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a b s t r a c t

Landscape patterns in agro-pastoral ecotones are influenced by natural factors and human activities.
However, the main factors that influence landscape metrics of agro-pastoral ecotones have not been fully
elucidated. To further understand conditions influencing landscape formation, we conducted a series
analysis to explore the relationship between ecological factors (annual average precipitation, annual
average temperature, NDVI, altitude, aspect, slope, curvature, land use, and human disturbance) and
landscape metrics pattern in the range of 100e5000 m spatial extent, within an agro-pastoral ecotone in
Inner Mongolia, China. Using principal component analysis and the detrended canonical correspondence
analysis from 43 landscape metrics, we successfully identified several key factors that determine the
landscape metrics values. Agriculture and livestock grazing land use induce the landscape configuration
to become homogeneous and simple. Nevertheless, our results show that the influences of human ac-
tivities on landscape metrics are surprisingly not strong. Rather the natural ecological factors, in
particular temperature, precipitation and altitude, had the greatest influence on landscape metrics
values. This study provides a theoretical case for the scaling effects and develops techniques for iden-
tifying the key ecological factors influencing on landscape metrics, so as to improve landscape man-
agement decisions in semi-arid regions and other ecotones.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Landscape metrics are influenced by various abiotic and biotic
ecological factors; including annual precipitation, average tem-
perature, soil conditions, and human activities, such as cultivation
activities, livestock grazing, and urban land use (Uuemaa et al.,
2013). Landscape metrics are also shaped by topographical de-
terminants, such as altitude, aspect and land curves (Bolliger et al.,
2009; Geri et al., 2010). Landscape metrics can be affected by the
reciprocal relationship that exists between these physical land-
scape patterns and socio-economic processes (Li andWu, 2004). As
such, the scale effects, inherent limitations of landscape indices,
and the improper use of these indices, have to be carefully
considered and systematically tackled (Li and Wu, 2007). Among
these ecological factors, human land use is regarded as the primary
determinant of landscape metrics (Vogiatzakis et al., 2006; Gowda
et al., 2012; Plexida et al., 2014) given the direct effects it can have
on vegetation composition, land cover and landform. Many studies
have considered human land use, climate variations and landform
separately; however, these factors do not act in isolation and rather
it is their interaction that contributes to the shape of landscape
metrics.

Landscape metrics are sensitive to spatial scale, which make
scale an important consideration in the determination of factors
involved in shaping landscape formation. In landscape ecology
studies, landscape metrics depend on the satellite imagery
derived from satellite sensors. This could be an avenue for con-
flicting reports since these sensors can have different spatial
resolutions. Thus, it is necessary to find the optimal scale for the
study in which the ecological processes operate. Spatial scale
context includes not only grain size which determined by remote
sensing imagery, but also spatial extent which determined by
analyzing unit. Landscape metric indices change with alterations
in spatial extent, as demonstrated by previous studies that have
systematically evaluated the effects of grain size and extent
(Wu and Hobbs, 2002; Shen et al., 2004; Wu, 2004), as well as
thematic detail (Baldwin et al., 2004; Castilla et al., 2009). The
scale of analysis in agricultural landscape dynamics studies is
often determined by data availability when considering intrinsic
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or process scale (Li and Wu, 2007). Agro-pastoral ecotone
movement processes take place at whole spatial scales and
require a hierarchical and pluralistic scaling approach (Wu, 2007).
This was illustrated by Stefanov and Netzband (2005), who
assessed urban landscape characteristics in Phoenix, Arizona, and
identified weak positive and negative correlations between NDVI
and landscape metrics at different spatial resolutions: 250 m,
500 m, and 1000 m. Landscape diversity, a parameter indicative
of landscape spatial patterns, is also influenced by scale effects.
Without analysis along a series of spatial scale little information
of average alpha and Whittaker's beta diversity about landscape
distribution patterns can be derived (Lira-Noriega et al., 2007).
The diversity of tropical butterflies across a range of spatial scales
(z3e80 ha) confirmed the notion of scale-dependence in esti-
mates of diversity (Dumbrell et al., 2008). However, few studies
set a scale gradient in the analysis of the relationship between
landscape metrics and ecological factors.

