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Abstract. Tharparkar is an arid region in the southeastern province of Sindh, Pakistan, and
experienced drought as a regular phenomenon in the past. The complex nature of drought
and sparsely located network of met stations handicapped reliable spatial and temporal analysis
of drought severity across Tharparkar. Freely available tropical rainfall measuring mission rain-
fall satellite data and moderate-resolution imaging spectroradiometer normalized difference veg-
etation index (NDVI) satellite data fulfilled this gap and were used to generate drought indices.
Commonly used NDVI and NDVI anomalies pose problems when compared with standardized
meteorological drought indices such as standardized precipitation index (SPI) and standardized
precipitation and evapotranspiration index (SPEI) for drought characterization. This study com-
pared standardized vegetation index (SVI) with traditionally used, i.e., SPI and SPEI, for mod-
eling drought severity in the arid and fragile agro-ecosystem of Tharparkar. SVI significantly
correlated with standardized meteorological drought indices (SPI and SPEI) and revealed veg-
etation dynamics under rainfall and temperature variations. Weighted overlay analysis in geo-
graphical information systems depicted an accurate onset of the 2014 drought. This study
provides useful information for drought characterization that can be used for drought monitoring
and early warning systems in data scarce, arid, and semiarid regions. © 2016 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.10.036005]
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1 Introduction

Drought is a natural calamity that develops after abnormally low or no rainfall for some time
period.1 Droughts occur at a slow rate but are one of the natural disasters that inflict heavy human
and economic losses. Droughts are difficult to quantify as they occur at a slow pace, slowly
creeping in and hence pose problems with quantification of onset, end, and spatial extent.2

Useable water sources related to drought are affected at different time scales. Reservoir storage,
ground water, soil moisture, and stream flow are some of the useable resources where deficits
occur due to drought at certain time periods. Therefore, the time scale at which water deficit
occurs in a particular water source forms an important characteristic of drought and functionally
separates different types of droughts.1 Four types of droughts have been identified in the liter-
ature, i.e., meteorological, agricultural, hydrological, and socioeconomical.3 These drought
types differ from one another in duration, intensity, and spatial coverage depending upon
time period for which the drought prevails.4 Deficiency in precipitation causes meteorological
drought, while lack of volume of water supply in channels and reservoir storage leads to
hydrological drought.5 Instead, agricultural drought is categorized by inadequate soil water
level in the root zone due to excessive water losses caused by evapotranspiration6 and prolonged
shortage of water.7 Socioeconomic drought is related with the supply and demand phase of
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economic goods.8 The meteorological and agricultural droughts are quantified at temporal
scales of 1 to 6 months, whereas hydrological droughts are quantified at temporal scales of
6 to 24 months.4

Numerous objective indices have been developed worldwide for quantitation and monitoring
of droughts using various data, primarily meteorological and vegetation data. However, these
data are not generally available for far flung arid regions in developing countries. Nonavailability
of reliable data constrains the institutional ability of governments to quantify spatial and tem-
poral extents of drought severity and hence leaves them with insufficient knowledge in regard to
the management of drought events. Remote sensing of meteorological and vegetation data can
fill this gap with remotely sensed meteorological and vegetation data at a variety of spatial and
temporal scales.9 Naumann et al.10 used tropical rainfall measuring mission (TRMM) monthly
rainfall data for monitoring drought over Africa. Du et al.11 integrated TRMM rainfall data with
moderate-resolution imaging spectroradiometer (MODIS) vegetation data for drought monitor-
ing over Shandong, China. Rhee et al.12 used TRMM rainfall data to monitor drought and sug-
gested that in case of sparse in situ data, remote sensing data can be used alone or in combination
with in situ data. Yaduvanshi et al.13used TRMM rainfall and MODIS normalized difference
vegetation index (NDVI) data to develop drought indices for drought monitoring over tropical
regions in India. Li et al.14 used remote sensing-derived vegetation index to assess agricultural
drought in semiarid regions of China. Dutta et al.15 2015 used remote sensing-derived index to
assess agricultural drought across Rajasthan, India.

Numerous objective indices have been developed worldwide for quantitation and monitoring
of droughts using various parameters. However, versatility in definition of drought made it dif-
ficult to develop a unique and universal drought index that could integrate all the critical data
required to assess drought and give realistic information about drought severity.3 To characterize
drought with a single index is not sufficient. Identifying rainfall as the single most important
factor responsible for initiating drought conditions, the World Meteorological Organization rec-
ommended a standardized precipitation index (SPI) to be used by all national meteorological and
hydrological services for monitoring droughts at various time scales.4 Various studies have
shown variation of SPI in response to soil moisture, river discharge, reservoir storage, vegetation
activity, crop production, and piezometric fluctuations at different time scales.16–20 However, one
of the drawbacks in SPI is that it does not take into account variation of other climatological
parameters such as temperature, wind speed, and evapotranspiration. Abramopoulos et al.21 and
Vicente-Serrano18 reported that temperature rise can significantly affect drought severity and
evapotranspiration can consume up to 80% of rainfall. During the past 150 years, there has
been a general temperature increase (0.5°C to 2°C), and climate change models predict a sig-
nificant increase during the 21st century.22 It is estimated that this temperature rise will have
drastic consequences for drought severity conditions, with increase in water demand due to
evapotranspiration.22 Vicente-Serrano et al.2 suggested the use of the standardized precipitation
and evapotranspiration index (SPEI) based on monthly rainfall and air temperature data to ana-
lyze variability of temperature along with rainfall for detecting, monitoring, and exploring
consequences of temperature variability on vegetation and drought conditions. SPEI is also a
multiscalar drought index and incorporates changes in potential evapotranspiration (PET) caused
by temperature fluctuations.

