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a b s t r a c t

Identifying, recording and monitoring land cover change on the Earth's surface is a complex procedure.
Spatio-temporal modelling is an effective approach to simplifying and simulating the process. Existing
spatio-temporal modelling methods are typically based on either, an overlay of multi-temporal land
cover maps, or temporal trend analysis of spatial pattern indices. Consequently, an understanding of the
spatial dynamics of any changes is either fragmental in the former case, or invisible in the latter case, due
to the lack of adequate geographical location information.

In the arid zone of western China, a widely accepted belief is that rapid farmland expansion and the
subsequent abandonment of the farms, or their mis-management, would lead to soil salinisation and
desertification. In order to better understand the spatio-temporal pattern of farmland change, this paper
proposes an integrated approach that combines the two methods of pixel-based trajectory analysis and
class-level spatial pattern metrics. Multi-temporal remote sensing images were collected beginning in
1994, a year that captured the initial effects of the period of rapid farmland expansion. Historical change
trajectories were established for each pixel and categorized according to change types (i.e. expanding or
shrinking). The spatial dynamics of farmland change can then be illustrated by mapping the change
trajectory classes. Spatial patterns of farmland change were quantified by employing distribution-related
landscape metrics, such as indices of interspersion (IJI), connectivity (COHESION) and isolation (ENN), to
analyse farmland development models of the two river basins in the study area. Shape indices, including
overall shape (nLSI) and edge shape (FRAC), were applied to appraise the structural stability of the
farmlands over time. Results indicate that, over the past two decades, the area subject to farmland
expansion was significantly larger than that experiencing farmland abandonment. The relatively rapid
expansion of farmland exhibited a concentrated pattern, and generally followed a layer-based devel-
opment model. The study showed that the proposed research method effectively visualized and quan-
tified the spatio-temporal dynamics of farmland change.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Land use and cover change (LUCC) is increasingly recognized as
a sensitive indicator of earth systems (Zhou et al. 2008a). In the arid
zone of western China, rapid and frequent LUCC has been observed
around the oases where the majority of the regional population is
concentrated. The observed changes largely reflect the impact of
human activities on the fragile natural environment (Turner et al.,
1994). Changes became most noticeable from the early 1990s
when local governments launched and supported an agricultural
development plan (Hu and Li, 2010). It is a commonly held belief
that the rapid expansion of farmland (irrigated land, primarily
cotton fields) and its subsequent abandonment or neglect would
lead to increasing soil salinity and ultimately to desertification
(Zhang et al., 2003; Ma et al., 2011). Thus, the ability to monitor and
model farmland change around these oases is essential both for
determining the environmental carrying capacity and for sustain-
ing regional economic development.

Over recent decades, remotely sensed data has beenwidely used
for detecting and monitoring land cover change, primarily because
of the large areal coverage that can be achieved and the rapid
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response to surface changes (Singh, 1989; Lu et al., 2004). Typically,
land cover change detection methods focus on determining
whether a change has occurred, the destination of the change, and
how the change has evolved over time (MacLeod and Congalton,
1998; Sui et al., 2008). The core objective of these studies is to
fully understand the process of LUCC.

In order to describe and simulate a change process, most change
detection studies employ spatio-temporal modelling methods.
These procedures comprise two main components e the temporal
and the spatial characteristics. With regard to the temporal aspects,
temporal trajectory analysis has been shown to be a useful tool,
when compared to bi-temporal change detection, for long-term
change detection studies (Coppin et al., 2004; Kennedy et al.,
2007; Zhou et al., 2008a, 2008b; Griffiths et al., 2010), because
LUCC is a complex and sequential process. With regard to the
spatial aspects, spatial pattern indices have been devised to
describe spatial features (Lambin et al., 2003; Narumalani et al.,
2004; Lin et al., 2010; Fan and Myint, 2014). A variety of indices
have been developed and employed by different researchers, pri-
marily because quantitative methods have the ability to clearly
resolve complex natural phenomena by assigning values. Moreover,
comparisons between these values can provide further elucidation
(Turner et al., 2001). There are two general methods for spatio-
temporal modelling. The first method is based on temporal tra-
jectory analysis of time-series land-cover maps (e.g. Amiri et al.,
2009; Long et al., 2009; Li et al., 2013b). Change dynamics are
retrieved from a comparison of individual observations. In addition,
a likely condition of land cover at a specified time in the future can
be projected based on the antecedent states, e.g., the Cellular
Automata Model of Li and Yeh (2000) and of Herold et al. (2003),
the Markov Chain Model of Petit et al. (2001), the CLUE-S Model of
Verburg et al. (2002), and the Logistic Regression Model of Huang
et al. (2009). The second method is based on temporal trend
analysis of spatial pattern indices. Change dynamics are retrieved
by measuring the variation of quantitative indices over time.
Among the various indices available, landscape metrics introduced
from landscape ecology are widely applied to evaluate the inci-
dence of changes in space (e.g. Seto and Fragkias, 2005; Sakamoto
et al., 2006; Kong et al., 2009; Huang et al., 2014).

