative direct
effect on activity abundance, and it indirectly affected abundance
via positive effects on SC and pH (Fig. 2). SH and EC had no sig-
nificant direct effects on activity abundance, but SH indirectly
affected abundance via a positive effect on HPB, and a negative
effect on SC. Furthermore, EC indirectly affected beetle abundance
via a positive effect on HPB, and negative effects on SC and pH
(Fig. 2). Overall, the net effects of SC, SH, EC, and HSR on activity
abundance were negative, whereas those of pH, SSC, and HPB on
activity abundance were positive (Table 2). Furthermore, the SEM
model for predator species richness showed that HPB and SH had a
significant negative direct effect on species richness, but HPB
indirectly affected species richness via positive effects on SH and
pH. SH additionally indirectly affected richness via a positive effect
on HPB, and a negative effect on pH (Fig. 2). Except for pH and SSC,
all net effects of the soil and plant variables on species richness
were negative (Table 2).

For the herbivores, the SEM models showed that HSR had a
significant positive direct effect on activity abundance, with a
standardized path coefficient of 0.58 (Table 2). HPB had a significant
negative direct effect, and a positive indirect effect via its positive
effects on SH and HSR, and a negative effect on SC (Fig. 2). This
resulted in a net positive effect of HPB on abundance (Table 2). SH
had a significant negative direct effect on abundance, but indirectly
affected abundance via a negative effect on SC, and a positive effect
on HPB (Fig. 2). SC had no significant direct effect on abundance, but
indirectly influenced herbivore abundance through a negative ef-
fect on SH, and a positive effect on HPB, with net negative effect of
SC on abundance as a result (Table 2). Furthermore, the SEMmodel
for herbivore species richness showed a strong negative direct ef-
fect on species richness from HPB. Although the latter also indi-
rectly affected richness via a positive effect on SH, there was a net
negative effect of HPB on richness (Fig. 2, Table 2). SH had a
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significant negative direct effect on species richness, but because it
indirectly affected richness via a positive effect on HPB, the net
effect of SH on richness was positive as a result. The remaining
variables had no significant direct effects on species richness, but
indirectly affected species richness by influencing other variables
(Table 2, Fig. 2).

The SEM model for detritivore activity abundance showed that
HSR had a significant positive direct effect, and a positive indirect
effect on abundance via a positive effect on SC (Fig. 1). SC and EC
had significant negative direct effects on abundance, but SC also
indirectly affected abundance via a negative effect on EC. EC itself
also indirectly affected abundance via a negative effect on SC
(Fig. 2). The other four variables (SH, HPB, SSC, and pH) had no
significant direct effects on abundance. However, SH indirectly
affected abundance via a negative effect on SC and EC; HPB indi-
rectly affected abundance via positive effects on SC, HSR, and EC;
SSC indirectly affected abundance via a positive effect on EC and a
negative effect on HSR; and pH indirectly affected abundance via
positive effects on SC and EC (Fig. 2). Overall, the net effects of SC,
SH, EC, and SCC on detritivore activity abundance were negative,
whereas those of HPB, HSR, and pH were positive (Table 2).
Furthermore, for detritivore species richness, the SEM model
showed that HSR had a significant positive direct effect, and a weak
positive indirect effect on species richness, resulting in a positive
net effect of HSR on richness (Table 2). Conversely, SH and EC had a
significant negative direct effect on richness, but SH also indirectly
affected richness via a negative effect on EC. EC indirectly affected
richness via a negative effect on SH, resulting in an overall net
negative effect of SH and EC on detritivore species richness (Fig. 2;
Table 2). SC, HPB, SSC, and pH had no significant direct effects on
richness, but they indirectly affected richness by influencing other
variables. In sum, the net effects of SH, EC, SC, and SCC on detriti-
vore species richness were negative, whereas those of HSR, HPB,
and pH on richness were positive (Table 2).

3.3. Relative effects of vegetation and soil variables on beetle
functional groups

Variance partitioning analyses revealed that 91% of the variation
in the species composition of detritivorous beetles was explained
by the seven variables. More specifically, 66% was explained by SC,
11% by HSR, 6% by the remaining five variables SH, HPB, pH, SSC,
and EC, and 8% by interactions between these variables (Table 3).
For herbivorous beetles, the seven explanatory variables together
accounted for 67% of the variation in species composition. For this
group, 28% was explained by SC, 8% by HSR, 5% by SH, 4% by the
remaining four variables HPB, pH, SSC, and EC, and 22% by the in-
teractions between the variables (Table 3). Finally, for predatory
beetles, the seven variables together accounted for 75% of the
variation in species composition. SH explained 35% of the variance,
10% was explained by SC, 8% by HSR, 2% by the remaining four
variables HPB, pH, SSC, and EC, and 19% by the interactions between
these variables (Table 3). Overall, SC and HSR were the most
important predictors of the species composition of detritivores and
herbivores, whereas SH, SC, and HSR were the most important
predictors of predator species composition.