Remotely sensed NDVI forms a robust index, extracted from directly observed vegetation
satellite data, for monitoring wet as well as drought conditions. NDVI and NDVI anomalies have
been extensively used for drought assessment and vegetation change dynamics along with
meteorological drought indices.23–29 However, NDVI anomalies do not allow easier and mean-
ingful profile comparison with SPI and SPEI. This is due to the fact that both SPI and SPEI are
standardized and generated a value around zero after incorporating the effect of long-term data as
against NDVI or NDVI anomalies. This study incorporated the standardized vegetation index
(SVI) developed by Peters et al.,30 for drought monitoring across the central part of the United
States. It is a simple index and generates SVI values around means such as SPI and SPEI. SVI
allowed meaningful profile comparison with meteorological drought indices (SPI and SPEI) and
furnished critical insight into variability of vegetation data in response to variations in rainfall
and temperature across the arid region of Tharparkar.
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Drought indices give separate pictures of drought severity across the study area based on
input data of drought indices. Information from all variables is needed on one layer to generate
a composite picture of drought hazard across the study area. Weighted overlay analysis in geo-
graphical information systems (GIS) provides a method to generate composite response of
drought hazard and gives a clear picture of drought severity by emphasizing common informa-
tion from all drought indices brought on equal scale. Shaheen and Baig16 used weighted overlay
analysis to generate composite drought hazard maps at meteorological and agricultural scale in
the arid region of Thal Doab, Pakistan. Shahid et al.31 generated composite drought hazard maps
for Bangladesh using different drought monitoring indices. This study used drought severity
layers of SPI, SPEI, and SVI to generate composite drought hazard maps at meteorological
and agricultural scale through weighted overlay analysis in GIS.

The objective of this study is to perform spatial–temporal analysis of vegetation dynamics
and drought severity across the arid region of Tharparkar using remote sensing-derived indices.
The study included analysis of vegetation dynamics, analysis of meteorological and agricultural
droughts, and modeling of drought severity across Tharparkar, using SPI, SPEI, and SVI through
weighted overlay analysis in GIS. The results of this study presented an effective model for
drought severity analysis across data-scarce arid regions to aid in drought preparedness and
response.

2 Data

2.1 Study Area

Tharparkar is a desert region and classified as an arid climate in the southeastern part of Sindh
province, Pakistan (Fig. 1). Tharparkar is an extension of the Indian arid zone of Rajasthan on the
eastern border of Pakistan. The study area lies between 69°E and 29°N to 71°E and 24°N.
It consists of five subregions, i.e., Chachro, Diplo, Mithi, Nagarparkar, and Umarkot, with
total area of 27;135 km2 and a population of about 1.5 million. Tharparkar, being a remote
area of Sindh province, remains disadvantaged with low indicators of education and health
while recurring droughts making life more difficult.32,33

Tharparkar has a tropical climate with min temperatures during winters in December and
January (4°C to 6°C] while max temperature ranges from 38°C to 41°C during the summer.
Tharparkar consists of homogeneous topography with predominantly sandy terrain and faces
spatial variability in rainfall from east to west mainly associated with relief of the area.34

Fig. 1 Study area.
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The sandy nature of soil, higher temperatures, lack of surface water resources, and mostly brack-
ish underwater resources allow rain-fed agriculture and livestock to be the only source of live-
lihood for Thari people. Both of these sources of income depend directly or indirectly on
monsoon rainfall in the monsoon season from June to September.32,35 The main crops of
Tharparkar are cluster beans, guar seed, millet, pulses, and fodder. The vegetation consists
mostly of scattered scrub and bush. The ground cover is provided by patches of grasses
used as a fodder for the livestock. Higher rates of evaporation and absence of surface water
resources aggravate problems for the already fragile agro-ecosystem. It was predicted by
Goyal34 that an increase in temperature in this region would aggravate drought severity.
Average NDVI data of Tharparkar from July to September for the study period depicted that
south, southeastern, and most of the area on the eastern border remained above mean
NDVI. While the central and northern part of Tharparkar, comprising most of the area in
Chachro and Umerkot, remained below mean NDVI (Fig. 2).

2.2 Observed Rainfall and Air Temperature Data

Processed monthly rainfall and air temperature data (max and min) were acquired from the
Pakistan Meteorological Department (PMD) at two met observatories, i.e., Chor and Badin
(Fig. 4). However, the monthly rainfall data acquired from PMD could not provide spatial vari-
ability of precipitation over the study area, which was necessary to map and analyze spatial and
temporal variability of drought across the study area. Air temperature having a strong relation
with topography of the area varies with a lapse rate of −0.98°C for dry air to about −0.4°C for
saturated dry air with each 100 m rise in altitude.36 Tharparkar has a homogeneous topography
with altitude variation of only 170 m across the entire area except in the southern part of
Nagarparkar where in the small hills range (19 km) altitude varies to 305 m. The inverse distance
weighted (IDW) method works well with air temperature interpolation in homogeneous and
relatively flat terrain.36 IDW interpolates the unknown values within the max and min observed
data ranges, i.e., it does not extrapolate beyond its range and is mostly used for interpolation of
meteorological data.37 Luzio et al.38 constructed precipitation and temperature datasets for the
conterminous United States and found that simple IDW provided reasonable results in situations
where they had low spatial density of stations. Yang et al.39 used four interpolation techniques to
produce finer resolution rainfall datasets over the greater Sydney region and found that IDW
gave best results as compared to other methods. Thus, the observed air temperature at Chor
and Badin was interpolated using IDW to achieve spatial variation of temperature across the
study area. It was also observed that yearly mean temperature across Tharparkar also started
rising from 2006 (Fig. 3).