Numerous research studies have reported the application of
temporal trajectory analysis to spatial units such as pixels or small
patches. For example, Crews-Meyer (2002, 2004) employed land-
scape metrics to assess the stability of agricultural land by adopting
farmland patches as the basic analytical unit. Southworth et al.
(2002) applied landscape metrics to pixel-based change trajec-
tories to assess the degree of fragmentation of forest land cover
over three epochs. Zhou et al. (2008b) and Zhou and Sun (2010)
developed these earlier studies by grouping pixel-based change
trajectories into several categories in order to analyse the driving
forces behind the observed changes. These studies attempted to
link spatial patterns and the processes of land cover change by
combining the procedures of pixel-based trajectory analysis and
landscape metrics.

With regard to the existing spatio-temporal modellingmethods,
temporal dynamics are well understood. In contrast, spatial dy-
namics are fraught with difficulties. They are either, only partially
revealed by the analysis of time-stamping spatial objects, or not
revealed by the trajectory trend analysis of spatial pattern indices,
due primarily to the lack of geographical location information. It is
extremely difficult to directly perceive the process of change from
the viewpoint of spatio-temporal visualization. Although pixel-
based or patch-based approaches are capable of retaining the
locational information of a change, the descriptive judgement of
any change trend is necessarily empirical. Further, interpretation of
landscape metrics and their ecological significance remains a
challenge for land cover change studies (Li and Wu, 2007).
In order to develop a comprehensive understanding of the

temporal and spatial aspects of farmland change in the arid zone of
western China, and for a more complete understanding of the
farmland expansion processes, some fundamental research ques-
tions need to be addressed, namely: (1) What are the spatio-
temporal characteristics of farmland change in the region? (2)
Can a particular changemodel of farmland development/expansion
be identified? (3) How can the change model be expressed using
quantitative methods?

With the research objective of simulating the spatio-temporal
process of farmland change, this study aims to develop an effec-
tive methodology for modelling the observed spatio-temporal
patterns, in particular to represent the spatial dynamics of the
changes. In addition, the study also attempts to evaluate the
structural stability of the farmlands, and to develop a farmland
expansion model using quantitative landscape metrics.

2. Methodology

The generic approach adopted in this study is based on the well-
established post-classification comparison method (Lillesand et al.,
2015), in which multi-temporal remote sensing images are indi-
vidually classified into land cover classes. By merging the identified
land cover classes into two general classes, namely, farmland and
others, pixel-based change trajectories can then be established to
track historical changes. Given that the process of farmland change
can be separated into slices by time stamp, the spatial dynamics of
the changes can be visualized by displaying the change segments,
which are themselves discriminated by the change trajectories. For
quantitative description and identification of the farmland devel-
opment model, changes of the spatial patterns is illustrated by
landscape metrics.

