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Abstract. Forest above-ground biomass (AGB) is an important indicator for understanding the
global carbon cycle. It is hard to obtain a geographically and statistically representative AGB
dataset, which is limited by unpredictable environmental conditions and high economical cost.
A spatially explicit AGB reference map was produced by airborne LiDAR data and calibrated by
field measurements. Three different sampling strategies were designed to sample the reference
AGB, PALSAR backscatter, and texture variables. Two parametric and four nonparametric mod-
els were established and validated based on the sampled dataset. Results showed that random
stratified sampling that used LiDAR-evaluated forest age as stratification knowledge performed
the best in the AGB sampling. The addition of backscatter texture variables improved the para-
metric model performance by an R2 increase of 21% and a root-mean-square error (RMSE)
decrease of 10 Mg ha−1. One of the four nonparametric models, namely, the random forest
regression model, obtained comparable performance (R2 ¼ 0.78, RMSE ¼ 14.95 Mg ha−1)
to the parametric model. Higher estimation errors occurred in the forest stands with lower canopy
cover or higher AGB levels. In conclusion, incorporating airborne LiDAR and PALSAR data
was proven to be efficient in upscaling the AGB estimation to regional scale, which provides
some guidance for future forest management over cold and arid areas. © 2016 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.10.046003]
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1 Introduction

Above-ground biomass (AGB) is an important indicator for understanding the global carbon
cycle. Remote sensing is gaining more importance in the mapping of forest AGB over regional
and global scales due to its strong capacity for large-area monitoring with high-frequency visit-
ing. It facilitates the quantification of carbon stock especially in inaccessible forest environments
(e.g., tropical rain forest) where traditional field inventory can be hard to conduct.1,2 Currently,
many AGB estimation models are established based on the satisfactory response of forest struc-
ture to the remotely sensed spectral variables and synthetic aperture radar (SAR) backscatter.
The SAR backscatter at different wavelengths (e.g., C and L band) outperformed other spectral
variables due to its high-penetration depth through the forest canopy. However, the SAR back-
scatter often saturates at the AGB level of 60 to 100 Mg ha−1 among various forest types.3–5

Thus, backscatter ratios and texture variables were added into the estimation models as
these variables do not saturate quickly and can reduce topographic bias.6–8
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Airborne light detection and ranging (LiDAR) is another active remote sensing tool that
shows a great deal of promise in overcoming the saturation problem. Forest parameters such as
canopy height,9 crown size,10 canopy cover (CC), leaf area index (LAI),11–13 and AGB14–16 have
been successfully estimated by airborne LiDAR. However, it is difficult to acquire a large-area of
airborne LiDAR data due to its small spatial coverage and high cost. Therefore, an increasing
number of studies incorporated the LiDAR-derived parameters (e.g., canopy height, CC, and
AGB) with satellite image variables, which proved that LiDAR-derived parameters can be reli-
able reference data for large-area mapping of forest parameters.17–20 Nevertheless, the incorpo-
ration should be based on the satisfactory correlation of LiDAR-derived parameters to the
satellite image variables. Previous studies showed that the LiDAR-derived CC was closely
related to the SPOT vegetation index and the field measurements.21 In addition, high correlations
were also found between the LiDAR-derived AGB and SPOT-derived texture variables22 and
SAR backscatter.18,23 The response of LiDAR-derived forest attributes to the PALSAR backscat-
ter was analyzed based on a nation-wide LiDAR dataset with a low point density in Denmark.23

The spatial scales were fully investigated in their study and the backscatter was used to build the
prediction models. However, the response of LiDAR-derived AGB to the SAR backscatter may
vary in different forest areas according to many factors such as forest species, landscape pattern,
data quality, and environmental conditions. For instance, point density is a very important factor
that can influence the precision of LiDAR metrics and AGB estimation accuracy.24 The point
density can be affected not only by the acquisition pattern of LiDAR data during the airborne
flight but also by the heterogeneity of the forest structure.

Based on the spatially explicit LiDAR-derived forest attributes, a large quantity of training
dataset can be sampled through different sampling strategies.18,22 Nevertheless, the performance
of different sampling strategies may vary with the change of study site and data source.
Therefore, it is necessary to compare the performance of different sampling strategies before
modeling. Generally, a greater range of data variability can be obtained from random stratified
sampling where prior knowledge for stratification is required.25 For the AGB estimation, para-
metric models (e.g., stepwise multiple regression models) have been regarded as the mainstream
estimation approaches.26,27 As more remotely sensed variables appeared, the dimensionality of
predictors increased, while multicollinearity and data redundancy also increased. In order to
take full use of the high-dimensionality dataset, nonparametric models such as support vector
machine (SVM) model,28 Gaussian process (GP) model,28 K-nearest neighbor (K-NN)
model,15,29 and random forest (RF) model29,30 have been applied to AGB estimations. The
RF model is an ensemble learning technique by combining a large set of decision trees with
each tree built using a deterministic algorithm.30 Furthermore, geostatistical models were also
explored to estimate forest attributes by incorporating LiDAR-derived forest attributes with sat-
ellite data.18,22,31 However, it is difficult to compare these models based on one dataset as many
nonparametric models require a large training dataset, whereas the ground-based dataset in most
cases is very small.