Fig. 2 Average NDVI depicting average vegetation across Tharparkar from July to September
(2000 to 2014).
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2.3 TRMM (3B43) Monthly Rainfall Dataset

To achieve spatial and temporal variability of rainfall across the study area, TRMM 3B43 multi-
satellite precipitation analysis products were used to extract monthly precipitation data from
1998 to 2014. TRMM precipitation is a combination of datasets from visible and infrared (IR)
scanners, a special sensor microwave imager, a microwave imager, a precipitation radar, and a
global precipitation climatology center rain gauge data available at 0.25 deg×0.25 deg spatial
resolution. The TRMM 3B43 algorithm combines 3-h integrated high-quality data and IR esti-
mates (3B42) with the monthly accumulated climate assessment monitoring system.40 The data
were downloaded from Ref. 41. Estimated TRMM 3B43 monthly rainfall data were initially
correlated with observed monthly precipitation data at Chor and Badin to check feasibility
for using TRMM 3B43 datasets across the study area. Estimated TRMM 3B43 rainfall data
obtained significant correlation with observed precipitation data as shown in Fig. 4. The scatter
plot exhibited that the TRMM data were in general agreement with gauge data at lower values.
At higher values, TRMM overestimated data at Badin but generally remained near the gauge data
at Chor. Root-mean-square error (RMSE) at both met observatories remained constant at 18 and
19 mm. RMSE was 5.6% of the max observed gauge value at Badin and 4.7% of the max
observed gauge value at Chor. The TRMM (3B43) monthly datasets were used for the entire
time series; therefore, consistency of utilizing the same data gave relative temporal estimates
through the same algorithm and hence was not critical.

Fig. 4 (a) Location of met observatories at and near Tharparkar and (b) scatter plot between
gauge and TRMM data at Chor and Badin, showing significant correlation between TRMM
and gauge data.

Fig. 3 Yearly mean temperature trend from 1998 to 2014.
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2.4 MOD13A3 1 km Monthly NDVI Dataset

Global MODIS vegetation indices provide continuous temporal and spatial information about
vegetation conditions.42 The MODIS 1-km MOD13A3 VI NDVI images were used to calculate
one-monthly, three-monthly, and six-monthly SVI. The monthly 1-km MOD13A3 VI product is
generated using the 16-day 1-km MODIS VI output using a temporal compositing algorithm
based on a weighted average scheme to create a calendar-month composite.43 MODIS images
were downloaded from Ref. 44.

3 Methods

The methodology adopted for the study has been highlighted in Fig. 5. Grid points were gen-
erated across the study area to extract TRMM 3B43 monthly rainfall data at these points.

Grid points were generated with a view to have equal spacing among the grid points; how-
ever, grid points were added and adjusted to account for the spatial variation of precipitation
across the study area as shown in Fig. 6. Monthly rainfall amounts at these grid points were
extracted from the TRMM 3B43 datasets while the monthly mean air temperatures were

Fig. 5 Research methodology.

Fig. 6 Grid points generated for data extraction from TRMM monthly rainfall satellite data and
interpolated monthly air temperature data at Chor and Badin.
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extracted from interpolated observed monthly mean air temperature data from two met observa-
tories, i.e., Chor and Badin.

3.1 Calculation and Mapping of Standardized Precipitation Index

The SPI at grid points was calculated using the SPI computer program, SPI_SL_6.exe, down-
loaded from Ref. 45, with input files generated at each grid point using monthly mean rainfall
amounts. SPI at a location is found by a series of equations as below. Precipitation time series at
a location was found to fit gamma distribution well by Thom.46 The probability density function
defined gamma distribution for x > 0

EQ-TARGET;temp:intralink-;e001;116;619gðxÞ ¼ 1

βαΓðαÞ x
α−1e−

x
β; (1)

where α is a shape, β is a scale parameter, x is a precipitation, and ΓðαÞ is a gamma function and

EQ-TARGET;temp:intralink-;e002;116;563α ¼ 1

4A

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

r �
;

EQ-TARGET;temp:intralink-;e003;116;516β ¼ x̄
α
; (3)

EQ-TARGET;temp:intralink-;e004;116;480A ¼ ln ðx̄Þ −
P

ln ðxÞ
n

; (4)

and n is the number of observations. The cumulative probability of the observed precipitation is
found as follows:

EQ-TARGET;temp:intralink-;e005;116;419HðxÞ ¼ qþ ð1 − qÞGðxÞ; (5)

where q is a probability of zero GðxÞ.1 This probability is converted to the standard normal
random variable Z, which is the SPI index value. One-monthly, three-monthly, and six-monthly
SPI layers were generated for the study area using IDW in ArcGIS 10.1.