2.1. Study area and data

This study was conducted in Yuli County in the Xinjiang Uygur
Autonomous Region of western China (Fig. 1). Yuli County, which
covers an area of around 60,000 square kilometres, is located in the
lower reaches of the Tarim River, the longest inland river in China.
The Tarim River along with the Konqi River, which has its source in
Bosten Lake to the north, supply the majority of the water to this
arid region. These two rivers nurture a typical oasis environment on
the fringes of the Taklimakan Desert e the second largest desert in
the world. Together, the two rivers create a “green corridor” that
supports a large population. Consequently, the study area is one of
the most important areas of habitation in the arid zone of Xinjiang.
Since the mid-1990's, the region has witnessed the rapid devel-
opment of irrigated agriculture. Consequently, water abstraction in
the upper reaches of the two rivers has increased markedly,
resulting in a significant reduction in the water supply to the lower
reaches. The deteriorating ecological conditions have led to a
worsening living environment, with potentially disastrous conse-
quences for the fragile ecosystem.

Five images from four platforms were used to analyse long-term
farmland change in the area. These included multispectral images
from Landsat series satellites (Landsat-5 and Landsat-7), the Chi-
naeBrazil Environment and Resource Satellite (CBERS-02), and the
Environment and Disaster Monitoring/Forecast Micro-satellite (HJ-
1/A). The characteristics of the images are shown in Table 1.
Acquisition dates were selected to cover periods when there was a
large contrast between green vegetation and other land cover types
in order to assist feature identification during multispectral image
classification (Lillesand et al., 2015). Each image was initially pro-
cessed using systematic atmospheric and geometrical corrections.



Fig. 1. Location of the study area.
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Image-to-image registrations were then conducted. In this study,
the 2005 image was registered and geo-referenced to a 1:50,000-
scale topographical map. The other images were then registered to
the 2005 image, with geometric errors of less than half of a pixel.
Finally, the images were all resampled to a unified spatial resolu-
tion of 30 m.

2.2. Identification of land cover types

Given that the multi-temporal images used in the study were
from different platforms, the selected post-classification compari-
son method is considered to be an effective method of reducing the
impacts of radiometric variations that arise from different sensors.
The Maximum Likelihood Classifier (MLC) method was employed
to segregate the images into six land cover classes. These were
subsequently merged into two general cover types, namely
“farmland” and “others”. The overall accuracy and the kappa
Table 1
Characteristics of satellite images used in the study.

Satellite Sensor Spatial resolution (m) Acquisition date

Landsat-5 TM 30 25/9/1994
Landsat-7 ETM 28.5 17/9/2000
CBERS-02 CCD 19.5 15/9/2005
HJ-1/A CCD 30 06/9/2010
HJ-1/A CCD 30 07/8/2013
coefficient were then computed to evaluate the classification re-
sults. Because it was difficult to obtain historical reference data,
more than 700 samples for each acquisition date were randomly
selected from the original images and visually interpreted. This
procedure provided the reference data required for accuracy
assessment. To assess the accuracy of merged cover types, an
additional 200 samples were randomly selected using the same
procedure. All the images were independently classified and
assessed.
2.3. Establishment of change trajectory classes

Classified imageswere integrated into a Geographic Information
System (GIS) prior to establishing the farmland change trajectories.
The trajectory is defined as the sequence of changes of land cover
types. For example, a change trajectory on an individual pixel can
be specified as “otherse farmlande otherse farmlande others” to
specify a path of farmland change. In this study, each classified
image was converted into a binary image by assigning ‘1’ to
“farmland” pixels and ‘0’ to “others”. The binary images were then
merged with proper bit-offsets according to their acquisition dates
to create a “trajectory image” in which every possible change tra-
jectory could be identified by a unique value for each pixel.

The number of all possible trajectories is determined by the
number of classes (c) and the observation dates (n), designated as
cn. In this study, c ¼ 2 and n ¼ 5, thus the total number of possible
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change trajectories is 25 ¼ 32. This value is impractically large for
the visualization and analysis of simple farmland expansion/
abandonment. Therefore, the farmland change trajectories were
generalized into the four categories of “expansion”, “permanent
abandonment”, “ephemeral farmland” and “temporary abandon-
ment” using the following criteria:

(1) The pixel shall be identified as “farmland expansion”: if the
cover type had changed from “others” to “farmland” on a
particular observation date and had remained as “farmland”
for at least one subsequent observation.

(2) The pixel shall be identified as “permanent abandonment”: if
the cover type had changed from “farmland” to “others” on a
particular observation date and had remained as “others” for
at least one subsequent observation.