Therefore, this study aimed to incorporate airborne LiDAR and ALOS PALSAR data to
estimate the AGB of a coniferous forest in a cold and arid environment. In order to achieve
the objective, a first attempt was made by involving LiDAR-evaluated forest age into AGB sam-
pling. A small-area of an AGB reference map was produced by LiDAR data and calibrated by
field measurements. The response of LiDAR-derived AGB to PALSAR backscatter was com-
prehensively analyzed, which was further applied to mapping the AGB at a regional scale. The
incorporation procedure may provide some insights into how to take full use of the two active
remote sensing tools in large-scale mapping of forest AGB over cold and arid regions.

2 Materials

2.1 Study Site

The study area is a water conservation forest site called the Dayekou area, which is located in the
Heihe River Basin, northwest China (Fig. 1). The Heihe River basin is the second largest inland
river basin in China, located between 97°24′-102°10′E and 37°41′-42°42′N.15 It covers three
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vegetative climate zones and significantly affects soil/water conservation and biodiversity pro-
tection. The Dayekou area covers an area of 130 km2 with an elevation of 2500 to 3300 m above
sea level. The site was a core experimental site selected by the Watershed Allied Telemetry
Experimental Research (WATER) project where simultaneous airborne satellite-borne remote
sensing observations and ground-based measurements were carried out.32,33 The climate at
this site is a temperate continental mountainous climate with cold and dry weather in winters
and drastic diurnal variations of temperature in summers.15 The precipitation is mainly concen-
trated in the summer with a mean annual value of∼350 to 495 mm. The main species in the study
area is Picea crassifolia, occupying 95% of the whole forestland over the study site.34

2.2 LiDAR Data

Small footprint full-waveform LiDAR data were acquired for the Dayekou area on June 23,
2008. The RIEGL LiteMapper-5600 airborne laser scanning system was used and configured
to emit laser pulses of 3.5 ns at 50 kHz in the near-infrared band (1550 nm) with a beam diver-
gence fixed with 0.5 mrad and a nominal height above ground of 700 to 800 m.35 The average
footprint diameter was 38 cm. The horizontal and vertical accuracies of the instrument were 0.1
and 0.3 m, respectively. For each pulse, the transmitted and returned pulses were recorded in
the full-waveform data. Discrete point clouds provided by the flight vendor included two parts:
one with low density [∼1.89 ptsm−2] and another with high density [∼3.43 ptsm−2] (Fig. 1).
The high-density part (denoted as HDP, 1.7 km2) was obtained by repetitive flights, and the
spatial extent of the low-density part (denoted as LDP, 55 km2) covered that of HDP.

In this study, only the original full-waveform LiDAR in HDP was used. Awaveform decom-
position approach was applied to decompose the original waveform data into another group of
point clouds to acquire a higher point density.36 It approximates the LiDAR waveform as a
Gaussian mixture model. A stepwise strategy was used to implement waveform decomposition

Fig. 1 The field plots, spatial extent of airborne LiDAR overlaid on the DEM.
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by defining the maximum iteration number and error expectations before decomposition.36,37

The final point density of HDP was increased to 6.22 ptsm−2 higher than those provided by
the vendor. Then the digital elevation model (DEM), digital surface model (DSM), and canopy
height model (CHM) with a spatial resolution of 0.5 m were derived from the decomposed point
clouds. The heights of point clouds were normalized by the produced DEM. CHM pixels with
values greater or equal to 1.5 m were classified as forest and used for subsequent sampling. More
details on LiDAR data processing can be found in our previous study.38

2.3 ALOS PALSAR Data

Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) is an active
remote sensing satellite which was launched in January 2006. The single look complex (SLC)
image of PALSAR used in this study was acquired on May 12, 2008, which consisted of HH
(horizontal transmit and horizontal receive) and HV (horizontal transmit and vertical receive)
backscattering polarizations. There were no significant land use changes between the LiDAR
and SAR data acquisition. The original intensity image was processed to obtain the backscatter-
ing coefficient using the NEST software tool developed by the European Space Agency (ESA).
The SLC image was radiometrically corrected to make the SAR intensity truly represent the radar
backscatter of the reflecting surface using the calibration equation in the following equation:

EQ-TARGET;temp:intralink-;e001;116;507σ0 ¼ 10 � log10ðI2 þQ2Þ þ G − C; (1)

where σ0 is the backscatter coefficient, and I and Q are the real and imaginary components of
SLC image. G and C are the calibration constants which can be found in the header file. The G
value is −83.2 for HH polarization and −80.2 for HV polarization.34 The C value equals 32.0
for both polarizations. To compensate for speckle noise, the Gamma map filter was applied to
replace the central pixel with the average value in a moving window (3 × 3 pixels). Multilooking
processing was applied to the SLC image with two looks in the range direction and ten looks in the
azimuth direction.