3.2 Calculation and Mapping of Standardized Precipitation and
Evapotranspiration Index

The SPEI at the grid points was calculated using the SPEI calculator available at Ref. 47.
Mathematically, SPEI is similar to the SPI but includes the role of temperature and latitude
of location to calculate PET at a particular location. Calculation of PET is a complicated
task and, based on data availability, different methods have been proposed for PET estimation
from meteorological parameters. The two main approaches for PET calculation are: physically
based methods [the Penman—Monteith method (PM)] and methods based on models that use
empirical relationships where PET is calculated with sparse data. The PM method is currently
being used as standard procedure for PET calculation by the Food and Agriculture Organization,
the International Commission for Irrigation, and the American Society of Civil Engineers.6 The
PM method needs a large amount of data including relative humidity, temperature, solar radi-
ations, and wind speed for its calculation. This type of meteorological data is generally not avail-
able in most of the world as in our case of Tharparkar. To overcome this limitation, empirical
equations have been developed to calculate PET where there is a lack of data.6 Although some
methods give better PET results than others,48 the aim of including PET in a drought index is to
get relative temporal estimation and therefore the method used to estimate PET is not critical.2

Mavromatis49 showed that the method used to calculate PET, may it be simple or complex, gives
similar results when used in a multiscalar drought index. Therefore, we followed the Thornthwaite
(1948) method to calculate PET as we had only monthly mean temperature data available, which
offers advantage of using only monthly mean temperature data for PET calculation. One-monthly,
three-monthly, and six-monthly SPEI layers were generated for the study area using IDW in
ArcGIS 10.1.
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3.3 Calculation and Mapping of Standardized Vegetation Index

For ease of comparison and correlation analyses, NDVI anomalies were standardized by vari-
ability of data. The resulting SVI value was a deviation from zero value identical to SPI and
SPEI. SVI was calculated using the following:

EQ-TARGET;temp:intralink-;sec3.3;116;680SVI ¼ NDVIi − NDVImean

σ
;

where SVI is a deviation from the long-term mean. NDVIi is a current NDVI value, NDVI mean
is a long-term mean, and σ is a standard deviation of the long-term NDVI values. One-monthly,
three-monthly, and six-monthly SVI layers were generated for the study area by processing
NDVI layers through Raster Calculator in ArcGIS 10.1.

3.4 Correlation Between Drought Indices and Weighted Overlay Analysis

Three-monthly SPI, SPEI, and SVI were generated for three critical months of July to August,
which receive maximum rainfall to characterize meteorological drought conditions during each
year. Six-monthly SPI, SPEI, and SVI were generated from May to October each year to char-
acterize agricultural drought conditions during each year. Monthly drought indices were also
generated from June to October during each year to perform correlation analysis among
three indices to characterize the relationship of rainfall and temperature data with vegetation
across the study area.

United States drought monitor values for SPI were used for classification of both SPI and
SPEI maps. Classification values are available at Ref. 50 and SVI values are available at Ref. 51,
which were used with slight modification for classification of SVI maps as shown in Table 1.

For weighted overlay analysis, SVI was given first priority while assigning weights, being a
direct estimation of vegetation data followed by SPEI and SPI, which was based on correlation
analysis among SPI, SPEI, and SVI. Weights between prioritized drought index layers were
calculated and balanced through an analytic hierarchy process program with a consistency
ratio of less than 10%.52 All the drought index layers were generated on 1-km spatial resolution
to make layers of three drought indices compatible for weighted overlay analysis in ArcGIS.
Drought severity classes in all the layers as given in Table 1 were scaled on a common
scale of 1 to 9 with 1 for severely wet and 9 for exceptional drought. Weighted overlay analysis
was completed in ArcGIS with SPI, SPEI, and SVI layers to generate meteorological and
agricultural drought severity maps for Tharparkar.

Table 1 Drought classification values of SPI, SPEI, and SVI.

Drought classification SVI SPI SPEI

Exceptional drought ≥ − 2 ≥ − 2 ≥ − 2

Extreme drought −1.5 to −2 −1.6 to −1.9 −1.6 to −1.9

Severe drought −1 to −1.5 −1.3 to −1.5 −1.3 to −1.5

Moderate drought −0.5 to −1 −0.8 to −1.2 −0.8 to −1.2

Abnormally dry −0.1 to −0.5 −0.5 to −0.7 −0.5 to −0.7

Normal 0.1 to −0.1 — —

Wet 0.1 to 1 — —

Moderately wet 1 to 1.5 — —

Severely wet ≤1.5 — —

Shah and Iqbal: Spatial–temporal variations of vegetation and drought severity across. . .

Journal of Applied Remote Sensing 036005-8 Jul–Sep 2016 • Vol. 10(3)

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 07/19/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



4 Results

4.1 Average Vegetation Change in Response to Average Rainfall Variations

Monsoon season in Tharparkar spans from June to October each year with corresponding
response from the vegetation cover. Monsoon season starts in June, ascending to peak in
July or August, and finally ends in October. Vegetation in Tharparkar reciprocates to the
time and amount of monthly rainfall during monsoon season by conforming to corresponding
monthly NDVI response as exhibited by monthly rainfall. Other months receive little to no rain-
fall events without any pattern. Figures 7(a) and 7(b) show average monthly rainfall and average
monthly NDVI from 1998 to 2014, respectively. Average monthly rainfall marks the optimum
monthly rainfall pattern across Tharparkar for the time period from 1998 to 2014 and creates a
threshold of monthly rainfall for optimum growth of vegetation types across Tharparkar.53–55

Average monthly NDVI pattern also exhibited that after each monsoon season NDVI response
diminishes gradually from November through May the following year with the lowest NDVI in
May. NDVI gradually sustains itself during a cycle of no rainfall between two monsoon seasons,
coming to lowest level before the start of the next monsoon season. Thus, the vegetation con-
dition that extends to the next monsoon season plays its role in the carryover effect of drought
conditions to the next season.

