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Abstract. Satellite remote-sensing techniques face challenges in extracting vegetation-cover
information in desert environments. The limitations in detection are attributed to three major
factors: (1) soil background effect, (2) distribution and structure of perennial desert vegetation,
and (3) tradeoff between spatial and spectral resolutions of the satellite sensor. In this study,
a modified vegetation shadow model (VSM-2) is proposed, which utilizes vegetation shadow
as a contextual classifier to counter the limiting factors. Pleiades high spatial resolution, multi-
spectral (2 m), and panchromatic (0.5 m) images were utilized to map small and scattered
perennial arid shrubs and trees. We investigated the VSM-2 method in addition to conventional
techniques, such as vegetation indices and prebuilt object-based image analysis. The success of
each approach was evaluated using a root sum square error metric, which incorporated field data
as control and three error metrics related to commission, omission, and percent cover. Results of
the VSM-2 revealed significant improvements in perennial vegetation cover and distribution
accuracy compared with the other techniques and its predecessor VSM-1. Findings demonstrated
that the VSM-2 approach, using high-spatial resolution imagery, can be employed to provide a
more accurate representation of perennial arid vegetation and, consequently, should be consid-
ered in assessments of desertification. © 2016 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JRS.10.036008]
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1 Introduction

Desertification has raised major global concerns in recent years due to its contribution to losses
in biodiversity, soil erosion, and agricultural production.1 The limitation of land productivity is
particularly alarming as it intensifies poverty and political instability. Use of remote sensing to
assess and monitor desertification creates avenues for cost-effective methods to evaluate
biophysical indicators in the context of desert environments with very scattered vegetation.
Moreover, the temporal resolution of remote sensing provides an invaluable attribute for
analyzing desertification trends by investigating changes in vegetation cover across time.2

However, the current approach of applying regional scale (<400 × 400 km) and lower spatial
resolution satellite imagery (30 to 250 m) for assessing desertification is arguably concerning,
due to the structural characteristics and distribution of perennial arid vegetation. Perennial arid
vegetation is often relatively small in size (0.4 to 4 m in diameter), exhibits sparse distribution and
such assessments may weaken the confidence of researchers in their ability to retrieve adequate
information on vegetation cover.3 Furthermore, the heterogeneity of arid landscapes (mainly soils)
is a fundamental characteristic and should be taken into account when mapping perennial
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vegetation cover. These considerations encourage the use of higher spatial resolution satellite
imagery (submeter to 5 m) to extract perennial vegetation-cover information at the local scale.

Remote-sensing methods, such as vegetation indices (VIs), can provide an estimate of the
greenness of an area as they are sensitive to vegetation cover.4 However, the classical VIs approach
entails challenges when attempting to detect arid vegetation due to the dominance of soil back-
ground within each pixel, which makes it difficult to retrieve accurate quantitative information on
vegetation cover.5 In addition to VIs, other remote-sensing techniques, such as spectral mixture
analysis (SMA), have been applied successfully for detecting vegetation cover in arid lands.6–8

SMA, however, is optimum when using satellite imagery that incorporates a large number of spec-
tral bands. Currently, high-spectral resolution satellite sensors often exhibit low-spatial resolution
and hence the tradeoff between resolutions is an important issue.9 The use of VIs and SMA are the
preferred approaches when handling pixels that are usually larger (in size) than the object of
interest.10 VIs, however, still dominate researchers’ and stakeholders’ preferences due to their rel-
ative simplicity in comparison to the more complex SMA. Notably, a number of studies11,12 have
focused on applying SMA to high-spatial resolution imagery and found success in their approach.
Although these studies provide a valid and worthy avenue of inquiry, especially with the avail-
ability of more spectral bands, it is not pursued in this study due to the focus of generating an
operational approach for efficient delineation of perennial arid vegetation.