Here we investigated the correlations between landscape met-
rics and selected biophysical factors (annual average precipitation,
annual average temperature, NDVI, altitude, land slope, aspect, and
land curvature) and human activity properties (land use type, hu-
man disturbance intensity) of the agro-pastoral ecotone. Among
these ecological factors, we identified those that largely contrib-
uted to the landscape metrics.

2. Study area and methods

Using land use/land cover maps, we tested for the effects of
processing spatial extent on landscape metrics and explored which
ecological factors determine the landscapemetrics characterization
of spatial pattern. The process involved six steps: (i) generating
land use landscape maps by field survey and satellite image, (ii)
calculating landscape metrics with a series of spatial extent from
100 m to 5 km to find the optional extent, (iii) using principal
components factor analysis to identify the main landscape metrics
among 43 indices, (iv) assessing the values of ecological factors, i.e.
temperature, precipitation, slope, aspect, curvature, altitude, NDVI,
and human disturbance, (v) analyzing correlations between
ecological factors and landscape metrics under the same optional
spatial extent, and (vi) identifying the main factors, natural or
human-derived which shape the landscape metrics. This process is
illustrated in Fig. 1.

2.1. Study area

The study was conducted in an agro-pastoral ectone. An agro-
pastoral ecotone is the interface between cropland and pasture.
The agro-pastoral ecotone, including various kinds of landscape, is
believed to be one of the most eco-sensitive regions responsive to
disturbances and, thus, an ideal place for a landscape metrics study.
The survey area was a northern agro-pastoral ecotone located in
Helin County, in central Inner Mongolia, and characterized by a
collection of flat plains, hills, and mountains with relatively equal
composition (Fig. 2). The highest elevation was 2031 m and was a
total area of 3401 square kilometers.

Helin County has a semi-arid temperate climate with obvious
wet and dry seasons. Its annual average temperature is 5.6 �C, with
a seasonal average temperature of �12.8 �C in January and 22.1 �C
in July. The average annual precipitation is 417 mm, with approxi-
mately 30 mm in January and 103 mm in July. The average wind
speeds are slightly higher in spring and winter than in the summer
and fall seasons. The average relative humidity for the whole year
does not show obvious seasonal changes. The semi-arid climate
supports sandy biological communities, in which grass and shrubs
are predominant in this area. Helin County consists of 9 towns and
has a population of 0.187 million people. The main income for local
people comes from agricultural product and livestock resources.

2.2. Creation ecological factors maps

We used the data of the 2010 LULC of the Helin County area,
produced from a supervised classificationmodel of atmospherically
corrected and geo-rectified Landsat Thematic Mapper (TM) imag-
ery. The model was originally developed based on field survey data
acquired in July of 2010 and simultaneously Landsat images. The
classification system performs a posteriori sorting of classes
initially derived using Maximum Likelihood Classification.
Geographical auxiliary map layers, such as land-use maps, image
textures, or administrative maps, were also used. The final classi-
fication consisted of 7 classes and had a reported overall accuracy of
~92% or greater (Table 1).

To estimate the spatial distribution of abundance vegetation, we
computed the Normalized Difference Vegetation Index (NDVI) from
all raw Landsat images: NDVI ¼ (NIR � RED)/(NIR þ RED). Color
copies of annual average precipitation and temperature maps,
dating from 2000 to 2010 and produced by the Meteorological
Administration of Helin County, were scanned and geo-referenced
using the Landsat image mosaics. Due to their potential influence
on ecological processes, we extracted information on: aspect (i.e.,
the slope facing direction), divided in eight directions from
northing to Easting (i.e., cosine and sine-transformed azimuth
values, respectively); slope (i.e., steepness); and altitude, all derived
from the SRTM30 DEM (http://asterweb.jpl.nasa.gov/gdem.asp).
The entire study area was located in the northern hemisphere
where southern aspects received significantly higher radiation and
more xeric conditions than northern aspects, particularly when
associated with steep slopes. Western aspects were exposed to
dominant westerly winds, which was associated with higher pre-
cipitation and a lower frequency of frosts. The land curvature,
indicating the curve degree of a range of land, was therefore
selected as an influential ecological factor.