(3) The pixel shall be identified as “ephemeral farmland”: if the
cover type at the last observation was “farmland” and had
changed from “others” at the previous observation.

(4) The pixel shall be identified as “temporary abandonment”: if
the cover type at the last observation was “others” and had
changed from “farmland” at the previous observation.

In addition, two broad classes of farmland change path were
focused upon, namely stable farmland and permanently abandoned
farmland. Stable farmland is retrieved from the accumulation of
farmland expansion in the foregoing years until a particular
observation time-point. This means that once a parcel of land had
become farmland, it has not subsequently been transferred to other
land cover types. Permanently abandoned farmland is identified by
the same rule of accumulation.

2.4. Quantification of spatial patterns of farmland change

Landscape metrics, a quantitative tool for measuring spatial
patterns of land cover change, was introduced by ecologists in the
late 1980s (Krummel et al., 1987; O'Neill et al., 1988). Unlike
traditional geo-statistical indices such as Moran's I, which simply
describes a general spatial distribution pattern (i.e. clustered,
dispersed or random), landscape metrics measure spatial struc-
tures. Ecological applications of landscape metrics focus upon
landscapes, land cover types or individual patches. Depending
upon the specific objectives of the research project, landscape-
level, class-level or patch-level landscape metrics are applied
(Turner et al., 2001). Class-level metrics are considered to be
appropriate in this study because the research target is the incre-
mental change parts in the different years that were generated
from the categorical change trajectories. Also, because very few
indices contain unique information, and others, among the more
than a hundred landscape metrics will be redundant (Ritters et al.,
1995), five representative indices were selected. Given that the
description of the spatial dynamics of change was the research
objective, those chosen related to spatial configuration. The
selected indices are Interspersion and Juxtaposition Index (IJI), Patch
Cohesion Index (COHESION) and Area-weighted Mean Euclidean
Nearest-Neighbour Distance (ENN_AM), which are used to describe
a general farmland development model, and Normalized Landscape
Shape Index (nLSI) and Area-weighted Mean Fractal Dimension Index
(FRAC_AM), which are used to present the spatial configuration
details of the model. Calculation of the selected landscape metrics
was carried out using FRAGSTATS 4.1, a program developed for
landscape pattern analysis (McGarigal et al., 2012).

2.4.1. Identification of the farmland development model
Spatial dynamics of a change can be illustrated by the spatial

distribution of different farmland change trajectory classes.
Therefore, three landscape metrics related to spatial distribution
were adopted, namely IJI, COHESION, and ENN_AM.

The IJI is a relative index that represents “the observed level of
interspersion as a percentage of the maximum possible given the
total number of patch types” (McGarigal et al., 2012). High values of
IJI indicate a better-developed interspersion of a particular class
among the other classes; Consequently, the class with the highest
value is referred to as having an interspersed distribution pattern,
i.e. a “salt and pepper” mixture. In contrast, a lower value indicates
that the class in question is poorly interspersed, with less items in
the class adjacent to other classes; Thus, most of the classes with
lower values usually imply a layer distribution.

However, it should be noted that using IJI alone may not be
sufficient to distinguish a farmland development model. As shown
in Fig. 2, it is difficult to discriminate between cases (b) and (c)
because they both show lower IJI values for all classes compared to
case (a). Therefore, supplementary measures are necessary. In this
study COHESION and ENN_AM were selected to measure the con-
nectivity and the distance between patches of the same class to
distinguish the tier/circular (case (b)) and multi-directional (case
(c)) spatial patterns of farmland expansion as illustrated in Fig. 2.

2.4.2. The stability of farmland in spatial configurations
Within a fragile ecosystem, the stability of land cover is

commonly considered to be a definitive criterion for judging if a
change is, or is not, sustainable. To measure the stability of farm-
land in terms of its shape, two shape-related metrics were
employed. These were nLSI and FRAC_AM, which describe the
overall shape and the edge shape of the farmland, respectively.

A fundamental assumption is that fragmentation will cause the
overall shape of a farmland patch to become more complex.
Aggregated shape describes a closer connection among patches,
which means that the status of farmland is more stable. Fig. 3
shows four possible situations with different overall shapes. Fig. 4
illustrates three cases with different degrees of complexity.