As the SAR images are acquired using a side-looking geometry, distortions such as fore-
shortening, layover, and shadowing often exist in the images. In order to remove these distor-
tions, terrain correction was used to geo-code and orthorectify the SAR intensity image using the
one-second resolution ASTER DEM (30 m) (download from Ref. 39) using the software ASF
MapReady. During the terrain correction, the intensity image was resampled to a pixel size of
30 m using bilinear interpolation. Radiometric terrain correction was conducted to correct the
impact of topography on the SAR backscatter by multiplying a correction factor (a function of
the incidence angle under a flat surface assumption and the actual incidence angel) with the
above-terrain-corrected images.40 The pixel brightness of SAR images was adjusted with respect
to the observation geometry defined by incidence angle, the slope, and aspect of the local terrain.41

2.4 Field Measurement

Three types of field plots (n ¼ 69) including 16 plots grouped into one plot (super-plot), 19 plots
along a linear transect (line-plot), and 34 temporal plots (temp-plot) over the LDP were measured
during the flight campaign (Fig. 1). The super-plot was a 100 m × 100 m area with a slope of
>20 deg. It was divided into 16 subplots measuring 25 m × 25 m. The line-plot was a sample
line consisting of 19 subplots measuring 20 m × 20 m distributed along the direction of airborne
flight. The distance between the subplots in the line-plot was 50 m. The center location of each
subplot was positioned using a differential global positioning system (DGPS) station. The DGPS
mobile station was placed within the open space of the standing forest to ensure the positioning
accuracy. The individual trees were located by the survey total stations with equipment models of
TOPCON GTS-602 and TOPCON GPT-7002. Tree height (H) and first branch height (FBH)
were measured using a laser hypsometer; diameter at breast height (DBH) was obtained after
measuring the perimeter of the tree stem at the height of 1.2 m using a tape. Crown size (D) for
each individual tree was calculated as the average of the crown size in two orthotropic directions
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that was measured using a ribbon tape. The basic statistics of the field measurements are shown
in Table 1.

The biomass of different forest components was calculated based on their DBH and H
according to the empirical relative growth equations that were obtained from field measurements
in the Qilian Mountains42

EQ-TARGET;temp:intralink-;e002;116;487stock biomass ¼ 0.0478 × ½ðDBHÞ2 ×H�0.8665; (2)

EQ-TARGET;temp:intralink-;e003;116;455branch biomass ¼ 0.0061 × ½ðDBHÞ2 ×H�0.8905; (3)

EQ-TARGET;temp:intralink-;e004;116;428leaf biomass ¼ 0.2650 × ½ðDBHÞ2 ×H�0.4701; (4)

EQ-TARGET;temp:intralink-;e005;116;401fruit biomass ¼ 0.0342 × ½ðDBHÞ2 ×H�0.5779: (5)

The AGB for each individual tree was calculated as the sum of all the biomass components
(stock, branch, leaf, and fruit). Plot biomass is calculated as the sum of tree AGB within each
plot. The subplot AGB in the super-plot was calculated using the measured trees within a radius
of 20 m around the plot’s center to be consistent with the plot size of other types of plots. The
AGB for the 35 field plots within HDP obtained a mean value of 108.85 Mg ha−1 and a standard
deviation of 29.94 Mg ha−1 (Table 1), which were used to produce the AGB reference map
(Sec. 3.3). The additional 34 temp-plots distributed outside HDP were used to validate the
estimated spatial distribution of AGB over the whole study area.

A satisfactory relationship existed between the tree age (AGE) and DBH of Picea crassifolia
[Eq. (6)] in Qilian Mountains.43,44 Meanwhile, the field-measured DBH was found to be highly
related to H based on the field measurements in this study [Fig. 2(a)]. Thus, the relationship
between AGE and H can be approximately expressed as Eq. (7), which was further used to
evaluate the forest age for the sampling stratification over the whole HDP (Sec. 3.4)

EQ-TARGET;temp:intralink-;e006;116;217AGE ¼ 1.017þ 4.073 � DBH R2 ¼ 0.944��; (6)

EQ-TARGET;temp:intralink-;e007;116;186AGE ¼ 6.565 �H − 1.437: (7)

3 Methods

3.1 Crown Objects Segmentation

In order to obtain forest age distribution over the whole HDP, watershed segmentation was con-
ducted on the CHM to evaluate the forest age at crown object scale. The CHM was smoothed by
a 3 m × 3 m (approximately to the mean of the field-measured crown size D̄) Gaussian filter

Table 1 Basic statistics of the field measurements.