The spatial distribution maps of human settlements and roads
were digitized from the Helin Map that was produced by SinoMaps
Press in 2010. The human activities variables maps, one illustrated
distances to human settlements and another illustrated the dis-
tance to roads, were created based on experienced analysis of re-
lationships between human activity intensity and ecological
patterns or processes. Since the data are provided in vector format
they were rasterized directly to match the grain size of each level of
analysis.

From the aforementioned sources and creative method, we
created 12 map layers including LULC maps, ecological factor maps
(NDVI, altitude, aspect, slope, curvature, annual average precipita-
tion, and annual average temperature) and human disturbance
maps.

2.3. Multi spatial scale analysis on landscape metrics of LULC maps

We quantified landscape pattern indices using a suite of land-
scape metrics in FRAGSTATS software (McGarigal et al., 2002). We
computed 43 class-level metrics indices including: CONTIG_AM,
PLADJ, AI, AREA_MN, COHESION, FRAC_AM, PROX_AM, IJI, CON-
TIG_MN, SHAPE_AM, ED, AREA_CV, AREA_SD, SHAPE_MN, PAR-
A_SD, PARA_CV, CONTIG_SD, PROX_SD, AREA_AM, PROX_MN,
FRAC_MN, SHAPE_SD, CLUMPY, SHAPE_CV, FRAC_SD, FRAC_CV, LSI,
PD, NP, CONNECT, ENN_SD, ENN_MN, ENN_CV, PAFRAC, DIVISION,
SPLIT, PARA_MN, CONTIG_CV, NLSI, PARA_AM, ENN_AM, PROX_CV.
The meaning, calculated formula and its ecological usage, can be
referenced through the help file in FRAGSTATS software and related
studies (Wu and Hobbs, 2002; McGarigal et al., 2002).

http://asterweb.jpl.nasa.gov/gdem.asp


Fig. 1. The figure shows the study route and steps for identifying the key factors which influencing landscape metrics in the study area, Helin County, Inner Mongolia, China.

Fig. 2. Location and land use distribution of the study area in Helin County, northern China. This study used 1 km � 1 km squares as basic units for grid window analysis, totally
2610 squares. The figure also shows the spatial extent ranged from 100 m to 5 km.
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Table 1
Seven LULC categories were used to show the land cover in the study area, Helin County, Inner Mongolia, China.

Categories Descriptions

Grassland Prairies, pasture, and high or short grassland
Farmland Row crop by type, cereal grains, potato, feedlots, vineyards
Shrub Shrub, semi-shrub, scatter shrub, bushwood, low or high shrub
Forest Open or closed forest, including young, old forest
Urban and town Residential, industrial, commercial and recreation areas, roads and rails
Water Rivers and streams, pond, lake and reservoir
Barren land Soil or sandy dunes without vegetation
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The LULC maps in vector format for the entire Helin County area
were converted into an Arc Grid format for a set of synoptic metric
analyses providing a basic representation of landscape pattern.
Effects of spatial extent were analyzed using the window analysis
method of FRAGSTATS 4.1 software. The grid landscape datasets for
the entire regional area and outer 5 km buffer zone were included
in the analysis. This study used the following areas for window
analysis: 100 � 100, 200 � 200, 400 � 400, 600 � 600, 800 � 800,
1000 � 1000, 3000 � 3000 and 5000 � 5000 square meters.