There is an increasing interest in integrating other variables, such as texture and context, to
enhance the mapping process of target objects in the field of remote sensing.13,14 Although the use
of spatial properties to distinguish between features is applied mostly during visual interpretation,
increased interest grew concurrently with the emergence of high-spatial resolution satellites in the
recent years.15 This has led to the movement toward the use of object-based image analysis
(OBIA), which is based on segmenting the image into relatively homogeneous regions using
the size, shape, texture, and context associated with the regions, thus providing an improved
basis for image analysis.16 Unlike the traditional pixel-based approaches, OBIA combines spectral
and contextual information to classify objects that consist of a few pixels.16 The rise of commer-
cially available high-spatial resolution satellite imagery (<5 m) and the ever-growing availability
of powerful off-the-shelf software invites investigation of the potentiality for mapping perennial
arid shrubs and trees at high levels of accuracy. Advancement in this field can provide encourage-
ment to shift away from the recognized limitations of pixel-based remote-sensing methods, which
fail to represent true geographical objects and entail limited pixel topology. For desertification
assessment and monitoring, semiautomated OBIA for vegetation classification would be an
advance. However, challenges still remain even with higher spatial resolution imagery, where
the usually square pixel in images may not faithfully relate to the geometric characteristics of
arid shrubs and trees. Therefore, a more precise delineation of perennial arid shrubs and trees
using a semiautomatic workflow can potentially provide invaluable information to arid land man-
agers and potentially be used as accuracy assessors for the current assessment, monitoring, and
modeling practices, which employ low- to medium-spatial resolution data. In the near future, with
growing archives of high-spatial resolution imagery, development of operational and automatic or
semiautomatic biophysical information extraction methods are necessary to feed an array of appli-
cations and stakeholders that can benefit from this vital information.

This study builds on the vegetation shadow model (VSM-1),17 which used shadow as a con-
textual reclassifier that acted as a clean-up operator for an overclassified vegetation-cover image
derived from VIs. The objective of this study was to evaluate the ability of an extended vegetation
shadow model (VSM-2) that takes into account vegetation size and structure to enhance the accu-
racy of vegetation-cover extraction in arid environments at a local scale, with comparisons to
results from VIs, prebuilt OBIA and its predecessor VSM-1. The primary focus was on perennial
shrubs and small trees that are key in stabilizing the soil, rather than on seasonal short grasses.

2 Materials and Methods

2.1 Study Area and Satellite Imagery

The study area for this reserach was located in the central arid and semiarid lands of the Meknes–
Tafilalet region in north central Morocco (Fig. 1) between latitudes 32.869°N and 32.959°N and
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longitudes 4.964°W to 5.077°W. The choice of the study area was motivated by the evident and
current land degradation processes and the lack of rigorous assessment in these particular areas.
The region contians many rural communities and small villages that are primarily affected by the
desertification process. The study area, which encompasses an amalgamation of various dryland
subtypes such as semiarid mountainous, semiarid and arid regions, is a transition between the
Atlas mountains piedmonts and the harsher sub-Sahara of south-eastern Morocco. Land cover
within the study area supports mixed grazing and agricultural practices in a diagonal (NW to SE)
spatial distribution, which is associated with the flow of natural, intermittent water courses. The
area is very dry; rainfall (less than 200 mm∕year) is infrequent and erratic and desert winds can
be extremely strong. In this study, two subsets (dominated by Artiplex Halimus and Retama
Monosperma) covering 50 m × 40 m were selected from the study area. Subset 1 represents
a microdesert ecosystem with sparsely distributed desert vegetation and high-soil background
reflectance, whereas Subset 2 is a more densely vegetated area with larger vegetation structural
characteristics and a lower soil background area. Both subsets were selected based on consul-
tation with local expert desert ecologists, the experience from a field visit conducted in 2012 and
visual interpretation of high-spatial resolution satellite imagery.

Field data collection was conducted in November 2013 to assess the performance of the VIs
and the OBIA approaches applied to the imagery over the two subsets. The field study involved
using a Leica SR 530 differential GPS (dGPS) to collect positions of perennial shrubs and trees
to ∼10-cm accuracy. For each subset, measurements of the physical characteristics of the target
objects, including height and canopy diameter, were conducted. The sampling strategy collected
information on all present vegetation (perennial shrubs and small trees) within the subsets that
had an approximate canopy diameter of 50 cm and above, based on the rationale that plants
larger than this size are key in supporting root systems and stabilizing soil structures.