4.2 Correlation Analysis—Vegetation Response to Rainfall Variations

Table 2 shows the correlation coefficient pattern among SPI, SPEI, and SVI from 1998 to 2014.
Correlations of SPI and SPEI with SVI varied from significant correlation in June to highly
significant correlation in July. Correlation decreased after its peak in July to strong significant
correlation in August and September before reducing to no correlation in October. Correlation
between SPI and SPEI remained highly significant from June to September before decreasing to
significant correlation. Correlation configuration of SPI and SPEI with SVI implied that veg-
etation gave the strongest response to monthly rainfall during July, followed by August. Thus,
the time and amount of monthly rainfall from June to October played a vital role for the veg-
etation growth cycle during the monsoon season across Tharparkar. Correlation analysis of SPI
and SPEI with SVI implied that vegetation was adapted to time and amount of monthly rainfall
across the arid zone of Tharparkar.14,53 Correlation configuration between SPI and SPEI sug-
gested that the moisture loss due to evapotranspiration did not become significant for months that
received higher rainfall; however, correlation difference between SPI and SPEI increased for
months that received lesser rainfalls.

Fig. 7 Average monthly rainfall versus average monthly NDVI: (a) average monthly rainfall and
(b) average monthly NDVI.
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4.3 Vegetation Dynamics—Normal, Near Normal, and Wet Years

Tharparkar experienced normal, near normal, or wet conditions during 1998, 2001, 2003, and
2006 to 2013. 1998, 2003, 2006, 2010, 2011, and 2013 were wet years with rainfall above nor-
mal (371 mm) during the monsoon season while 2001, 2007, 2008, 2009, and 2012 received
comparatively less than normal rainfall and faced normal or near-normal conditions (Fig. 8).

4.3.1 Vegetation response dynamics—normal and near-normal years

Tharparkar faces high spatial and temporal variability of rainfall alongside very high temper-
atures during the monsoon season with maximum temperature ranging from 35°C to over 40°C.32

Table 2 Correlation coefficient values (r ) between SPI, SPEI, and SVI from 1998 to 2014.

Duration
SVI versus SPI

(N ¼ 15)
SVI versus SPEI

(N ¼ 15)
SPI versus SPEI

(N ¼ 17)

Jun. 0.46a 0.58a 0.80c

Jul. 0.81c 0.81c 0.96c

Aug. 0.71c 0.73c 0.95c

Sep. 0.64b 0.68c 0.83c

Oct. −0.0056 0.02 0.46a

Three-monthly correlation (Jul. to Sep.) 0.87c 0.88c 0.95c

Six-monthly correlation (May to Oct.) 0.85c 0.80c 0.93c

aSignificant at 0.05 probability level.
bSignificant at 0.01 probability level.
cSignificant at 0.001 probability level.

Fig. 8 Temporal variation of drought indices: (a) three-monthly SPI, (b) six-monthly SPI, (c) three-
monthly SPEI, (d) six-monthly SPEI, (e) three-monthly SVI, and (f) six-monthly SVI.
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For optimum or maximum growth of vegetation, it was essential for rainfall to follow an opti-
mum or more than optimum pattern of rainfall during the complete monsoon season across
Tharparkar. Absence or lower than normal rainfall during any of the months while accompanied
by high-temperature anomalies badly affected the vegetation growth cycle and reduced overall
NDVI response at the end of the monsoon season.14 During 2001, the monthly rainfall pattern
initiated on time in June, with higher than normal monthly rainfall during June, but lasted up to
August only with lower than normal rainfall both in July and August. Lower than normal rainfall
during July and August (Table 3), while positive monthly temperature anomalies in September
and October, resulted in negative NDVI anomalies during August, September, and October
reducing overall response of vegetation across Tharparkar. Thus three- and six-monthly drought
indices indicated normal values for 2001 (Fig. 8).

Tharparkar experienced normal conditions continuously from 2007 till 2009 after wet con-
ditions in 2006 (Fig. 8). During 2007, monthly rainfall varied with alternatively higher than
normal rainfall in June and August while there was lower than normal rainfall during July,
September, and October. Lower rainfall in July, September, and October, together with higher
monthly temperature anomalies in September and October, resulted in normal conditions at
meteorological and agricultural drought scale. Monthly NDVI anomaly attained maximum
value in July 2007 but decreased sharply in August 2007 (Table 3).

Although monsoon season in 2008 almost received analogous monthly rainfall and air tem-
perature anomalies pattern as in 2007, three- and six-monthly SVI indicated lower than normal
values for 2008 (Fig. 8). This contradiction was explained by the carryover effect of vegetation
condition from one monsoon season to another. After a wet year of 2006, monthly NDVI anoma-
lies from November 2006 till May 2007 remained positive while monthly NDVI anomalies were
negative in May 2008 (Table 3), thus imparting an additive effect to slightly dry conditions
during the monsoon season in 2008. This phenomenon repeated as the monsoon season of
2009 approached, which received more than normal rainfall during the monsoon season but
yet produced three- and six-monthly NDVI anomalies almost the same as in 2007 (Fig. 8).

4.3.2 Vegetation response dynamics—wet years

Wet years received over 450 to 731 mm of rainfall during monsoon seasons. Although rainfall
quantity was well above normal rainfall (371 mm) during wet years in monsoon seasons, SVI
response varied between wet years due to variations in monthly rainfall distributions. The 2011
(731 mm) and 2006 (617 mm) were the wettest years in terms of total amount of rainfall yet SVI
exhibited peak values in 2003 and 2010 signifying that 2003 (534 mm) and 2010 (544 mm) were
the most green years (Fig. 8). This variation in response of SVI was explained by monthly rain-
fall variations during the monsoon season when compared with the optimum monthly
rainfall pattern for Tharparkar from 1998 to 2014 (Fig. 9).