Field measurement Min Max Mean Std

Height (m) 2.50 26.10 14.31 9.38

DBH (cm) 3.10 26.50 8.82 5.14

FBH (m) 1.21 19.00 3.32 2.44

D (m) 0.55 18.05 3.28 1.42

AGB (Mgha−1) 36.88 174.88 108.85 29.94

AGE (year) 14 109 37 22

Note: H, tree height; DBH, diameter at breast height; FBH, first branch height; D, crown size; Max, maximum
value; Mean, mean value; Std, standard deviation.
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before segmentation. Afterward, the watershed algorithm was applied to the smoothed CHM.45 It
first inverted the CHM to a raster by converting peaks into depressions. Then the canopy basins
were delineated on the depression raster by segmentation. Finally, the delineated basin raster was
converted to a group of segments. A height threshold (1.5 m) was set to extract the tree crown
objects from the obtained segments. Then the crown objects were transferred into polygonally
shaped files. The highest pixel value obtained by zonal statistics within each crown polygon was
assigned as the tree height and its location as the tree location. The age of each crown object was
evaluated according to the local maximum canopy height according to Eq. (7). According to the
evaluated age, we stratified the crown objects into three layers, namely, young (AGE ≤ 50 year),
medium (50 year < AGE <¼ 100 year), and old (AGE > 100 year), which facilitated the sub-
sequent analysis of response of AGB to SAR backscatter at different forest ages. In order to
facilitate the sampling and spatial extrapolation of AGB over the whole study area, the segments
of age layers with irregular shapes were attributed back into individual pixels (20 m). Therefore,
all the variables and analysis in this study were conducted at the pixel level.

3.2 Variables Generation

Three groups of LiDAR metrics were calculated using the point clouds with normalized height
for each field plot and the whole HDP, respectively. The LiDAR metrics are classified into can-
opy height metrics, canopy complexity metrics, and CC metrics. Canopy height metrics describe
the height distribution of the canopy, including the maximum height (Hmax), mean height
(Hmean), and percentile height (Hp). Canopy complexity metrics describe the height dispersion
of the returns, including standard deviation of height (Hstd), coefficient of height variation (Hcv),
and variance of height (Hvar). First echo cover index (FCI) was calculated to describe the fraction
of canopy returns with respect to the total returns, which indicates the density, amount of foliage,
and other woody components.20 Subsequently, all LiDAR metrics over the HDP were calculated
at a grid size of 20 m. The LiDAR metrics for all the field plots were used to produce the AGB
reference map together with field measurements.

Two combined rasters, namely, backscatter ratio (Ratio) and difference (Diff), were generated
based on the dual-polarization PALSAR backscatter. Ratio can reduce the systematic noise,
whereas Diff is related to double bounce scattering mechanisms, which have been proven
but do not saturate with AGB quickly and can reduce topographic bias.6–8 Eight gray-level tex-
ture variables (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment,
and correlation) were calculated for the corrected backscatter and corresponding combined raster

Fig. 2 Scatter plots for the field-measured (a) tree height (H) and DBH; (b) H and crown size (D).
R2 is the coefficient of determination. **p < 0.01.
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using a gray-tone spatial dependence matrix.22 The matrix was calculated as an average of all the
four possible directions (0, 45, 90, and 135 deg). The texture variables (Table 2) were calculated
for each pixel in four different window sizes (e.g., 3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels) for the
four PALSAR raster, because an appropriate window size is critical for the texture measure-
ments. Usually, a small window can exaggerate the differences between the windows, whereas
a large window will cause over-smoothing.46 Therefore, there a total of 132 variables (2 back-
scatter + 2 combined variables + 128 texture variables) were obtained, which were further used
as the predictor variables for the estimation models

EQ-TARGET;temp:intralink-;e008;116;475Ratio ¼ σHH
σHV

(8)

EQ-TARGET;temp:intralink-;e009;116;434Diff ¼ σHH − σHV. (9)

3.3 Production of Above-Ground Biomass Reference Map

A spatially explicit AGB map over the HDP was produced using plot-level LiDAR metrics and
field AGB. Only the LiDAR data of HDP were used to produce the AGB reference map due to its
relative higher point density, which can ensure the precision and reliability of reference maps. In
fact, other vegetation parameters aside from AGB that were derived from airborne LiDAR have
also been used as a reliable reference data source for large-area mapping, e.g., canopy height and
CC.21,47 The mainstream approach in current AGB estimation, namely, stepwise multiple linear
regression (SMLR) model, was established.14,22,27,47–50 Both the field AGB and LiDAR metrics
were log-transformed prior to regression and were back-transformed after regression. The 35
field AGB plots within the HDP were used as training and validation data. Considering the
relatively small population of the field dataset within HDP, a leave-one-out cross-validation
method (LOOCV) was used to assess the prediction accuracy.51 The LOOCV approach made
the field data from each plot act simultaneously as training and validation samples. Coefficients
of final prediction models were obtained by averaging all the iterations, and goodness-of-fit of
the model was assessed by averaging statistical estimators during LOOCV.52

3.4 Sampling Design

Three sampling strategies were designed to extract the independent and dependent variables
from HDP. The three sampling strategies included: 1) regular sampling with a distance interval
of 50 m (hereafter, denoted as S1); 2) random sampling, S2; and 3) random stratified sampling,
S3. The LiDAR-evaluated forest age over HDP was used as the prior knowledge for the strati-
fication of S3, dividing the whole HDP into three stratums (young, medium, old). The number of
forest pixels for each stratum was counted, which was further used to obtain the sampling pro-
portion for each stratum by dividing the total number of forest pixels. There were a total of 400
samples extracted by each sampling strategy which was determined according to the spatial