A high-spatial resolution multispectral Pleiades 1A image was acquired dated November 15,
2012 during the autumn season when the perennial vegetation is dominant. Ground sampling
distance (approximately the spatial resolution) of the image was 2 m with four spectral bands
including blue (0.43 to 0.55 μm), green (0.50 to 0.62 μm), red (0.59 to 0.71 μm) and near-infra-
red (0.74 to 0.94 μm). The image was geometrically corrected and ortho-rectified to UTM 30N
WGS84. Radiometric calibration was applied using the ATCOR 2 model, which implements the
MODTRAN4+ radiative transfer code.18

Fig. 1 (a) Study area extent Pleiades 1A Image (RGB—4, 3, 2). (b) Two subsets of the study area.
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2.2 Ground Truth and Accuracy Assessments

Traditional accuracy assessment approaches in the classification of vegetation cover predomi-
nantly use percent cover as the solitary means of assessment.19–21 Percent cover was embraced in
this study as one assessment parameter. Therefore, percent cover relative to the investigated
subsets was derived from estimates generated from the remote-sensing mapping method. The
assessment parameter was further supplemented with commission and omission errors to
develop an evaluation metric to assess the performance of the different perennial vegetation-
cover extraction approaches (Fig. 2).

To evaluate the performance of a remote-sensing method for mapping individual shrubs and
trees, it is not sufficient to utilize just percent cover as the sole mean of assessment. Various
weaknesses are inherent with such an approach. For example, a method resulting in overclassi-
fication of a certain patch of vegetation can complement cover estimates from patches that were
not detected (under classification). For high-accuracy delineation of individual shrubs and trees,
metrics such as commission and omission, which are rarely used in arid vegetation studies,
can assist in evaluating how accurately the methods map vegetation. Employment of commission
and omission errors is widespread in forest inventory studies, where these metrics are applied
to classical confusion matrices to evaluate the methods’ performance in detecting individual
tree crowns.22,23 Following the generation of vegetation-cover estimates, the performance of
each approach was evaluated and assessed using the developed root sum square (RSS) error
metric

EQ-TARGET;temp:intralink-;e001;116;489RSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − CEÞ2 þ ð1 − OEÞ2 þ ð1 − PCEÞ2

q
; (1)

where

EQ-TARGET;temp:intralink-;e002;116;437Commission error ðCEÞ ¼ 1þ Commission area

Truth area
; (2)

EQ-TARGET;temp:intralink-;e003;116;401Omission error ðOEÞ ¼ 1þ Omission area

Truth area
; (3)

EQ-TARGET;temp:intralink-;e004;116;362Percent cover error ðPCEÞ ¼ Percent cover

True percent cover
: (4)

Fig. 2 Schematic diagram delineating the inputs used in the RSS metric.
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Geographic information systems (GIS) analysis was utilized to extract percent cover area, com-
mission area and omission area for each perennial vegetation-cover output. Using a vector inter-
sect operation between the derived cover area and the “true” cover area, as defined by the dGPS
position of each shrub or tree plus field measurement of canopy diameter, an area of common-
ality was generated and was further used to identify the area of omission. An erase operation was
applied on the vectorized boundaries of the derived vegetation cells using the true perennial
vegetation cover to calculate the area of omission. Percent cover of each output was extracted
using the statistics tool in the GIS. The calculations of the errors returned metrics, where best
performance was with values closer to 1 for the individual metrics of CE, OE, and PCE.
Following the generation of perennial vegetation-cover estimates, the performance of each
approach was evaluated and assessed using the RSS, where a value closer to 0 was best.

2.3 Vegetation Indices Threshold Analysis

While VIs analysis has been undertaken before, it was included in this study because of its
extensive use and acceptance for mapping arid vegetation in desertification studies due to its
simplicity and efficiency, and to assess the sensitivity of mapping accuracy with variation in
index thresholds. The indices utilized included the normalized vegetation index (NDVI),24

soil-adjusted vegetation index (SAVI),25 modified soil-adjusted vegetation index 2
(MSAVI-2),26 transformed soil-adjusted vegetation index (TSAVI-2),27 perpendicular vegeta-
tion index 1 (PVI-1),28 perpendicular vegetation index 3 (PVI-3),26 and perpendicular distance
54 (PD-54).29 Image processing software ERDAS IMAGINE 201530 was used to calculate the
VIs where prebuilt indices in the software were utilized for automatic extraction (NDVI, SAVI,
and MSAVI-2). Other nonintegrated indices (TSAVI-2, PVI-1, PVI-3 and PD-54) were built
in the Modeller function in IMAGINE. VIs were calculated using the following processes:

• SAVI was calculated with differing L values of 0.5, 0.75, and 1.0.
• TSAVI-2, PVI-1, and PVI-3 were calculated by first deriving the slope and intercept of

the soil line in an NIR and R scatterplot for the whole image (slope ¼ 1.0682 and the
intercept ¼ 0.099).

• Dry and moist soil data points were used to generate soil-line data and to extract the values.
• For PD-54, the slope and intercept were extracted from the soil line in a green (G) and R

scatterplot for the whole image (slope ¼ 1.317 and the intercept ¼ 0.0569).

The literature on the application of VIs for extracting vegetation cover acknowledges the
inherent issue of threshold selection and its role in over or underclassification.19 However, com-
mission and omission errors and their effects on the classification output are rarely discussed in
arid zone studies. Moreover, results from VIs provide a good starting point and a benchmark for
comparison with the subsequent remote-sensing methods employed in this study. For this study,
threshold analysis was applied over the seven VIs to identify at which threshold value an opti-
mum vegetation-cover classification for each index was returned. The selection of the range of
values on which the threshold divisions were set was decided through an iterative process, where
each vegetation index was examined through visual interpretation of the imagery to identify at
which threshold the index returned 0% vegetation and 100% vegetation. Hence, this range pro-
vided a preparatory scale for the more detailed numerical examination of each index.

2.4 Object-Based Image Analysis

OBIA has gained increased interest due to the need of improved algorithms that take into account
the spectral characteristics of the surrounding (contextual) pixels and also geometric and textural
information of the target feature or pixel.31 Incorporating textural information became advanta-
geous as the spatial resolution of imagery increased.16 Furthermore, it was a primary aim to
convert pixels into image objects to eliminate the “salt and pepper effect” often caused by
per-pixel classifiers. The literature on the use of OBIA for vegetation mapping shows dominance
in the application to forest ecosystems.16,32–36 However, various studies that employed OBIA for
mapping arid vegetation have demonstrated promising success.12,13,37–39 The promising, yet
seemingly under researched area of mapping arid vegetation using OBIA, encourages continued
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research for the development of semiautomatic and highly accurate delineation of arid shrubs
and trees. With powerful commercial software, such as eCognition, IMAGINE Objective, and
ENVI feature extraction, evaluating the enhancement OBIA can bring to the detection of
perennial arid vegetation is a promising research area with potentially higher accuracies than
traditional methods.

2.4.1 Prebuilt object-based image analysis

IMAGINE Objective30 and eCognition40 software was evaluated for mapping arid shrub and tree
objects for the two subsets. IMAGINE Objective incorporates a model consisting of operators
working systematically in two separate machine learning domains, raster and vector. The soft-
ware uses cue algorithms that yield metrics quantified to color/tone, texture, size, shape, shadow,
site/situation, pattern and association, which are measured in the raster- and vector-level learning
components.30 In IMAGINE Objective, training polygons of a feature of interest (shrubs and
trees) were digitized and submitted to compute the pixel cue metrics with background pixels
including grass, bare soil, shadow, buildings, and roads. Subsequently, both the embedded
Segmentation and Threshold and Clump approaches were trialed. IMAGINE Objective segmen-
tation retained significant undersegmentation, partitioning the image into large segments that did
not represent the target objects. Based on these results, there was little encouragement to proceed
with the consequent operators. The Threshold and Clump approach was employed which applied
a threshold on a pixel probability layer, retaining pixels that have a probability greater than or
equal to the threshold value. The operator converted these remaining pixels to binary (0, 1), then
performed a contiguity operation (clump) on the binary values of 1. A probability threshold
value of 0.9 was chosen based on visual inspection of the results from trialing the range of
thresholds available from the software.