2.4. Optional window extent and key landscape metrics indices
identification

Following the calculation of landscape metrics from areas of
100 � 100 m to 5 � 5 km, the optional window extent was selected
and the values of landscape metrics were found to be near equal to
the average values in the range of 100 � 100 m to 5 � 5 km. Thus,
using this optional window extent (1 km2), the key landscape
metrics were identified. In order to reduce the redundancy in
landscape metrics indices, principal component factor analysis
(PCA) was used to identify the main landscape metrics that influ-
ence landscape variability and characteristics. After PCA, 11 metrics
indices were identified: PD, ED, PARA_MN, PARA_AM, LSI, PAFRAC,
ENN_MN, PROX_CV, AI, CONTIG_MN, and SHDI (Table 2).

2.5. Correlation analysis between key landscape metrics and
ecological factors

In order to explore possible correlations between landscape
metrics and ecological factors, the vector format of every natural
Table 2
List of key landscape metrics used in the study.

Landscape metrics Description

Area PD (Patch density) The number of patches per unit
Edge ED (Edge density) The total length of all edge segm
Shape PARA_MN (Mean Perimeter Area

Ratio)
PARA equals the ratio of the pat

Shape PARA_AM (Area Weighted Mean
Perimeter Area Ratio)

It differs from the PARA in that

Shape LSI (Landscape Shape Index) A modified perimeter-area ratio
Shape PAFRAC (PerimetereArea Fractal

Dimension)
The fractal dimension of the enti
the logarithm of patch area and

Proximity/
Isolation

ENN_MN (Mean Euclidian Nearest
Neighbor Index)

The distance (m) to the nearest

Proximity/
Isolation

PROX_CV (Coefficient of Variation of
Proximity Index)

PROX equals the sum of patch a
patch and the focal patch of all p
(m) of the focal patch

Contagion/
Interspersion

AI (Aggregation index) The ratio of the observed numbe
proportion of the landscape com

Contagion/
Interspersion

CONTIG_MN (mean Contagion) Measures spatial aggregation of
will be of the same patch type

Diversity SHDI (Shannon's Diversity) Compositional diversity as deter
evenness (proportional distribut

Diversity SHEI (Shannon's Evenness) The observed SHDI divided by t
evenness of area distribution am
factor and human disturbance map were converted into Arc Grid
format using the same resolution size as that of LULC. These cor-
relatives were overlapped with the same project system and co-
ordination system on ArcGIS desktop. The attribute tables of
ecological factors that were derived from the result of FRAGSTATS
analysis with 1 squared kilometer block unit were combined to
guarantee they are analyzed in the same spatial windows. Land-
scape metrics and ecological factors were extracted from 2610
windows, respectively. The combined dbf format table was then
converted into Microsoft Excel format. The data were stored in the
file landscape.xls, where one sheet represents the landscape
pattern data, and the other one the ecological factor data.

In the exported database, all the variables were submitted to a
ShapiroeWilk test (W test) in order to test for normality, a basic
requirement for further application of parametric tests. The vari-
ables related to the landscape metrics showed normal distribution;
however, the metrics for AREA, PERIM, SHAPE, CORE and PROX did
not show normal distribution and were, therefore, transformed
logarithmically (Legendre and Legendre, 1998; Freitas et al., 2005).
Consequently, the choice of units does not play any role (as long as
the various units are linearly related). In this study, we used
detrended canonical correspondence analysis (DCCA) to study the
correlations between landscape metrics and ecological factors. In
DCCAwith detrending by segments and Hill's scaling, the length of
the longest axis provides an estimate of the variation extent in the
data set (the value 4.9 for our data set suggests that the use of
unimodal ordination methods is quite appropriate here). The un-
constrained ordination provides the basic overview of the compo-
sitional gradients in the data. It is also useful to include the
ecological factor data in the analysis e they will not influence the
area (unit: patches/100 ha)
ents per ha for the land-cover class or landscape of consideration (unit: m/ha)
ch perimeter (m) to area (m2)

it's weighted by patch area so larger patches will weigh more than smaller ones.

of the form that measures the shape complexity of the whole landscape
re landscape which is equal to 2 divided by the slope of the regression line between
the logarithm of patch perimeter
neighboring patch of the same type, based on shortest edge-to-edge distance.