The variance partitioning analyses furthermore revealed that
changes in vegetation explained 34%, 27%, and 21% of the variation
in species composition of detritivores, predators, and herbivores,
respectively. In contrast, changes in the soil explained only 4%, 2%,
and 1%, for these groups respectively (Table 4). Moreover, vegeta-
tionesoil interactions accounted for 52% of the variation in detri-
tivore composition, which was 44% for the predator group, and 37%
for the herbivores. This indicates that the interactive effect between
vegetation and soil variables contributed more to the composition
variation in these beetle functional groups than changes in vege-
tation or soil alone (Table 4).

4. Discussion

In this study, we investigated the effects of land-use induced
changes in vegetation and soil conditions on the composition and
diversity of three carabid and tenebrionid beetle functional groups,
in a temperate arid region in northwestern China. Overall, our re-
sults showed that the three beetle functional groups all responded
differently to the land-use induced changes in plants and soils.
Below, we discuss our findings and their implications for predicting
the impacts of future anthropogenic environmental change on
beetle communities.

4.1. Effects of vegetation changes on beetle functional groups

The changes in vegetation attributes exerted a greater effect on
the beetle functional group species composition than changes in
soil attributes, even though the magnitude of the vegetation effects
differed among the functional groups. Vegetation variation is
therefore a key environmental driver of beetle community struc-
ture in our studied region. This finding is consistent with those of
previous studies that demonstrated that plant community
composition, productivity, and diversity are the primary factors
affecting arthropod abundance, diversity, and community compo-
sition (Andow, 1991; Axmacher et al., 2009; Barton et al., 2016;
Borer et al., 2012; Botha et al., 2015; Brose, 2003; Haddad et al.,
2009; Harvey et al., 2008; Schaffers et al., 2008; Siemann, 1998;
Wenninger and Inouye, 2008; Woodcock and Pywell, 2009).

One explanation for the significant vegetation-induced bottom-
up effects on arthropod diversity and community composition is
that sites with a high number of plant species typically have greater
plant biomass and litter. Therefore, they can provide more food
resources, and consequently support greater assemblages of her-
bivorous and detritivorous arthropods. Such assemblages support a
higher abundance of predatory arthropods as a result (Scherber
et al., 2010). Another explanation is that changes in vegetation
characteristics affect arthropod diversity and community compo-
sition indirectly, through other pathways or mechanisms, such as
changing microclimatic conditions and soil properties (Breshears
et al., 1998; Hansen, 2000; Schaffers et al., 2008). The relative
importance of the four vegetation variables in this study varied
considerably in how much they contributed to the species
composition variation among the beetle functional groups. Because
shrub cover and herbaceous plant diversity explained most of the
observed compositional variation in both detritivorous and her-
bivorous beetles, these vegetation variables are probably the best
predictors of species composition for these two functional groups.
For predatory beetle species composition variation, a much larger
and significant proportion was accounted for by shrub height and
cover. This implies that these two vegetation variables are the most
important predictors of predatory beetle community composition.

4.2. Effects of vegetationesoil interactions on beetle functional
groups

Our variance partitioning analyses for all three functional beetle
groups showed that large amounts of the composition variation
(44e59%) were accounted for by interactions between the vege-
tation and soil variables. These amounts were especially largewhen
compared with the amount explained by vegetation (21e34%) or
soil (1e4%) alone. Several studies have recognized the importance
of interactions among environmental variables in structuring plant
and animal populations and communities (Crist, 2008; Farrington
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Table 3
Variation partitioning to quantify the relative contributions of the seven explanatory
variables to the variation in species composition of the three carabid and tenebri-
onid beetle functional groups (inertia is the measure of variation). The explanatory
variables consisted of shrub cover (SC), shrub height (SH), herbaceous plant biomass
(HPB), herbaceous species richness (HSR), soil pH (pH), soil sand content (SSC), and
soil electrical conductivity (EC). Significant effects (P < 0.05) are shown in bold.