The software eCognition, with the capability of multiresolution segmentation, has been used
to detect arid shrubs and often advocated to generate superior results to other remote-sensing
methods.13,37,39 The approach embedded within eCognition segments the image based on three
parameters: (1) scale, (2) colour/spectra, and (3) shape. The scale is a unitless parameter which
drives the size of image objects, where a larger scale parameter results in larger image objects and
smaller scale parameter results in a smaller image. The color and shape parameters can be
weighted from 0 to 1. Within the shape setting, smoothness or compactness can be defined and
are additionally weighted from 0 to 1.39,41 Table 1 demonstrates the segmentation parameters that
were applied to Subsets 1 and 2 within the study area.

The parameters were determined based on visual inspection of the segmentation results
across a range of scales and their ability in detecting shrub and tree objects. The scale of 3
was applied for the first level (level 1) of segmentation to identify shrubs and trees. A scale
of 10 was used for the second level (level 2) of segmentation to investigate the potential of
detecting vegetation patches as often is conducted in landscape analysis studies using multire-
solution segmentation.42,43 It must be noted that the scale of investigation in this paper is focused
at the individual shrub and tree level. Therefore, a multiscale segmentation approach is not
required, because other scales of landscape classes are beyond the scope of this study. Once
the segmentation was complete, the classification was performed by manually training the seg-
mented objects. Two classes were used in this analysis: (1) vegetation and (2) background.

2.4.2 Vegetation shadow model

The first version of VSM, known as VSM-1, used a filter to convolve the shadow pixels to
colocate with their associated vegetation pixels. The concept of the VSM-1 was to apply a filter

Table 1 Segmentation parameters in eCognition.

Level Scale Color Shape Smoothness Compactness

1 3 0.8 0.2 0.8 0.2

2 10 0.8 0.2 0.4 0.6
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for the convolution of shadow pixels for the purpose of superimposing these pixels on top of
associated vegetation pixels to act as a “determent of shrub/tree presence.” Classification of
shadow was first achieved by using a multinetwork Bayesian classifier embedded in IMAGINE
Objective applied on the Pleiades panchromatic image. VIs were subsequently applied to the
Pleiades multispectral image to generate a vegetation-cover image. VSM-1 generated a vegeta-
tion-cover image by applying a low-threshold NDVI (0.2) to intentionally produce an overclas-
sified vegetation-cover raster. The raster was then resampled to 0.5-m spatial resolution to match
the resolution of the shadow raster. The subsequent process was to convolve the shadow pixels
and generate a convolved shadow raster. During the filter design stage, factors such as Sun azi-
muth and elevation at the time of image acquisition and tree structure affected the design. For this
study, shadow distance (D) was calculated using the expressionD ¼ H cot a deg for some of the
shrubs and trees within the study area, whereH is the height of the tree and a deg is Sun elevation
angle (Fig. 3). This assumes that the ground is flat, the trees are vertical, and that tree canopy
does not obscure shadow. The shrubs and trees had an average height of ∼1 m and an average
shadow distance of ∼1.3 m for the date, geographic location, and time of acquisition for the
Pleiades satellite image. For these shrubs and trees, at least three pixels of 0.5-m size were
needed to map and convolve their shadows.

A 3 × 11 filter (Fig. 4) was initially used to provide a cushion of two extra pixel to allow for
higher trees and to accommodate for the grid azimuth of the shadow for the filter (−14.52 deg).
Grid azimuth was computed from geographic north by application of the map projection grid
convergence.

The VSM-1 model was further modified into VSM-2 by integration of multiple filters to take
into account the varying sizes of perennial shrubs and trees (Fig. 5). The results of VSM-1 dem-
onstrated that Subsets 1 and 2 yielded different levels of accuracy when utilizing the 3 × 11 filter
due to the different structural characteristics between them. The 3 × 11 filter returned high errors
of commission for Subset 1, especially for small-sized shrubs. More discussion regarding these
results is provided in the results section. VSM-2 integrated three convolution filters that were
designed to detect small-, medium-, and large-sized shrubs and trees. The model ran three con-
volution filters of size 3 × 7, 3 × 9, and 3 × 11 (Fig. 4), where the allocation of three pixels for
the width of the filter was sufficient due to the shadow-grid azimuth angle (−14.52 deg). Using
filter heights of 7, 9, and 11 pixels aided in detecting different sized shrubs and trees where a
smaller filter is better suited to detect smaller shrubs and trees with a minimal number of shadow
pixels. The model generated three convolved shadow rasters, which were also combined with the
low-threshold NDVI image using a Boolean AND operation to generate three Boolean AND
rasters. The three Boolean output rasters were then converted into GIS vector data and further
processed to produce three vector layers that were related to small-, medium-, and large-sized