The 2003 and 2010 were the only two wet years during which July and August received
highest rainfalls in sequence (Table 4). In addition, 2010 was the only year when the monthly
rainfall pattern during monsoon perfectly followed the optimum configuration of rainfall from
June until September and resulted in the highest SVI during the complete time series (Fig. 9).

Although 2006 and 2011 received the highest monsoon rainfalls, the monthly rainfall pattern
did not conform well to the optimum monthly configuration of rainfall during July and August as
in 2003 and 2010 (Fig. 9). Rainfall pattern during 2013 received well over the normal monthly
rainfall during the entire monsoon season except for the critical month of August (Table 4), thus
impeding the vegetation growth cycle during the significant month of August and resulted in
lower SVI (Fig. 8).

4.3.3 Temperature anomalies variations—wet and normal years

The greenest years across Tharparkar, i.e., 2003 and 2010, had an opposite pattern of temper-
ature anomalies during monsoon seasons. The 2003 experienced low negative temperature
anomalies during the entire monsoon season, whereas 2010 experienced high positive temper-
ature anomalies during the entire monsoon season except August (Table 4). Monthly rainfall
remained the dominating factor for vegetation growth cycle as long as the amount of monthly
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rainfall remained above optimum quantity during a particular month of monsoon season without
any influence of temperature rise. However, significant lower monthly rainfall during any of the
months of the monsoon season coupled with high positive temperature anomalies badly affected
vegetation growth cycle and reduced overall vegetation response at agricultural scale, e.g., in
August 2000, August 2004, June 2009, June 2011, July 2012, and during a complete drought
year of 2014, which have been discussed in detail in Sec. 4.4.2.

4.4 Temporal and Spatial Variation of Drought Intensity Across Tharparkar

Tharparkar faced droughts during 1999, 2000, 2002, 2004, 2005, and 2014 over the period under
study and saw either near-normal or wet conditions during the remaining period. Impact of varia-
tion in rainfall and temperature on drought intensity was evaluated through analysis on temporal
and spatial variations of drought indices across Tharparkar.

4.4.1 Impact of rainfall and temperature on temporal variations of
drought intensity across Tharparkar

Tharparkar faced severe meteorological drought during 1999 triggered by very low rainfall dur-
ing the critical months of July to September. Three-monthly SPI exhibited (−1.53) extreme
meteorological drought while three-monthly SPEI indicated (−0.83) moderate meteorological
drought; however, six-monthly SPI (−0.54) and SPEI (0.54) depicted abnormally dry and nor-
mal conditions. Meteorological drought in 1999 was mainly initiated due to very low rainfall
during the three critical months from July to September; however, intensity of drought was
reduced due to late season rainfall in October (46 mm) and low monthly temperatures during
the monsoon season as illustrated by significant negative temperature anomalies (Table 5).
Negative temperature anomalies also resulted in depicting low intensity of drought by SPEI
as against SPI. Contrary to 1999, drought in 2000 started with low meteorological drought
severity as SPI (−0.53), SPEI (−0.55), and SVI (−0.59) exhibited abnormally dry conditions.
However, agricultural drought severity was increased to moderate drought as displayed by all
drought indices (Fig. 8). This was explained through monthly rainfall variations during the mon-
soon season in 2000 as the monsoon season only received normal rainfall during July and low
rainfall during August but other months did not receive any or appreciable rainfall causing an
increase in agricultural drought severity. Monthly temperature anomalies during the monsoon
season in 2000 remained near-normal values (Table 5), thus SPI, SPEI, and SVI exhibited
approximately similar values without showing any dissimilarity in drought intensity.

SPEI exhibited low drought intensity when monthly temperature anomalies were negative in
1999 and depicted almost the same drought intensity as SPI during 2000 when monthly temper-
ature anomalies were around normal values. Tharparkar faced extreme to exceptional drought in
2002 with a very small amount of rainfall in June (34 mm) and August (22 mm) while other
months received no or little rainfall. Monthly temperature anomalies remained at normal during

Fig. 9 Comparison of monthly rainfall variations versus optimummonthly rainfall during wet years.
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June and August while remaining negative during July and September. Owing to normal or
negative temperature anomalies during the monsoon season, SPEI indicated severe meteorologi-
cal and extreme agricultural drought while both SPI and SVI demonstrated severe to exceptional
meteorological and agricultural drought conditions. Hence, SPI matched drought intensity of
SVI generated from vegetation data during 2002 while SPEI depicted lower drought severity
due to lower monthly temperature anomalies. Tharparkar faced droughts consecutively during
2004 and 2005. Although rainfall season of 2004 received more rain as compared to 2005 still
drought intensity as indicated by SVI was more as compared to 2005 (Fig. 8). There were two
prominent reasons for this difference, one was lower monthly rainfall during critical months from
July to September and another was higher positive monthly air temperature anomalies during the
rainfall season of 2004 as compared to 2005 (Table 5).

From 2006 till 2013, Tharparkar either experienced normal or wet conditions till 2013. After
2005, Tharparkar faced drought conditions in 2014. From 2006 till 2013, Tharparkar came
across either normal or near-normal conditions as in 2007 and 2008, or very wet meteorological
conditions as in 2010 and 2011 during critical months of the monsoon season.