rea (m2) divided by the nearest edge-to-edge distance squared (m2) between the
atches of the corresponding patch type whose edges are within a specified distance

r of the adjacencies to the maximum possible number of like adjacencies given the
prised of each patch type, given as a percentage

patches by computing the probability that two randomly chosen adjacent grid cells

mined by a combination of richness (number of different patch types) and
ion of area among patch types)
he maximum SHDI for that number of patch types. It measures the degree of
ong patch types



Fig. 3. Ordination plot from a principal components analysis (PCA) of landscape metric
and classification accuracy data in the plane of principal component 1, 2 and principle
component 3. Principle components 1, 2 and 3 describe 93.1% of the total variation.
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landscape metrics and samples ordination, but they will be pro-
jected afterwards to the ordination diagram. Eigenvalues, land-
scape metrics scores (maximum relative complexity), and factor
scores were extracted for the first four canonical axes. Landscape
metric indices, ecological factor and human disturbance scores on
the first two canonical axes were plotted in ordination diagrams.
Canonical correlations between landscape metrics and environ-
mental axes were tested for significance using the randomization
test of Canoco (Monte Carlo unrestricted permutation, 1000 itera-
tions). In this test, strength of the landscape to environment cor-
relation is measured as the canonical correlation between
ecological scores that are weighted averages of landscape metrics
values, and ecological scores that are linear combinations of
ecological variables (biophysical and human disturbance factors)
(Ter Braak, 1995). Additionally, we used a logistic regression anal-
ysis to estimate the importance of the highlighted ecological vari-
ables in influencing landscape metrics formation.

3. Results

3.1. Sufficiency of the sampling and data normality

Here, we verified that the quantification of the landscape metric
variables occurring in the agro-pastoral ecotone was sufficient.
Parameters calculated bymean, standard deviation, and variance in
each landscape unit are illustrated in Appendix 1 (electronic
version only).

3.2. The landscape metrics changes along spatial extent

In order to determine the optional spatial extent, a series of area
extents were used to calculate landscape metrics. The influence of
spatial scale on landscape metrics was found to be highly signifi-
cant. Among the 43 metric indices, there was a common tendency
for the metric indices to increase or decrease with a constant di-
rection along the changing window size. Within these spatial ex-
tents, the indices at 1 squared kilometer showed a median value for
variables including landscape shape, proximity, texture, diversity,
and patch size (Appendix 2 electronic version only). Thus, we
concluded that 1 square kilometer was an appropriate optional
extent.

3.3. Principal component analysis of landscape metrics

Three notable components were extracted from the landscape
metrics (Appendix 3 electronic version only), with the first
contributing to 49.8% variance of initial eigenvalues, while the
second and third contributed to 26.9% and 16.4%, respectively. In
the first component, PARA_AM, ENN_AM and PROX_CV played
significant negative roles and CONTIG_AM, AI and COHESION
played significant positive roles in landscape metrics formation.
Thus, the first component represented the ecological quality of
texture structure in the agro-pastoral landscape. In the second
component, PD, ED and LSI played significantly positive roles, and
ENN play significantly negative role. Due to these relationships, the
second component represented the ecological quality of other class
small spaces in the agro-pastoral area. In the third component, only
PAFRAC and PARA_MN played prominent positive roles, and so,
demonstrated the ecological quality of large spaces such as farm-
land in the agro-pastoral area. These results are summarized in
Appendix 3 (electronic version only) and Fig. 3.

3.4. Main variables influencing landscape metrics

Landscape metric indices, land use and ecological factor vectors
for DCCA ordinations of 2610 grid windows are shown in Fig. 4. In
the DCCA ordination, the first axis was positively correlated with
the average annual temperature, NDVI, and land use type. It also
had strong negative correlations with altitude, average annual
precipitation, curvature, and slope degree. The second DCCA axis
was positively correlated with the intensity of human disturbances.
The arrows for ecological variables in Fig. 4 accounted for 76.7% of
the variance in the weighted average of the 11 landscape metrics,
with respect to the 9 influence variables.