Fig. 3 Schematic diagram delineating calculation of shadow distance cast by a shrub or tree.
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shrubs. GIS processing within the model utilized attribute queries which classified the perennial
vegetation into three different shrub and tree sizes based on area. The classifications are detailed
in Fig. 4. Using GIS selection queries, the model subsequently returned each class to its cor-
responding layer to avoid duplication of perennial vegetation-cover estimates from the multiple
filters.

An allocation of 4 m2 for small shrubs was based on the minimum possible area for the
resolution of the Pleiades multispectral image of 2 m. Medium shrub area was classed between
4 and 12 m2, whereas large shrubs were greater than 12 m2 and up to 100 m2. Although the
focus of this study was to detect scattered low-lying shrubs and trees in arid lands, the use of up
to 100 m2 for the area of large-sized shrubs and trees was to take into account some of the
vegetation clumps and interconnected perennial vegetation canopies. Classification of size
was based partially on an arbitrary decision from an iterative procedure conducted through the
examination of the best results and knowledge obtained from field work. It is, however, noted
that further investigation of size classification mechanisms is needed and should be considered in
further research. In this study, a general classification was utilized to assess whether the multi-
filter approach could achieve enhancements in perennial vegetation-cover estimation and add
complementary size classification information to the output. To generate a single perennial veg-
etation dataset, the three vectors layers were combined using a GIS union operation and dis-
solved to produce a perennial vegetation-cover layer.

3 Results and Discussion

The RSS metric results for VIs and OBIA are detailed in Table 2. For VIs, MSAVI-2 performed
best statistically for Subset 1, an area with a higher soil background cover and small- to medium-
scattered desert shrubs, where it returned an RSS of 0.738. NDVI on the other hand returned the
best results for Subset 2, which is an area exhibiting denser vegetation and incorporating less soil

Fig. 4 Convolution filters: (a) 3 × 7, (b) 3 × 9, and (c) 3 × 11.
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background, with an RSS of 0.64. The IMAGINE Objective Engine did not return significant
improvement compared with VIs. Based on visual inspection, it was identified that distributional
accuracy was improved for both subsets, but this came with a cost of overclassification. Based on
visual interpretation, the results of image segmentation using eCognition demonstrated prom-
ising signs in mapping the distribution of perennial arid shrubs and trees. Defining the scale of
segmentation aided in reducing the issue of undersegmentation that was demonstrated with
IMAGINE Objective, and potential to detect vegetation patches and other classes such as agri-
culture and bare soil. However, mapping individual perennial shrubs and trees was still limited
using eCognition, especially for the target size of interest (0.5 to 2 m diameter). The limitation is
largely associated with pixel size, where for perennial shrubs the size of one Pleiades multispec-
tral pixel (2 m) will only depend on one parameter and that is the spectra of the pixel. Therefore,

Fig. 5 VSM-2 operations and workflow.
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other OBIA cues such as texture and smoothness, cannot function in identifying the objects. As a
consequence, assessing cover estimates using the RSS for eCognition was not pursued. VSM-1,
on the other hand, returned contrasting results, where it failed to return improved estimates sta-
tistically for Subset 1, but proved to be the optimum approach compared to the previous methods
with an RSS of 0.542 for Subset 2. VSM-2 was able to further improve the results with an RSS of
1.415 and 0.507 for Subsets 1 and 2, respectively.