Table 2 Formulas of the gray level texture variables used in this study.22

Texture variables Texture variables

Mean ðMEÞ ¼ PN−1
i ;j¼0 iMi;j Variance ðVarÞ ¼ PN−1

i ;j¼0 iMi;j ði −MEÞ2

Standard deviation ðStdÞ ¼ ffiffiffiffiffiffiffiffi
Var

p
Entropy ðENÞ ¼ PN−1

i ;j¼0 iMi;j ð− ln Mi;j Þ

Dissimilarity ðDIÞ ¼ PN−1
i ;j¼0 iMi;j ji − j j Second moment ðSMÞ ¼ PN−1

i ;j¼0 iM
2
i ;j

Homogeneity ðHGÞ ¼ PN−1
i ;j¼0 i

Mi
1þði−jÞ2 Contrast ðCTÞ ¼ PN−1

i ;j¼0 iMi;j ði − jÞ2

Note: Mi;j , the normalized co-occurrence matrix such that SUM (i , j ¼ 0, N − 1) ðMi;j Þ ¼ 1, i , j are the index of
the element in the matrix; N, the number of elements in the matrix.
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extent of HDP. The reference AGB and corresponding PALSAR variables were extracted using
the obtained sampling points and were subsequently used to analyze the response of the refer-
ence AGB to the PALSAR variables.

3.5 Estimation Models and Validation

SMLR models were built using the sampled AGB and SAR predictor variables. The predictor
variables were split into two groups, namely, one without texture variables (G1) and another with
texture variables (G2). Thus, two types of SMLR models (denoted as SMLR-I and SMLR-II)
were established using G1 and G2. Comparison between these two models will help to test the
necessity of adding the texture information into the models based on the dataset in this study.
Since multicollinearity and over-fitting among the predictor variables may exist, four commonly
used nonparametric models, namely, SVM model,28 GP model,28 K-NN model,15,29 and random
forest (RF) model,29,30 were also established based on G2. These nonparametric models have
been used to estimate many forest attributes including forest AGB, LAI, and canopy fuel.15,28,53

More details on the mechanism of these models can be found in the above-cited literature and
corresponding programming functions have been implemented in different library packages in
the statistical software R.54 In this study, most of the input parameters for the training models
were settled as default (e.g., SVM and GP models). After trial and error, the number of neighbors
(K) for the K-NN model input was set to 5. The random forest parameters (mtry and ntree) were
optimized to select a group of predictors with the best predictive power using a backward feature
selection during the regression.30 In this study, the random forest parameters ntree and mtry were
finally optimized to 1000 and 20, respectively. The sampled dataset was randomly split into two
parts: 3∕4 for model training (n ¼ 300) and the left 1∕4 for validation (n ¼ 100). Statistical
estimators were calculated to evaluate model accuracy including coefficient of determination
(R2), root-mean-square error (RMSE), relative root-mean-square error (rRMSE), and mean
of absolute error (MAE). The model with highest accuracy was applied on the selected
wall-to-wall predictor images. The estimation results were validated within and outside HDP
using the independent reference AGB (n ¼ 100) and the field-measured AGB from 34 temp-
plots, respectively. To examine whether there were statistically significant differences among
the estimated results from different models, a one-way analysis of variance (ANOVA) at the
p < 0.05 level was conducted with the use of the Duncan post hoc test.

4 Results

4.1 Sampled Above-Ground Biomass and Synthetic Aperture Radar
Backscatter

The LiDAR metrics selected by the SMLR model during the production of the AGB reference
map included Hmean, Hvar, H70, and FCI. The SMLR model suggested that the selected LiDAR
metrics can explain 78% of the variance of field-measured AGB with an RMSE of
24.21 Mg ha−1. Thus, the AGB reference map achieved satisfactory reliability and comparable
accuracy to previous studies.18,22 The spatial distribution of the sampled points from the three
sampling strategies (Fig. 3) indicated that the S2 sampling obtained the lowest geographic rep-
resentativeness compared with S1 and S3 since obvious clustering occurred in the northeast part
of the HDP.

The sampled AGB and backscatter from the three strategies obtained different variation
ranges (Table 3). Specifically, S3 obtained the largest range of AGB variability followed by
S1 and S2. Similar variation ranges were found in the sampled HH and HV backscatter values.
The mean and standard deviation of the sampled HV backscatter were always lower than those of
the HH backscatter. The significantly variations at low AGB levels contributed to the dynamic
range of HH and HV backscatter as shown in Fig. 4. In addition, higher correlations between
the sampled AGB and backscatter were obtained by S3 followed by S2 and S1. These indicated
that the representativeness of the sampled AGB and backscatter can be improved when the
stratification of forest age was considered.
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4.2 Relationship Between Sampled Above-Ground Biomass and
Synthetic Aperture Radar Backscatter

The sampled AGB from the three sampling strategies showed moderate but significant corre-
lation to the backscatter with a Pearson’s correlation coefficient (R) below 0.7 (Table 3). The HV
backscatter always showed higher correlation to AGB than HH backscatter. The highest R was
found between the AGB and HV sampled by S3. Nevertheless, the saturation point of backscatter

Table 3 Basic statistics of the sampled variables from three sampling strategies.