Explanatory variables Inertia (adj) % Of all variation F P

Detritivores (all variation ¼ 0.912)
SC 0.604 66.23 89.3 0.001
SH 0.003 0.33 0.9 0.402
HPB 0.013 1.43 4.9 0.014
HSR 0.100 10.96 25.3 0.001
pH 0.004 0.44 1.7 0.180
SSC 0.013 1.43 4.6 0.022
EC 0.025 2.74 7.6 0.006
Residual 0.072 7.89 16.2 0.001
Total inertia 0.834 91.45 42.2 0.001
Herbivores (all variation ¼ 0.670)
SC 0.189 28.21 24.7 0.001
SH 0.031 4.63 5.7 0.001
HPB 0.001 0.15 0.2 0.918
HSR 0.051 7.61 8 0.001
pH 0.010 1.49 2.1 0.113
SSC 0.017 2.54 3.4 0.022
EC 0.001 0.15 0.1 0.998
Residual 0.148 22.09 19.3 0.001
Total inertia 0.448 66.87 8.1 0.001
Predators (all variation ¼ 0.749)
SC 0.076 10.15 15.2 0.001
SH 0.264 35.25 30.3 0.001
HPB 0.012 1.60 2.7 0.078
HSR 0.063 8.41 8.8 0.004
pH 0.003 0.40 0.7 0.538
SSC 0.001 0.13 0.2 0.840
EC 0.001 0.13 0.1 0.907
Residual 0.141 18.82 28.2 0.001
Total inertia 0.561 74.90 11.9 0.001
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et al., 2009; Hegland et al., 2010; Mandle and Ticktin, 2012; Mandle
et al., 2015). Our study found weak soil-induced bottom-up effects,
but strong vegetationesoil interaction effects on beetle community
composition. This suggests that although altered physicochemical
soil properties had few direct impacts on the beetle composition,
such changes can affect the growth, productivity, and reproductive
success of individual plants. Through this influence, these soil
changes can consequently affect plant community composition and
diversity, with cascading effects on beetle community composition
(Janssens et al., 1998; Van der Putten et al., 2013). In terrestrial
ecosystems, the interactions between vegetation-induced bottom-
up control processes and soil-induced bottom-up control processes
are thought to occur at different spatial scales. Quantifying these
interactive effects on the beetle communities’ structures can help
to reveal the assembly rules of beetle communities, and to predict
the consequences of vegetation and soil changes on beetle com-
munity structure.

The SEM results revealed the complex mechanisms through
which vegetation and soil variables interact, both directly and
indirectly, in their effects on the beetle abundance and diversity
patterns per functional group. Conventional regression models are
unable to reveal these mechanisms (Van den Berg et al., 2011). Our
data showed that the relative strength and direction of the direct
and indirect effects of vegetation and soil variables differed among
functional groups of ground beetles, as well as their performance
measures (abundance and diversity). For example, the changes in
detritivore activity abundance were jointly shaped by the direct
effects of HSR, SC, and EC, along with the indirect effects of SH, HPB,
and pH, through their impacts on other explanatory variables. The
changes in herbivore activity abundancewere jointly shaped by the
direct effects of HSR, SH, and HPB, along with the indirect effects of
HPB, through the impacts of HPB on other explanatory variables.
The changes in predator activity abundance were mostly driven by
the direct effects of SC and HPB, as well as the indirect effects of
HPB, SH, and EC, through their impacts on other explanatory vari-
ables. Overall, shrub cover, herbaceous species richness, and soil
electrical conductivity were the most important direct drivers of
the activity abundance of the detritivorous beetle assemblage. For
the herbivorous beetle assemblage, herbaceous species richness,
herbaceous plant biomass, and shrub height were the most
important direct drivers of the activity abundance. Finally, shrub
cover and herbaceous plant biomass were the key direct drivers of
the activity abundance of the predatory beetles.
4.3. Effects of plant diversity on beetle community assembly

The diversity of herbaceous plant species had a positive direct
and positive net effect, in spite of negative indirect effects, on the
activity abundance and species richness of detritivorous beetles.
Thus, detritivore abundance and diversity increased with higher
herbaceous plant diversity. Similarly, the diversity of herbaceous
plant species had a positive direct effect, as well as a positive net
effect, on the activity abundance of herbivorous beetles. This
confirmed the theory that higher herbaceous plant diversity can
support a higher activity abundance of herbivores. However, con-
trary to what we expected, herbaceous plant diversity had a small,
but significant, negative direct and negative net effect on the
Fig. 2. Structural equation models (SEM) displaying the magnitude and direction of direct
species richness of the sampled carabid and tenebrionid beetle functional groups (detritiv
shrub height (SH), herbaceous plant biomass (HPB), herbaceous species richness (HSR), soil p
arrow lines is proportional to the standardized direct path coefficients (see legend for scale)
significant indirect effects (P < 0.05) of the seven explanatory variables on the response var
path coefficients (also see legend for scale).
activity abundance of predatory beetles. We also found a very weak
positive direct effect, and a weak negative net effect, of herbaceous
plant diversity on species richness of predatory beetles, suggesting
that predator diversity was largely unaffected by herbaceous plant
diversity. This result is consistent with that of a study in the North
China Plain, which reported that the activity abundance of small
and omnivorous carabid beetles in agricultural landscapes was
significantly and positively correlated with plant species diversity
(Liu et al., 2015). However, for predatory carabid activity abun-
dance, their study found no significant relationship with plant
species diversity. The observed negative relationship between
predatory beetle activity abundance and herbaceous plant diversity
is also in accordance with the results of Koricheva et al. (2000). In
their grassland ecosystem study, a negative relationship between
herbaceous plant diversity and predatory arthropod activity
abundance was also reported.