Although there were large differences in land use type among
individual sites, the vector lengths in Figs. 3 and 4 indicated that
land use variables were not the most important in explaining the
variation in landscape metrics formation of these 2610 grid win-
dows. Rather the site conditions and microclimate, especially
temperature, altitude and precipitation, appeared to play greater
roles in determining the landscape metrics formation. As shown in
Fig. 4, shape metrics ENN-MN and AI were greatly influenced by
temperature, while PAFRAC and PROX-CV were positively influ-
enced by NDVI and land use. Alternatively, ED, PARA-AM, and LSI
had stronger relationships with altitude and precipitation, and on
average, CONTIG-MN, SHDI and PD were influenced by multiple
ecological factors.

3.5. Correlation between the studied variables

Appendix 4 (electronic version only) outlines the correlation
coefficient found among landscape metrics and ecological factors.
In general, landform slope and curvature have stronger correlations
with landscape metrics than other ecological factors. Weaker cor-
relations were found for site altitude, average annual temperature,
and average annual precipitation. Surprisingly, the contribution of
human disturbance, vegetation index and site aspect was minimal.

The patch density (PD) showed a significant positive correlation
with altitude, slope and precipitation, yet a negative correlation
with temperature. The patch shape (PAFRAC) had a significant
positive relationship with altitude and precipitation, but a negative
relationship with temperature and human disturbance. The metric
CONTIG (shape metric) showed significant positive relations
(p < 0.05) with curvature and precipitation, but negative relations



Fig. 4. DCCA ordination diagram of 2610 quadrates from Helin County with respect to landscape metrics. Arrows represent quantitative and ordinal variables. Small triangles
represent landscape metrics; vectors represent ecological factors. Landscape metrics as in Table 2. Ecological factors as in Appendix 1 (electronic version only).
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with human disturbance and NDVI. The patch isolation indices
ENN-MN and PROX-CV showed a similar tendency, being mainly
influenced by temperature, precipitation and human disturbance.
The patch shape indices (PARA-MN) were mostly influenced by
human disturbance and NDVI. Thus, patch shape indices were
differentially influenced compared to the other landscape metrics.

4. Discussion

4.1. Scale effect and optional scale selection

Previous studies (Wu and Hobbs, 2002; Castilla et al., 2009)
have reported the existence of scale effects on landscape metrics,
not only for patch density but also for landscape shape, connec-
tivity, configuration and fragmentation. Scale effect refers to
the variation in the results of statistical analysis caused by the
changing spatial extent and grain resolution of imagery data
(Rocchini, 2007). Consideration of different scales in grain size
and spatial extent is necessary for the assessment of landscape
metrics (Castilla et al., 2009; Renetzeder et al., 2010). In a small
scale, with minimal mapping units, almost every cell is
completely dominated by a single class and results in diversity
metrics equal to 1 and over-simplified metrics indices. With the
increase of scale where the landscape unit covers more class,
patch shape index becomes more complicated and variation
among different metric indices increases. Enhancement of scale
also appears to diminish the contagion with increasing extent. In
general, the moderate scale, where the landscape metrics reach
stabilized values, will always be selected as an optional scale to
make further analysis on landscape metrics. For example, in the
Trikala Prefecture, central Greece, after selecting the scale
(600 ha) where metrics values stabilized, it was shown that
metrics were more greatly correlated at the small scale of 60 ha
(Plexida et al., 2014). Likewise, the size of 1 km2 turned out to be
useful for landscape analysis at the national level in Austria
(Wrbka et al., 2008). Similarly, the UK Countryside Survey
concluded that for a Europe-wide analysis 1 km � 1 km squares
are a satisfying pragmatic solution (Bunce et al., 2008).

Unlike previous studies of scaling effects in landscape metrics,
the land use classification of our maps was derived from satellite
imagery using a supervision classification method. The identifica-
tion of categories in land use and cover were supported by spectral
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characteristics and field surveys. As shown previously, spectral data
is a better proxy of ecological conditions than the land use classified
maps (Palmer et al., 2002). The detailed land use information,
which we gained from local the government, guarantees the ac-
curacy of the analysis on different spatial extents. In this study, the
scale series included a range of 100, to 5000 m, and landscape
indices were stabilized by 1000 meters (m). Thus, 1000 m was
chosen as an optimal scale, where the values of landscape metrics
indices were minimally influenced by spatial scale changes.