3. Results

3.1. Accuracy assessment of farmland identification

The initial classification exercise yielded overall accuracies
ranging from 87.5% to 93.8%, and kappa coefficients ranging from
0.85 to 0.93. After merging the final two general classes, satisfac-
tory classification accuracies were exhibited, with overall accu-
racies ranging from 93.8% to 98.1%, and kappa coefficients ranging
from 0.88 to 0.96. For the final two classes, the resulting accuracy of
the “farmland” class is better than that of the “others”, possibly
because native vegetation was mis-classified into the farmland
class.

3.2. Mapping spatial dynamics of farmland change

Fig. 5 illustrates the spatial dynamics of farmland change in Yuli
County from 1994 to 2013, with the change trajectories of interest
highlighted. Fig. 6 displays changes in the spatial configurations of
stable and permanently abandoned farmlands. For farmland
expansion, grassland and non-utilized land accumulatively account
for almost 90% of the changed area. For farmland abandonment, the
major change types are grassland and urban land use, whose areas
occupy 69% and 17%, respectively.

3.3. Quantification of spatial dynamics

Table 2 shows measurements of the spatial distribution of
farmland change trajectories. The distribution-related indices,



Fig. 2. Spatial distribution patterns and the corresponding indices. The grey-level represents farmland increments at different periods.

Fig. 3. Examples of different overall shapes. The nLSI values are: 0 for case (a); 0.17 for case (b); 0.33 for case (c); 1 for case (d).

Fig. 4. Examples of different edge shapes. The FRAC_AM values are: 1 for case (a); 1.137 for case (b); 1.253 for case (c).
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including IJI, COHESION and ENN_AM, were applied to segments of
a change process at different times (i.e. the categorized change
trajectories illustrated in Fig. 5). Farmland development models
were separately analysed for the Konqi River basin and the Tarim
River basin in Yuli County.
Table 3 shows the quantified results of the spatial configurations
of farmlands at different times. Shape indices, including nLSI and
FRAC_AM,were applied to the broad farmland change paths (i.e. the
stable and permanently abandoned farmland categories illustrated
in Fig. 6).



Fig. 5. Farmland change trajectories in Yuli County from 1994 to 2013.
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4. Analysis and discussion

4.1. Spatio-temporal pattern of farmland change

In general, farmland expansion was the dominant process of
land cover change in Yuli County over the past two decades. From
the statistics shown in Table 3, it is clear that the area of stable
farmland increased by more than 300%. It is especially noticeable
that the annual growth ratewas over 11 percent in the earlier years,
slowing to around 8 percent in later years. In spatial terms, the old
farmland was mainly distributed along the river valleys, while
newly cultivated farmlands tended to be located at the fringes of
the older farmlands, as shown in Fig. 5.

Quantitative analytical results verify the above findings. Farm-
land expansion in the two river basins exhibits a similar change
pattern. For both basins, IJI shows a generally increasing trend for
farmland expansion trajectory categories before 2013 (Fig. 7a and
b). The results suggest that newly cultivated farmlands were more
likely to be distributed, albeit with a more dispersed distribution, at
the fringes of older farmlands that are much closer to the rivers.
This concentration near rivers is primarily due to the dependency
of the farmlands on available water resources and irrigation sys-
tems in this arid zone. Although farmland change is generally
considered to be a human-induced land cover change because, for
example, the spatial configuration of farmland relies on the
development and construction of local irrigation systems, changes
are also affected and limited by natural phenomena. This is illus-
trated by the severe drought of 2013 when the water supplied to
themid-lower reaches of the rivers was greatly reduced (Shang and
Yin, 2014). At that time, newly cultivated farmlands tended to be
located in the upper reaches but retreated back towards the river
banks, exhibiting less adjacency to the old farmlands. This may
explain the lower IJI values of the incremental change parts in 2013.

Correspondingly, connectivity and aggregation indices support
the inferences drawn from the spatial dynamics of farmland
change, and the impact of irrigation systems on the farmland
development model. With regard to farmland expansion trajectory
categories, COHESION values tend to show a decreasing trend
before 2010 (Fig. 7c and d), while ENN_AM values present an
increasing trend and maintain higher values (Fig. 7e and f). This
indicates that the degree of connectivity and aggregation of the
newly cultivated farmland is decreasing at the same time that the



Fig. 6. Stable and permanently abandoned farmlands in four different years.