Our observed negative correlation between herbaceous plant
diversity and predatory beetle abundance and diversity does not
support the Enemies Hypothesis. This hypothesis states that plant
species diversity is positively associated with predatory arthropod
abundance (Root, 1973; Russell, 1989). Nevertheless, the positive
correlations of vegetation diversity with the other two functional
groups, the detritivorous and herbivorous beetles, do support this
and indirect effects of the seven explanatory variables on the activity abundance and
ores, herbivores, and predators). The explanatory variables included shrub cover (SC),
H (pH), soil sand content (SSC), and soil electrical conductivity (EC). The width of solid
. Significant direct effects are marked with * (P < 0.05). Dashed arrow lines indicate all
iables, and the width of the dashed lines is proportional to their standardized indirect



Table 4
Variation partitioning to quantify the relative contribution of vegetation, soil and their interaction to the variation in species composition of the sampled three carabid and
tenebrionid beetle functional groups (inertia is the measure of variation). Significant effects (P < 0.05) are shown in bold.

Fraction Inertia (adj) % Of variation explained % Of all variation df MS F P

Detritivores
Vegetation 0.337 37.8 33.7 4 0.080 26.1 0.001
Soil 0.038 4.3 3.8 3 0.014 4.7 0.004
Interaction between vegetation and soil 0.516 57.9 51.6 42.2 0.001
Total inertia 0.892 100 89.2 7 0.131
All variation 1.000 e 100 35
Herbivores
Vegetation 0.209 35.6 20.9 4 0.060 5.1 0.001
Soil 0.011 1.9 1.1 3 0.015 1.3 0.279
Interaction between vegetation and soil 0.367 62.5 36.7 8.1 0.001
Total inertia 0.587 100 58.7 7 0.096
All variation 1.000 e 100 35
Predators
Vegetation 0.270 39.4 27.0 4 0.070 7.9 0.001
Soil 0.020 2.9 2.0 3 0.003 0.3 0.937
Interaction between vegetation and soil 0.436 63.6 43.6 11.9 0.001
Total inertia 0.686 100 68.6 7 0.107
All variation 1.000 e 100 35

J.-L. Liu et al. / Journal of Arid Environments 128 (2016) 80e9088
hypothesis.
Overall, the lack of a significant positive correlation between

predatory beetle abundance and diversity and herbaceous plant
diversity may be explained by the poor habitat quality of our
studied ecosystem. A resource-poor habitat like a desert is unable
to support enough herbivores and detritivores as food resources to
sustain predator populations (Liu et al., 2015). Thus, the effects of
plant diversity on predatory beetle diversity are masked (Scherber
et al., 2010; Zhang and Adams, 2011). Another possible explanation
is that higher plant diversity can potentially support a higher
density of herbivorous arthropods in natural ecosystems, which
might also reduce the predators’ overall foraging time and, hence,
their recorded activity abundance (Schuldt et al., 2011). Our study
highlights the existence of the complex interactions between her-
baceous plants, detritivorous beetles, herbivorous beetles, and
predatory beetles inhabiting this simple desert ecosystem. We
therefore suggest that future research should explore these re-
lationships with a manipulative approach.
5. Conclusions

The present study substantially contributes to our understand-
ing of the underlying impacts of land-use change induced alter-
ations of vegetation and soil conditions on the composition and
diversity of different beetle functional groups. The vegetation and
soil variables that we examined played contrasting roles in struc-
turing the local communities of detritivorous, herbivorous, and
predatory beetles. Altered vegetation conditions had stronger
bottom-up effects on beetle species composition than altered soil
conditions. Moreover, the interactive effects of vegetation and soil
variables accounted for most of the observed variation in beetle
functional group composition. Shrub cover and herbaceous plant
diversity were the best predictors of species composition of detri-
tivorous and herbivorous beetle assemblages, whereas for the
predatory beetles, shrub height and cover were the best. Bottom-up
effects of vegetation and soil on beetle activity abundance and di-
versity were initiated via both direct and indirect effects. The
strength of these effects differed among the three functional
groups. Overall, the findings of this study can help reveal the as-
sembly rules of natural beetle communities, and may be used to
design an effective strategy for conserving beetle biodiversity and
their ecological functions.
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