VIs that take into account soil reflectance such as MSAVI-2 gave the best results for Subset 1
compared with the other indices, whereas NDVI proved to have outperformed the other indices
for Subset 2. This is due to the incorporation of commission errors, which tend to balance the
omission areas at certain thresholds and hence return a close measure to the true total area—the
percent cover. OBIA using IMAGINE Objective Engine was able to provide better distributional
accuracy for Subset 1, but this came with the cost of overclassification, hence higher RSS values.
The key aspect of this approach is pixel training and the associated operator skill of separating
grasses and dark soils from shrubs when performing the training. VSM-1 proved to deliver
improved results statistically for Subset 2 compared to the previous methods. Visual interpre-
tation also demonstrated that for Subset 2, VSM-1 outperformed the previous approaches as it
returned a high accuracy of vegetation distribution and a closer representation of the ground
control (Fig. 6). However, the vegetation size and the employed filter size contributed to the
lower accuracy of the results in Subset 1. VSM-1 for Subset 1 demonstrated significant visual
improvement, but the RSS did not support such a conclusion. The large RSS of VSM-1 for
Subset 1 is a result of a high-percent cover return (9.3%) compared with the true percent
cover (4.7%). In addition, the commission area is ∼100 m2 contributing to a higher RSS
value of 1.498 than what was expected. We tried to resolve this performance issue by introducing
multiple filters with VSM-2. The results revealed improvements for both Subsets 1 and 2 with a
drop of the RSS values. Although the RSS for Subset 1 decreased in comparison to the previous
study,17 it was yet to register a lower value in comparison to VIs. This can be attributed to various
factors: (1) optimum VIs thresholds take advantage of the committed areas that complement the

Table 2 RSS for VIs and OBIA for Subsets 1 and 2.

Method Subset 1 Subset 2

Vegetation index Threshold RSS Threshold RSS

NDVI 0.31 0.746 0.3 0.64

SAVI (L ¼ 0.5) 0.25 0.746 0.25 0.647

SAVI (L ¼ 0.75) 0.24 0.739 0.24 0.65

SAVI (L ¼ 1) 0.24 0.756 0.24 0.647

MSAVI2 0.24 0.738 0.24 0.657

TSAVI 0.11 0.739 0.12 0.65

PVI-1 0.21 0.759 0.22 0.788

PVI-3 0.89 0.816 0.87 0.687

PD-54 0.6 0.784 0.6 0.665

OBIA RSS RSS

IMAGINE Objective Threshold and Clump 6.57 3.127

IMAGINE Objective Threshold and Clump with Shadow Association 7.135 2.82

VSM-1 1.498 0.542

VSM-2 1.415 0.507
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omitted areas which return a close measure of the true percent cover; (2) VSM-2 not only
improves the distributional accuracy by detecting smaller plants but also increases the commis-
sion errors especially in areas with very small shrubs; and (3) ground truth in this study collected
individual tree information and in the case of some interconnected clumps of perennial vegeta-
tion, the ground truth may underestimate the vegetation cover. An avenue of improvement to
counter these limitations is the integration of an error metric for distributional accuracy. Visual
interpretation confirms the improvements presented by VSM-2, evaluating the distribution and
incorporating it in the RSS may also return the statistical confidence to support such conclusion.
In this context, spatial statistics tools such as nearest neighbor and point clustering could be
useful.

Fig. 6 Vegetation-cover outputs for the different approaches undertaken in this study. Subset 1:
(a) optimum threshold MSAVI-2 (0.24), (b) IMAGINE Objective Threshold and Clump with Shadow
Association, (c) VSM-1, and (d) VSM-2. Subset 2: (e) optimum threshold NDVI (0.3), (f) IMAGINE
Objective Threshold and Clump with Shadow Association, (g) VSM-1, and (h) VSM-2.
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VSM-2 was able to detect individual shrubs and trees in an arid environment, information that
is rarely extracted using conventional remote-sensing methods. The use of shadow as a contex-
tual reclassifier gives an extra advantage in the mapping approach, where it reduces the reliability
on spectral information which can be a challenge for vegetation in desert environments. The
benefit of VSM-2 is that it partially embraces conventional methods, such as VIs, that are
most commonly used in vegetation monitoring and assessment, and adds an OBIA approach
to further refine the results. On the other hand, there are several challenges within VSM-2
that should be taken into account: (1) the use of panchromatic imagery requires heavier computer
processing, which may present challenges in operational use over large areas; (2) in certain loca-
tions and times, the sensor look angle could potentially lead to shadow occlusion by the shrubs
and trees that generated them; thus, the VSM-2 model could be developed further to incorporate
the full three-dimensional (3-D) geometry of Sun, satellite, sensor, location, and time; (3) topo-
graphic shadow presents a limitation where 3-D geometry of Sun, satellite, topography, and the
object of interest should be taken into account; and (4) the usefulness of VSM-2 is yet to be tested
at different locations and with satellite imagery such as GeoEye and Worldview 2/3.