Table 2
Trajectory classes and their metrics.

Trajectory category (1994e2013) Description Konqi river basin Tarim river basin

IJI COa ENN IJI COa ENN

x-x-x-x-x Old farmland 60.96 97.62 74.99 62.90 95.02 116.19
o-x-x-x-x Expansion since 2000 64.54 92.75 99.35 66.77 95.10 125.20
?-o-x-x-x Expansion since 2005 63.08 86.63 100.19 63.43 92.56 108.11
?-?-o-x-x Expansion since 2010 79.59 96.29 93.90 75.24 94.23 117.04
?-?-?-o-x Ephemeral farmland 51.15 95.68 102.74 54.12 91.60 127.09
x-o-o-o-o Abandoned since 2000 57.58 67.07 333.21 33.97 72.34 266.02
?-x-o-o-o Abandoned since 2005 68.29 79.26 226.13 54.57 72.73 272.11
?-?-x-o-o Abandoned since 2010 70.41 69.37 187.93 61.25 73.13 220.51
?-?-?-x-o Temporarily abandoned 77.05 87.09 115.61 71.19 82.23 127.53

where: x ¼ “farmland”, o ¼ “others”, ? includes “x” and “o”;
a CO denotes COHESION.

Table 3
Shape indices and area statistics of stable and permanently abandoned farmlands at different times.

1994 2000 2005 2010

Stable farmland Area (ha) 14,090 27,194 37,068 57,698
nLSI 0.110 0.087 0.076 0.047
FRAC_AM 1.185 1.204 1.224 1.211

Permanently abandoned Area (ha) e 414 1126 2095
nLSI e 0.438 0.404 0.396
FRAC_AM e 1.073 1.093 1.096

B. Sun, Q. Zhou / Journal of Arid Environments 124 (2016) 118e127124



Fig. 7. Trends of spatial distribution metrics of incremental change parts.
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area of farmland is being enlarged.
Compared to newly cultivated farmlands, abandoned farmlands

occupied a very small area at every observation time. Thus, the
spatial pattern of farmland abandonment is another interesting
Fig. 8. Changes of shape indices of stable a
phenomenon. The low IJI values in the earlier years of the study
period suggest that only isolated and scattered farmland aban-
donments occurred among non-farmland-related change trajec-
tories without a significant area change. The rapid increase of IJI
nd permanently abandoned farmlands.



B. Sun, Q. Zhou / Journal of Arid Environments 124 (2016) 118e127126
values in subsequent years indicates that farmland abandonment is
more common, and is scattered among farmland-related change
trajectories in the following years. Also, abandoned farmlands
maintain lower values of COHESION and much higher values of
ENN_AM, a finding that implies that farmland patches are aban-
doned in isolated pockets, and also have smaller areas.

Examination of farmland structural stability during the process
of farmland expansion revealed a decreasing nLSI (Fig. 8), which
indicates that smaller patches of stable farmland tended to be
merged into larger patches, farmland becoming more aggregated.
Further, the increasing FRAC_AM shows that stable farmland ex-
hibits a more complex edge shape during a period when farmland
expansionwas accelerating. With regard to farmland abandonment
(refer to Fig. 8), the higher nLSI implies that farmland abandonment
occurred with a dispersed distribution. At the same time, the
increasing FRAC_AM expresses a more complex edge shape as the
permanently abandoned farmlands accumulated. This finding
suggests that farmland abandonment was a somewhat random
process, because well-organized development plans that rely on
irrigation systems always ensure that the shape of farmland is
aggregated with a regular edge.