Variable\statistic Min Max Mean Std Range R

S1

AGB (Mgha−1) 0.92 213.98 86.71 52.53 213.06 —

HH (dB) −24.34 −3.32 −13.68 4.90 21.02 0.42

HV (dB) −34.20 −9.16 −20.63 5.19 24.04 0.46

S2

AGB (Mgha−1) 1.78 197.87 84.67 45.81 196.09 —

HH (dB) −26.72 −5.37 −15.10 4.45 21.35 0.52

HV (dB) −34.41 −10.66 −22.52 5.43 23.75 0.57

S3

AGB (Mgha−1) 0.04 230.38 84.67 49.33 230.34 —

HH (dB) −27.23 −5.29 −13.76 4.93 21.94 0.57

HV (dB) −35.16 −10.68 −21.08 5.85 25.48 0.63

Note: S1, regular sampling; S2, random sampling; S3, random stratified sampling; R, Pearson’s correlation
coefficient with respect to AGB.

Fig. 3 The spatial distribution of the sampled points from (a) regular sampling S1; (b) random
sampling S2; and (c) random stratified sampling S3.
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signal to AGB also occurred based on our dataset as many previous studies reported (Fig. 4). The
saturation point of backscatter signals and corresponding AGB values were quantified using
the parametric models demonstrated in the previous study.55 The backscatter sampled by the
three sampling strategies tended to saturate between −12 and −14 dB at HH and between
−21 and −23 dB at HV. The saturation point of AGB was around 63 Mg ha−1 at HH and around
68 Mg ha−1 at HV. Considering the saturation problem, simple logarithmic models were fitted
based on the sampled AGB-backscatter datasets (Table 4).

Figure 5 shows the backscatter for different AGB levels sampled from the three sampling
strategies. The low AGB level (≤50 Mg ha−1) corresponded to vegetated areas where ground
contributed the most to the backscatter and rapid attenuation of the signal occurred. The medium
AGB level (50 Mg ha−1 < AGB ≤ 100 Mg ha−1) corresponded to denser vegetated areas where
volume scattering contributed the most to the signal. The high AGB level (>100 Mg ha−1) cor-
responded to areas where signal saturation appeared. Generally, higher AGB corresponded to
higher backscatter coefficients at both HH and HV polarizations. Slight variations of mean back-
scatter were found among the three sampling strategies. However, the HV backscatter showed
higher standard deviations at different AGB levels than HH backscatter. Additionally, the back-
scatter sampled by S3 obtained larger standard deviations than the other two strategies especially

Fig. 4 The scatter plots of the sampled AGB and PALSAR backscatter from the three sampling
strategies: (a) and (b) S1, (c) and (d) S2, and (e) and (f) S3.
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at low AGB level which contributed most to the backscatter dynamic ranges. As S3 obtained
a larger range of AGB variability, variables sampled by S3 were finally selected as the basic
dataset for the subsequent analysis. Aside from AGB and the backscatter, corresponding com-
bined variables (Diff and Ratio) and the texture variables were also used to establish the esti-
mation models.

Fig. 5 Mean of the PALSAR backscatter (HH, HV) by AGB levels (low: AGB ≤ 50 Mgha−1;
medium: 50 Mgha−1 < AGB ≤ 100 Mgha−1; high: AGB > 100 Mgha−1) sampled from three
sampling strategies (S1, S2, S3). The vertical error bars represent the standard deviation.

Table 4 The simple logarithm relationship between the sampled AGB and PALSAR backscatter,
the saturation point of backscatter signal, and corresponding AGB point. **p < 0.01.

Fitted models R2 Saturation point (dB) AGB point (Mgha−1)

S1

HH HH ¼ 2.193 � lnðAGBÞ − 22.80 0.18** −13.68 63.96

HV HV ¼ 2.470 � lnðAGBÞ − 30.90 0.21** −22.40 68.29

S2

HH HH ¼ 2.875 � lnðAGBÞ − 27.21 0.27** −12.96 62.30

HV HV ¼ 3.560 � lnðAGBÞ − 37.73 0.32** −22.42 69.15

S3

HH HH ¼ 2.864 � lnðAGBÞ − 25.67 0.33** −13.76 63.58

HV HV ¼ 3.375 � lnðAGBÞ − 35.58 0.37** −21.08 67.58
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4.3 Biomass Estimation and Validation

Two SMLR models were established using the sampled G1 and G2 dataset (Table 5). The results
showed that the SMLR-II model obtained higher accuracy than the SMLR-I model with a much
higher R2 of 0.65, lower RMSE of 28.30 Mg ha−1, and lower MAE of 24.34 Mg ha−1.
The robustness of SMLR-II is also higher than that of SMLR-I with a lower rRMSE
(0.38 < 0.66). It indicated that the texture information enriched the explanatory power of the
independent dataset and could improve model accuracy. The cross polarization backscatter
HVand the backscatter difference Diff were selected by both of the models. The texture variables
with different texture indications calculated for the three window sizes (3, 7, and 9) were selected
by SMLR-II. The variables selected by the stepwise regression showed a low level of multi-
collinearity with high tolerance and low variable inflation factor (VIF) (Table 6). The added
texture variables directly contributed to the increase of R2 and decrease of error evaluations
with a p value <0.05.