4.2. Identification of key landscape metrics

There are more than 40 indices to characterize landscape
pattern to describe area, shape, diversity and fragmentation. Since
indices that refer to similar metrics were largely interrelated and
contained redundant information, it was reasonable to reduce the
number of indices to only those with key roles. Among the existing
landscape metrics, we identified the average perimeter area ratio,
contagion, standardized patch shape, patch perimeter-area scaling,
large-patch density-area scaling, and patch classes to be the most
effective indices to characterize for quantification of spatial features
for landscape pattern (Liu and Weng, 2009; Peng et al., 2010).

Directly related to the degree of spatial shape are representative
edge metrics (TE and ED) in landscapes (Plexida et al., 2014).
Metrics such as PD, ENN, SHDI, ED, were used in previous studies
due to the complexity of several components of spatial patterns and
their effectiveness in quantifying them (Peng et al., 2010).
Regarding landscape fractal dimension index, PAFRAC may reflect
more characteristics of spatial heterogeneity than PARA or PROX
(Farina, 2006). Diversity metrics (SHDI and SHEI) also include more
information about patch class and its formation, which is regarded
as an important indicator of landscape pattern (De Clercq et al.,
2006). Although some indices are always used to represent all in-
dicators for describing landscape metrics, these landscape indices
may still behave differently in different areas. Despite the use of
equivalent analysis methodology, typical landscape indices are
likely influenced by different land use and land cover types across
the different categories of land cover worldwide (Tscharntke et al.,
2005; Peng et al., 2010; Zimmermann et al., 2010).

In our study, a principal component analysis (PCA) was con-
ducted to ensure that the landscape metrics represented a wide
range of explanatory variables in landscape configuration and for-
mation. A large number of replicates (2610) allowed us to evaluate
the robustness of the behavior of different landscape metrics.
Consideration of the widespread indicators used in previous re-
ports of landscape analyses and its effectiveness in quantifying
spatial patterns, led us to choose ED, ENN_MN, PROX_CV, PD,
PARA_MN, PARA_AM, LSI, SHDI, AI, PAFRAC and CONTIG_MN as the
typical indices for further analysis. The ability of these indices to
describe entirely different aspects of landscape pattern is sup-
ported by statistical analysis and previously reported findings.

4.3. Which factors to determine the formation of landscape metrics

In this study, we found that the main factors to determine
landscape metrics are mean annual temperature, altitude and
average annual precipitation. This was different to some previous
studies that reported the main factors influencing landscape metric
as human activities. Our study area was particularly favorable for
exploring the key factors that determine landscape metrics. This
area included rich spatial heterogeneity in landform (altitude, slope
and aspect), weather conditions (temperature, precipitation and
vegetation) and human activity (human settlements, agricultural
and grazing activity, roads). The landscape comprised of plains,
valleys, hills, and mountains, with an altitude that ranged from
1000 to 1977 m above sea level. The high landforms were accom-
panied by different severities of slopes ranging from 0 to 34�. High-
elevation and southerly or easterly aspects were associated with
higher moisture availability. Thus, across the study area, some lo-
cations possessed sandy soil, while others had fertilized land. In
most cases, the different soil moisture, caused by different levels of
precipitation, led to different types of vegetation. Particularly in
sandy areas, vegetation cover depended heavily on the amount of
precipitation, which was highly variable across the different land-
scapes (slopes, curvature and altitudes).