4.4.2 Effect of rise in temperature on drought intensity across Tharparkar
during 2014

Monthly rainfall variations in monsoon seasons of 2005 and 2014 presented an ideal case to
illustrate the effect of rise in temperature on drought severity during 2014 due to two significant
reasons. Despite the fact that the monsoon season in 2014 not only received more rainfall than
the monsoon season of 2005 and monthly rainfall pattern during 2014, but also followed more
closely to optimum rainfall pattern from July to September as against 2005, yet SVI displayed
more drought severity in 2014 than 2005 (Fig. 8). This contradiction was explained well by SPEI
and temperature anomalies during rainfall seasons of 2005 and 2014. The effect of rise in tem-
perature was indicated by comparison of statistical variations in areas of drought severity classes.

Table 6 shows areas covered, in terms of percentage, with drought severity classes by three
drought indices during droughts in 2005 and 2014. SPI displayed more area under higher
drought classes in 2005 as against drought year of 2014 at both meteorological and agricultural
drought levels. SPI showed more drought severity in 2005 compared to 2014 while SPEI and
SVI exhibited more areas under higher drought severity classes specifically under severe and
extreme drought classes, respectively, at both meteorological and agricultural drought levels.
This inconsistency was explained by temperature anomalies during rainfall season, which
were highest for monsoon season months during 2014 for the entire study period (Table 5).
The effect of the rise in temperature coupled with lower rainfall during the monsoon season
was adequately taken into account by SPEI and SVI while SPI could not incorporate the effect
of rise in temperature.2

4.5 Spatial Variation of Meteorological and Agricultural Drought Severity Across
Tharparkar During Drought Years

Drought indices gave a reasonable display of spatial variation of areas affected by type of
drought severity classes across Tharparkar (Figs. 10 and 11) but any single variable could
not incorporate important information from other variables. In case of the drought year of
2014, while SPI depicted less drought severity than SVI, SPEI showed more drought severity
than SVI. In order to get composite maps at both meteorological and agricultural drought scales
with optimum scalable information fused from all drought indices, weighted overlay analysis in
ArcGIS was done. Composite drought severity maps for drought years of 2002, 2005, and 2014
as shown in Fig. 12 gave very clear representation of areas affected by drought severity classes
across Tharparkar. Weighted overlay analysis emphasized information of drought severity
classes contained in three drought index layers and furnished clear information about areas
affected by respective drought severity classes across Tharparkar at both meteorological and
agricultural drought scales (Fig. 12).

Meteorological drought severity map for 2014 exhibited the northern area of Mithi, central
and northeastern areas of Chachro, southern part of Umerkot, and central area of Nagarparkar
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affected by severe drought. Diplo on the whole was affected by abnormal dry conditions.
Agricultural drought severity extended further in spatial extent as exhibited by meteorological
drought. During 2005, meteorological and agricultural drought severity maps depicted central,
southern, northern, and northwestern parts of Tharparkar affected by moderate to severe drought
while the remaining area was mostly affected by abnormally dry conditions. The 2002 drought
was the worst drought year during the period under study. Tharparkar was affected by severe to
exceptional drought with northwestern and southwestern parts affected by exceptional drought
conditions.

5 Discussion

This study depicted average yearly temperature increase across Tharparkar from 2006 in a fluc-
tuating manner (Fig. 3). Rise in temperature was accompanied by rise in rainfall during monsoon
seasons with average rainfall ranging over 300 mm, during normal and near-normal years, to
above 700 mm during monsoon seasons from 2006 to 2013 as predicted by IPCC 2007. The
study characterized precipitation–vegetation interaction at monthly, three-monthly, and six-
monthly temporal scales. The results depicted that vegetation was adapted to time and amount
of monthly rainfall across Tharparkar with highly significant and strongly significant response
from vegetation during July and August,53–55 respectively, which was in line with findings of
Lázaro et al. and Li et al. Average monthly rainfall in the monsoon season formed optimum
threshold of rainfall with corresponding response from vegetation and was found consistent
with previous studies.14,53 Correlation configuration between SPI and SPEI confirmed higher
loss of moisture during lower rainfall periods as presented by Vicente-Serrano.

In this study, the incorporation of SVI offered easier and meaningful insight into response of
SPI and SPEI to vegetation across Tharparkar during wet and drought conditions across
Tharparkar. Trend analysis of SVI with SPI and SPEI furnished vegetation response dynamics
to monthly rainfall and temperature variations. It was observed that the monsoon season that
received highest rainfall was not the greenest year (2011); rather the monsoon season during
which monthly rainfall followed optimum pattern of rainfall was the greenest year (2010)
and thus confirmed vegetation response pattern given by Li et al. for arid regions. The
study presented that effect of higher positive temperature anomalies did not hamper vegetation
growth response as long as monthly rainfall pattern remained at or above optimum threshold, e.
g., during the wet year of 2010. The results exhibited that SPI values corresponded well with SVI
under normal and wet conditions irrespective of temperature anomalies, whereas SPEI values
corresponded well with SVI under normal and below normal rainfall conditions coupled with
higher positive temperature anomalies.

Variation of temperature remained insignificant until rainfall remained at or higher than nor-
mal during the monsoon season across Tharparkar. The study presented that the effect of higher

Table 6 Areas covered by drought severity classes of SPI, SPEI, and SVI across Tharparkar
during drought years of 2005 and 2014.