The nonparametric models also obtained a satisfactory performance with high R2 and low
errors (Table 7). However, not all the nonparametric models outperformed the parametric model
(SMLR-II). The one-way ANOVA (p < 0.05) results revealed that statistically significant
differences were found among the six models in the estimation of AGB (Fig. 6). The AGB
estimated by K-NN and GP model was significantly higher than the AGB estimated by

Table 5 The parametric models established using the dataset without texture information (G1)
and the dataset with texture information (G2). **p < 0.01.

Estimation models R2 RMSE rRMSE MAE

SMLR-I

AGB ¼ 210.254þ 6.83 � HVþ 2.793 � Diff 0.44** 38.29 0.66 75.91

SMLR-II

AGB ¼ 339.628þ 6.794 � HVþ 2.677 � Diffþ 1.562 � HV_Mean_Win7
−4.74 � HH_Disimilarity_Win7 − 32.779 � HV_Entropy_Win9
−34.0466 � Ratio_Homogeneity_Win3þ 20.216 � Diff_Correlation_Win9

0.65** 28.30 0.38 24.43

Note: Win3, Win7, and Win9 represent that the window size of texture variables is 3, 7, and 9, respectively.

Table 6 Statistics of collinearity and significance of the independent variables in the parametric
models.

Variable\statistics Tolerance VIF p

SMLR-I

HV 0.746 1.340 <0.001

Diff 0.741 1.530 <0.001

SMLR-II

HV 0.727 1.376 <0.001

Diff 0.729 1.372 <0.001

HV_Mean_Win7 0.969 1.032 <0.001

HH_Disimilarity_Win7 0.973 1.028 0.018

HV_Entropy_Win9 0.909 1.101 0.030

Ratio_Homogeneity_Win3 0.902 1.109 0.042

Diff_Correlation_Win9 0.895 1.117 0.020
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other models. No statistically significant differences were found between the SLMR-II and RF
model in the AGB estimation. The RF model achieved the highest model accuracy and robust-
ness with an R2 of 0.81 and rRMSE of 0.28. The final RF model also included the texture var-
iables aside from the backscatter. The relative importance for the top 20 variables (out of 132) in
the final random forest model is shown in Fig. 7. Finally, the RF model was selected as the model
to map the spatial distribution of AGB over the study area.

The spatial distribution of AGB predicted by the RF model [Fig. 8(a)] was assessed using the
field-measured AGB from 34 temp-plots distributed outside the HDP. The results showed that
the predicted AGB was comparable to the field measurements, obtaining an R2 of 0.62 and
RMSE of 42.33 Mg ha−1 (Fig. 9). Thereafter, estimation error map for the HDP was generated
by subtracting the reference map from the predicted map [Fig. 8(b)]. Approximately 58% of
forest pixels obtained an MAE below 30 Mg ha−1 [Fig. 10(a)]. The overall MAE of AGB for
all the forest pixels within HDP followed an approximately normal distribution [Fig. 10(a)]. The
MAE tended to be lower in areas with higher CC which corresponded to the medium AGB levels
[Fig. 10(b)]. Significant high MAE levels were found in areas which were dominated by young
and old forest stands with low and high AGB intervals.

5 Discussion

5.1 Utilization of LiDAR-Derived Prior Knowledge

In this study, LiDAR-derived AGB was used as reference data for upscaling the estimation of
AGB due to its high spatial resolution and comparable reliability to the field measurements. This

Fig. 6 The statistical significance among the six models for the estimated AGB. The histogram
with bars indicated the means� standard of error. Different letters indicate significant differences
at the p < 0.05 level, according to one-way ANOVA.

Table 7 The nonparametric models established using the dataset with texture information (G2).
**p < 0.01.

Estimation models R2 RMSE (Mgha−1) rRMSE MAE (Mgha−1)

SVM 0.65** 28.96 0.33 20.23

GP 0.42** 42.82 0.62 35.94

K -NN 0.58** 37.95 0.56 34.67

RF 0.81** 14.85 0.28 19.90
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Fig. 8 The spatial distribution of (a) AGB over the whole study site estimated by RF model and
(b) estimation error of AGB within HDP.

Fig. 9 The RF model predicted and field-measured AGB outside the HDP. **p < 0.01.