4.2. Comparison with previous spatio-temporal pattern analysis

For quantifying the spatio-temporal pattern of a change, tradi-
tional methods of employing geo-statistics can elucidate the gen-
eral features of a spatial distribution pattern (Fan and Myint, 2014;
Du et al., 2015). Aside from geo-statistical indices, landscape met-
rics with the ability to describe spatial configurations at various
scales have been widely used for decades (Jenerette and Wu, 2001;
Li et al., 2013a). Commonly, spatial pattern indices, including
landscape metrics, have been applied to land cover types. Any
change could be perceived by examining variations of the metrics
over time. This type of spatio-temporal pattern analysis can be
regarded as “temporal trajectory analysis of spatial pattern indices”.
Although landscape metrics have provided a reliable tool for
quantifying the spatial structure of a landscape and for tracing the
turning point of a change, several shortcomings are also evident.
The method does not adequately display the spatial dynamics of
the change. Finally, difficulties also exist in change prediction and
with determining the linkage between the pattern and the process
of land cover change (Li and Wu, 2007).

In contrast to most studies that apply spatial pattern indices to
land cover types, the landscape metrics adopted in this study were
instead applied to change trajectory categories, such as the pattern
of expanded farmland since 2000 (Fig. 5), or the accumulated stable
farmland in 2010 (Fig. 6). Spatial, rather than temporal, dynamics of
farmland change was modelled, as well as change models devel-
oped using cartographical and quantitative means. By focussing on
change trajectory categories, this study attempts to combine the
ecological significance of landscape metrics with the interpretation
of spatial patterns. In real world applications, the spatio-temporal
modelling method provides a general information of farmland
development model and its spatial distribution details as well. It is
better for understanding how farmland developed over time. This
would benefit managers or local government. An efficient plan of
land use development andwater consumption could be carried out,
relying on the knowledge of the general change model and quan-
tified indices of change spatial pattterns.

4.3. Known issues of uncertainties

Potential uncertainties were inherent at twomajor stages of this
study, namely, during the establishment of change trajectories and
during the spatial pattern analysis. Establishment of change
trajectories is the fundamental stage. Long-term temporal trajec-
tory analysis usually requires the utilisation of multi-temporal and
multi-sensor images, which may incur problems such as un-
matched image parameters. In order to minimize the impacts of
radiometric calibration among images with different acquisition
conditions and sensors, the images were classified independently.
The accuracy of the classification, therefore, may be propagated to
the later-stages of image processing, thus having a significant
impact on the image comparison results (Coppin et al., 2004). The
accuracy of trajectory analysis might be even more problematic
when numerous multi-temporal data layers were used in the
analysis (Congalton and Green, 2009). Furthermore, because
changes within the period of two observations cannot be detected,
selecting the most appropriate time scale is critical for trajectory-
based change detection (Lunetta et al., 2004; Sui et al., 2008).
Given the difficulties of acquiring successive images, a one-year
interval is considered to be suitable for detecting annual changes
in this study.

The interpretation of landscape metrics could create mis-
understandings about land cover change patterns. Given that most
landscape metrics were designed to describe the spatial pattern of
individual species or cover types, their application to the change
patches should be subjected to further interpretation in order to
obtain a better understanding of the findings. This study indicates
that it is essential to use a set of metrics, rather than a single one, to
provide a more comprehensive view of the various characteristics
of the target features, thus avoiding potentially controversial out-
comes. Moreover, attention should be paid to spatial scale effect
when applying landscape metrics to measure spatial patterns. The
results of spatial analysis at one scale are frequently different from
the analysis at another scale (Li and Wu, 2007). For modelling
water-oriented farmland change, the study is limited to the river
basin scale, which means farmland expansion models in the two
river basins are separated and regarded as individual cases.

5. Conclusions

This study investigates a methodology for integrating pixel-
based trajectory analysis and landscape metrics to quantify and
analyse the spatio-temporal pattern of farmland change in the arid
zone of western China. Results indicate that the rapid development
of farmland exhibits a concentrated patternwithin two river basins,
and generally follows a layer-based expansion model in multiple
directions. At the river basin scale, the proposedmethod is effective
in expressing the spatio-dynamic process of farmland change and
in highlighting the farmland development model.

The study also provides several important conclusions about the
research methodology that was adopted. A set of carefully selected
metrics is the key to understanding the spatial pattern of farmland
change in all its different aspects. Also, the choice of temporal in-
terval is critical, because it determines the kind of change that may
be detected. Given the arguments that the results of spatial analysis
might not be uniform at various spatial scales, future work will be
focused on applying the methodology to sub-catchments of the
river basins.
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