Drought
year

Drought index
(three-monthly,
six-monthly)

Area covered by drought severity classes in percentage

Normal
and wet Abnormally dry

Moderate
drought

Severe
drought

Extreme
drought

Exceptional
drought

2005 SPI (21,15) (29,17) (50,59) (0,9) (0,0) (0,0)

SPEI (13,25) (31,28) (56,47) (0,0) (0,0) (0,0)

SVI (9,5) (11,8) (27,26) (31,32) (16,21) (6,8)

2014 SPI (74,9) (26,39) (0,52) (0,0) (0,0) (0,0)

SPEI (5,0) (3,0) (42,25) (50,75) (0,0) (0,0)

SVI (6,6) (10,7) (21,21) (30,33) (26,25) (7,8)
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temperature anomalies adversely affected vegetation growth and aggravated drought severity
under normal or lower than normal monthly rainfall. Lower average monthly rainfall accom-
panied by higher positive temperature anomalies affected cycle of vegetation growth and sup-
pressed overall response of vegetation at agricultural scale, which was found consistent with
results of a study conducted by Shaheen and Baig16 during their research in the arid region
of Thal Doab, Pakistan. The study demonstrated that negative or lower NDVI anomalies var-
iations between consecutive monsoon seasons carried over influence of poor vegetation condi-
tions from the previous season into the next growing season. Negative monthly NDVI anomalies
before start of monsoon seasons during 2005 and 2008 depicted carryover effect of poor veg-
etation conditions after drought and below normal year, respectively, into the next growing

Fig. 10 Spatial variation of drought severity across Tharparkar as shown by drought indices:
(a) three-monthly SPI—2002, (b) three-monthly SPEI—2002, (c) three-monthly SVI—2002,
(d) three-monthly SPI—2005, (e) three-monthly SPEI—2005, (f) three-monthly SVI—2005,
(g) three-monthly SPI—2014, (h) three-monthly SPEI—2014, and (i) three-monthly SVI—2014.
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season thereby producing additive effect to dry or low vegetation conditions in the succeeding
year.53,56,57

Rainfall was found to be the primary factor in initiating drought conditions across Tharparkar
during drought years. Although SPI played an important role in depicting drought conditions
across Tharparkar,1,4 results of this study indicated that under drought conditions generated by
lower than normal rainfall and higher temperature anomalies, role of temperature was predomi-
nant and further aggravated drought severity as predicted by Goyal,34 during his research on
future trends of drought in the neighboring arid region of Rajasthan, India. Drought years of
2005 and 2014 presented an instance when the monsoon season of 2014 received better rainfall
than 2005 but faced highest positive temperature anomalies in the entire time series. SPI could
not establish the effect of rise in temperature during 2014 and depicted less drought severity as
compared to 2005, whereas SPEI and SVI took into account effect of temperature rise during

Fig. 11 Spatial variation of drought severity across Tharparkar as shown by drought indices:
(a) six-monthly SPI—2002, (b) six-monthly SPEI—2002, (c) six-monthly SVI—2002, (d) six-
monthly SPI—2005, (e) six-monthly SPEI—2005, (f) six-monthly SVI—2005, (g) six-monthly
SPI—2014, (h) six-monthly SPEI—2014, and (i) six-monthly SVI—2014.
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Fig. 12 Spatial variation of composite meteorological and agricultural drought severity across
Tharparkar: (a) meteorological drought severity map—2002, (b) agricultural drought severity
map—2002, (c) meteorological drought severity map—2005, (d) agricultural drought severity
map—2005, (e) meteorological drought severity map—2014, and (f) agricultural drought severity
map—2014.
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2014 and depicted realistic drought conditions as against SPI. It underscored the importance of
a drought index to be incorporated in analysis of drought severity, which could capture effect of
increased evapotranspiration associated with rise in temperature across arid regions as suggested
by previous studies under global warming scenario.18,22,34

Drought severity maps of SPI, SPEI, and SVI furnished isolated information about drought
hazard across Tharparkar at meteorological and agricultural scales based on separate input data
(Figs. 10 and 11). However, any single drought index could not establish a clear picture of spatial
extent of drought severity at meteorological and agricultural drought levels. Weighted overlay
analysis in GIS generated very clear spatial extents of drought severity classes across Tharparkar
at both meteorological and agricultural scales (Fig. 12) as a consequence of two important steps.
One was through emphasizing information of common drought severity classes captured by
drought indices and another by allocation of relative weights to drought index layers, calculated
through analytical hierarchy process.

The results of this study presented an effective model for drought analysis across the arid
zone of Tharparkar which could be aptly implemented by utilizing freely available remote sens-
ing data for drought hazard analysis in data scarce arid regions. Although this study confirmed
effectiveness of using remote sensing data for analyzing vegetation dynamics in response to
rainfall and temperature variations at coarse temporal scale of 1 month across arid region of
Tharparkar, to carry out analyses for specific vegetation types detailed data such as soil moisture,
vegetative growth, and crop yield would be required. The study confirmed the effectiveness and
importance of a drought index that incorporated the effect of rise in temperature on drought
severity across arid regions exposed to higher temperatures.

6 Conclusion

This study provided an important insight into vegetation change dynamics and drought severity
across Tharparkar, which can be quite useful for relevant departments and relief agencies to
respond effectively and timely in drought struck areas. The study could also be of help to
the decision makers to help compensate farmers and affected people according to the drought
severity in affected areas. It is recommended that local and provincial governments should take
initiatives to introduce new crop varieties more resistant to evapotranspiration stress due to
increased temperatures and also ensure training of local communities on rain water harvesting
and soil water conservation techniques to help reduce effects of lower rainfall and higher temper-
atures that further aggravate drought severity. The methodology adopted for this study could be
replicated on data scarce arid regions experiencing frequent droughts under higher temperatures.
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