The maps we used in spatial and scale analysis were made from
Landsat TM images collected in July, 2010, which corresponded to
the peak of plant growth of the semi-arid region in Inner Mongolia,
and gave us an accurate illustration of the characteristic vegetation
of this area. Inter-annual variations in precipitation and tempera-
ture lead to either wet or dry years, and result in considerable
changes to the landscape composition and configuration of patches.
We recorded spatial distribution of precipitation and temperature
in average annual values between 2000 and 2010 within the
county, which reduced the influence of inter-annual variations on
landscape configuration. These detailed accounts of spatial
ecological heterogeneities can help to identify the factors that
determine the formation of landscape metrics.

In addition to the diversity in natural ecological conditions,
human activities, such as agricultural development, are dominant
in this area. More than 80 human settlements (towns and villages)
are located in this area. These settlements had a relatively even
spatial distribution, and were connected by a complicated network
of local roads and walking traces. This blend of natural ecological
conditions and human disturbances created a desirable area in
which to study landscape metrics and the factors that influence
them.

Several studies have shown that human activity was the pri-
mary cause for large changes to landscape metrics, for example,
alterations of land use in forest-steppe ecotone (Gowda et al., 2012).
Livestock keeping and crop cultivation are the main agricultural
activities in our study landscapes. Crop cultivating can have a large
influence on landscape metrics by causing the land to become
homogeneous and simple (Tscharntke et al., 2005; Gowda et al.,
2012). In our study, landscape metrics were alternatively influ-
enced more by natural ecological conditions than by human ac-
tivities. This may be due to the semi-arid climate of the study area,
it's more difficult to be cultivated largely in size or intensively
grazed. Thus husbandry has much less impact on this type of
landscapes than other human activities such as forest clearance and
urban development, because structural ecological conditions are
not much transformed. That's why ecological factors are the main
drivers of landscape metrics, in our case. Similar cases can be found
in the studies of Easdale and Domptail (2014). These are the com-
mon cases since there huge semi-arid areas across the globe, only a
minimal amount of land is occupied by intensively human activities
with urban or agriculture development. Distances to roads and
human settlements were also considered in our study for their
potential influence to landscape metrics. The sites with distance
less than 30 m were regarded relatively stronger influence on
landscape formation more than sites beyond 30 m. Distance to
roads, which were more than 30 m were easily captured by the
imagery grain resolution and so wewere able to accurately identify
the effects of roads on surrounding landscapes.

It has been previously demonstrated that the greater the land-
scape heterogeneity (in temperature and precipitation) the greater
the species diversity, including both fine-scale and coarse-scale
species richness (Honnay et al., 2003; Rocchini et al., 2005). Un-
derstandingly, human activity results in simplifying of land use and
greater landscape homogeneity from agricultural development. As
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such, human activity will produce negative influences on plant
diversity in comparison to that of natural ecological conditions
(Poggio et al., 2010). From this point of view, landscape heteroge-
neity in regional management should be an important consider-
ation. Even in cases that human activities have the primary
influence on landscape metrics formation, natural ecological vari-
ation continues to play a prominent role. Due to this, we believe
these relationships warrant further study.

5. Conclusions

This study demonstrated that natural ecological conditions,
especially temperature, altitude and precipitation were the key
factors in determining landscape metrics in semi-arid ecotones.
Unexpectedly, our results also showed that the influence of human
activity on landscape metrics was not as strong as expected when
spatial scale effects were taken into account. This was despite the
fact that agriculture development, which induces landscape ho-
mogeneity, is a common use of land in suburb and rural regions
across theworld. However, there are only small agricultural patches
in the mountain regions far from human settlements, and so, had
less land use intensity. Such effects, combined with natural
ecological conditions, have shaped the land cover and in doing so
determined the landscape metrics. We conclude that natural
ecological factors, controlled by temperature, precipitation, and
landforms defined by altitude and slope have determined the for-
mation of landscape metrics. Given this, we believe future research
should focus on the effects of natural ecological conditions on
landscape metrics in areas surrounding, near and far from urban
development, since this represents the majority of land across the
world. In total, this study provides a theoretical case for the scaling
effects and develops techniques for identifying the key ecological
factors influencing on landscape metrics, so as to improve land-
scape management decisions in semi-arid regions and other
ecotones.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.jaridenv.2015.08.009.
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