Fig. 7 The percent increase in mean square error without the variable in the random forest model
for the top 20 predictor variables.
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can be helpful for cases where national forest inventories are unavailable since collecting a group
of geographically and statistically representative field AGBs is of high cost and is inoperable.
Thus, considering the sampling size of the training dataset, the utilization of LiDAR-derived
AGB might be cost-efficient as the economic cost for a large quantity of field measurements
sometimes can be even higher than the airborne campaign. A first attempt was made to use
the LiDAR-evaluated forest age as the prior knowledge for random stratified sampling,
which increased the representativeness and variation range of the sampled AGB. The forest
age was directly evaluated based on the LiDAR-derived canopy height, which was supported
by the previous study where the stand height proved to be the most important forest structural
predictor.56 Thus, the utilization of LiDAR-derived height to evaluate the stand age enriched the
potential of airborne LiDAR on forest monitoring since most previous studies focused on using
airborne LiDAR to predict height-related and structure parameters.

5.2 Above-Ground Biomass Estimation and Uncertainty

The saturated backscatter for different forest types were usually within a small variation range (e.
g., between −8 and −11 dB at HH and between −11 and −15 dB at HV) at a given polarization
and incidence angle.5,57 In this study, the saturation point of HV backscatter was a bit lower than
those in the cited studies.5,57 This likely resulted from the dominating coniferous species and the
mountainous topography in the Dayekou area. The better relationship of AGB to HV than HH
backscatter is probably due to the fact that HV polarization is less influenced by soil, vegetation
moisture, and topography.58 This agrees well with previous studies where the HV backscatter of
AIRSAR at C band were found to be saturated at a higher AGB level, and suggested that the
L-band HV data from ALOS PALSAR should be considered when large-area mapping of forest
AGB is needed.59

The estimation accuracies for the parametric models in this study were moderately high and
acceptable compared with most previous studies where large quantities of field measurements
were needed.8 Only the RF model from the four nonparametric models obtained comparable
performance to the SMLR-II model, which indicated that the estimation model of forest
AGB is site-specific. Thus, comparisons among various models should be conducted before
applying the model onto regional mapping. High correlation, found between the field-measured
and predicted AGB outside the HDP (R2 ¼ 0.62, RMSE ¼ 42.33 Mg ha−1), indirectly sug-
gested that the SAR-predicted AGB have comparable accuracy to the field measurements.
However, uncertainties still existed during the estimation procedure. We evaluated the forest

Fig. 10 The distribution of (a) number of forest pixels in different intervals of estimation errors and
(b) MAE and CC in different AGB intervals.
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age of HDP at crown object level and attributed it back to pixel level instead of directly evalu-
ating it at pixel level. Although the crown-level evaluation procedure followed the natural logic
but still involved some uncertainties during the scale shifting. Usually, the SAR backscatter tends
to be saturated for dense CC. In this study, high errors occurred in the areas with high CC and
AGB levels (e.g., old forest stands) and areas with lower CC (e.g., young forest stands). Some
areas with higher CC also obtained lower MAEs due to the fact that the CC of the forest over the
whole study site was moderately high and most of the forest stands were at a medium growth
stage.60 Thus, backscatter for young forest stand was highly affected by topography and back-
ground soil, whereas those for old forest tended to suffer more from signal saturation.

Most analyses in this study were conducted based on the raster with a spatial resolution of
20 m. The effects on AGB estimation from the spatial scale of field plots, LiDAR metrics, and
SAR backscatter were not fully considered in this study. Previous studies reported that the cor-
relation between AGB and backscatter will be improved when the pixel size increases,61 because
the effects from spatial heterogeneity decreased and local forest variations were smoothed. It is
likely to take for granted that less noise or uncertainties will be smoothed when the sampling
population becoming smaller. In fact, field plot size often varies in order to make it consistent
with the spatial resolution of remote sensing images during the simultaneous ground-airborne or
ground-satellite campaigns. In this study, the plot size of field measurements (20 m) was mainly
designed for the airborne LiDAR campaign, which might be smaller than those used for satellite
SAR images. Thus, the scale effect on AGB estimation from the field measurements should be
further investigated in the future.

6 Conclusion

In this study, we tried to upscale the estimation of coniferous forest biomass using airborne
LiDAR-derived biomass and satellite ALOS PALSAR data via parametric and nonparametric
models over a mountainous environment in northwest China. Results showed that random strati-
fied sampling that used LiDAR-evaluated forest age as stratification knowledge performed the
best in the AGB sampling. The addition of backscatter texture variables improved the parametric
model performance by an R2 increase of ∼21% and an RMSE decrease of 10 Mg ha−1. Not all
the nonparametric models, except for the RF model, obtained comparable performances
(R2 ¼ 0.78, RMSE ¼ 14.95 Mg ha−1) to the parametric model in our cases. Higher estimation
errors occurred in the young forest stands with lower CC and older forest stands with higher
AGB levels. In conclusion, the incorporation of these two active remote sensing tools was proven
to be efficient in upscaling the AGB estimation to regional scale, which provides some guidance
for future forest management over cold and arid areas.
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