The technique was solely designed to detect small- to large-sized arid shrubs and trees that
are sparsely distributed and in fairly flat areas. When VSM-1 and VSM-2 were applied to the
whole of the Pleiades satellite image, larger trees located in higher slopes returned higher cover-
age than the actual truth when visually interpreting the image and were unsuccessful in returning
individual tree objects, resulting in an overclassified large patch of vegetation cover. VSM-1 and
VSM-2 assumes a generally flat earth and shadows are projected onto the terrain which is flat or
near flat. An issue that may be encountered is with steeper slopes that are oriented away from the
Sun; these slopes will generate longer shadows than for flat ground and will lead to an over
estimation and may also lead to overlap of shadows with adjacent trees. On the other hand,
steeper slopes oriented toward the Sun will reduce the length of shadows and lead to under
estimation. Moreover, higher density of shrubs and trees presents another problem where in
the case of trees being close together, the shadow of one tree may fall on the next tree presenting
a difficulty in separating tree objects. Correction techniques could consist of a modification of
VSM-2 to account for terrain slope in the direction of Sun shadow; clearly, this would require the
use of a digital elevation model at sufficient resolution to predict impacts of slope on shadow
length.

Additional information that may be exploited in further development of VSM-2 includes the
convolution values retained when applying the filter. Such information presents clues on the
structural characteristics of the desert shrub. In addition to generic information, such as size
classification of small, medium, and large, which is already complementary to the conventional
assessment of vegetation cover in desert environments; potential use of the convolution values
may present additional information on tree crown structure that can benefit ecological and land-
scape analysis of desert environments.

4 Conclusions

The limitations of classical VIs in mapping arid shrubs and trees invites investigation into creat-
ing improved methods and vegetation-cover extraction approaches. The results in this study
suggests that an approach that combines VIs and OBIA can attain better results than just
using classical VIs. Therefore, such efforts should be considered when extracting vegetation-
cover parameters to input into desertification models. This study presented the VSM-2 approach
that utilizes multiple filter sizes with promising results, demonstrating a statistical and visual
improvement in comparison to VIs and the prebuilt IMAGINE Objective and eCognition
object-oriented software. Potential avenues of improvement is the statistical evaluation of dis-
tributional accuracy to support the improvement observed in visual analysis and increase the
confidence in the application of VSM-2. Instead of solely utilizing percent cover as employed
in most remote-sensing studies, the RSS was used in assessing the performance of vegetation-
cover classification integrating error metrics, which included commission and omission. The
metric could be further developed to integrate an additional error metric such a distribution.
In this study, we introduced a mechanism that can be used to investigate the best threshold and
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best index using ground truth. This study has also identified that high-quality ground truth is
required for achievement of best index thresholds. When this ground truth data is not available,
the accuracy of the using VIs is less reliable. Further research could take into account the con-
volved values that are returned when applying the filter to the shadow image. Such values may
give clues to structural information on the vegetation and should be further investigated and
possibly integrated into the VSM.

The ability to detect individual desert shrubs and trees is promising when compared to con-
ventional remote-sensing techniques that mostly extract generic vegetation cover. The VSM-2
approach provides encouraging opportunities for image processing associated with the increased
presence of high-spatial resolution satellites and faster computer-processing capabilities. Not
only will we be able to design an operational process that can detect vegetation cover in remote
desert locations but also we will potentially be capable to extract extra information on individual
shrubs and trees and their structural characteristics, and eventually extend such analysis to bio-
mass estimation. Such information is vital for specialists (ecologist and rangeland managers)
studying these type of environments.
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