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Trend surface analysis is a geological term for a mathematical technique which separates a given map set into a
regional component and a local component. This work has extended the steps for the derivation of the constants
in the trend surface analysis equation from the popularly known matrix and simultaneous form to a more sim-
plified and easily achievable format. To achieve this, matrix inversion was applied to the existing equations
and the outcome was tested for suitability using a large volume of gravity data set acquired from the Anambra
Basin, south-eastern Nigeria. Tabulation of the field data set was done using the Microsoft Excel spread sheet,
while gravity maps were generated from the data set using Oasis Montaj software. A comparison of the residual
gravity map produced using the new equationswith its software derived counterpart has shown that the former
has a higher enhancing capacity than the latter. This equation has shown strong suitability for application in the
separation of gravity data sets into their regional and residual components.

© 2016 Elsevier B.V. All rights reserved.
Keywords:
Trend surface
Gravity
Equation
Regional
Residual
Anomaly
1. Introduction

Simply put, trend surface analysis is a geological term for a mathe-
matical technique which separates a given map set into two compo-
nents namely — a regional component and a local component (Davis,
2014). Grant (1961) defined it as that part of data that varies smoothly.
Invariably, it is a function that runs in a predictive pattern. It is associat-
ed with large scale systematic changes which extend from one map
edge to the other (Krumbein and Graybill, 1965). It tries to decompose
every observation made on a spatial plane into their regional and local
component effects respectively (Unwin, 1978) by introducing a line of
best fit on the entire data set using the regressionmethod. The outcome
of such analysis becomes the Regional effect, while individual point var-
iations from the regional effect are known as the assumed error or resid-
uals or local component. The problem of clustering of sampled points
and spatial auto correlation of residual values was earlier identified
with trend surface analysis of which a solution has been proffered
(Norcliffe, 1969). The Residuals occur in a non-systematic pattern,
superimposed on the regional pattern and appear to be spatially ran-
dom (Krumbein and Graybill, 1965). Trend surface analysis has found
its application in many branches of study ranging from agriculture, to
geography to ecology (Tobler, 1966; Chorley and Haggett, 1965) to
geology (Krumbein, 1959; Grant, 1961; Davis, 2014) and even in indus-
tries (Davies, 1954; Hill andHunter, 1968). The application of trend sur-
face analysis in geology tries to solve two main forms of geologic
problems, an aspect of which is the fitting of structural data into its
regional component and local component, as it is often the case in
geophysics. The second form of the problem is common in petrogra-
phy and geochemistry (Davis, 2014). This method was recently ap-
plied in the analysis of potential field data (Likkason, 1993;
Olowofela et al., 2006; Okiwelu et al., 2010; Opara, 2011). The prin-
ciples and some advances in the application of trend surface analysis
have been widely reported (Agterberg, 1984; Weisberg, 1985;
Zimmerman et al., 1996). Previous researchers stopped the equation
at the identity matrix (Unwin, 1978; Davis, 2014) and referred
readers to computer programs for the analysis of large data sets,
which would hardly be solved using simultaneous equations. This
has generated a form of ambiguity and gap in knowledge, as young
scholars in the geosciences find it very difficult to appreciate the ap-
proach as handled by the computer. The aim of this work is to derive
an equation which is easily handled and carried out without pro-
gramming for gravity field separation. To achieve this, the existing
matrix form of the equation was further subjected to matrix inver-
sion, with relevant assumptions made where necessary.
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2. Material and methods

Matrix inversion was applied to the existing matrix form of
trend surface equations to generate new sets of equations. The
new equations were then tested using a gravity data set. The
gravity data set as used in this work was acquired by the Nigeria
Geological Survey Agency (NGSA) between 2008 and 2011 in the
Anambra Basin of south-eastern Nigeria and its environs. A total
of 16,641 data points were acquired. Both ground and air surveys
were employed to ensure high data density. The Microsoft Excel
spread sheet was used in tabulating the entire data set while
Oasis Montaj software produced by Geosoft Incorporated was ap-
plied in plotting the gravity data set in contour maps and colour
spectrum bands.

3. Theory/calculation

The Bouguer gravity value is a combination of the regional
gravity value within the study area and point residual anomalies
within the study area (Unwin, 1978; Davis, 2014). Hence,

Bouguer Gravity value ¼ Regional gravity valueþ Residual gravity value
i:e: ΔgB ¼ ΔgR þ Δgr ð1Þ

where:

ΔgB Bouguer gravity value
ΔgR Regional gravity value
Δgr Residual gravity value

Let:

ΔgB ¼ Yij ð2Þ

ΔgR ¼ axi þ byj þ c ð3Þ

Δgr ¼ eij ð4Þ

Then, Eq. (1) becomes

Yij ¼ axi þ byj þ c
� �

þ eij ð5Þ

where:

Yij Bouguer gravity readings
xi Measurement points in the x-direction
yj Measurement points in the y-direction
eij Residual gravity readings.

a, b, and c are constants.
Hence, the residual is given as

eij ¼ Yij− axi þ byj þ c
� �

ð6Þ
4. Results

Let S = sum of the squares of the residuals, eij.
Hence,

S ¼
XN
i¼1
j¼1

e2ij ð7Þ

⇒S ¼
XN
i¼1
j¼1

e2ij ¼
XN
i¼1
j¼1

Yij− axi þ byj þ c
� �h i2

ð8Þ

The condition onwhich S is minimized is that the partial derivatives of S (i.e. sum of the squares of the residuals)with respect to the constants a, b
and c are equal to zero (Unwin, 1978);

i:e:
∂S
∂a

¼ ∂S
∂b

¼ ∂S
∂c

¼ 0 ð9Þ

Differentiating Eq. (8) with respect to a, b and c and equate to zero,

∂S
∂a

¼ 2
XN
i¼1
j¼1

Yij− axi þ byj þ c
� �h i

� −xið Þ ¼ 0

∂S
∂b

¼ 2
XN
i¼1
j¼1

Yij− axi þ byi þ cð Þ� � � −yj

� �
¼ 0

∂S
∂c

¼ 2
XN
i¼1
j¼1

Yij− axi þ byj þ c
� �h i

� −1ð Þ ¼ 0

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð10Þ
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This is implies that

2
XN
i¼1
j¼1

Yij− axi þ byj þ c
� �h i

� −xið Þ ¼ 0

2
XN
i¼1
j¼1

Yij− axi þ byi þ cð Þ� � � −yj

� �
¼ 0

∂S
∂c

¼ 2
XN
i¼1
j¼1

Yij− axi þ byj þ c
� �h i

� −1ð Þ ¼ 0

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð11Þ

Dividing Eq. (11) by 2

XN
i¼1
j¼1

Yij− axi þ byj þ c
� �h i

� −xið Þ ¼ 0

XN
i¼1
j¼1

Yij− axi þ byi þ cð Þ� � � −yj

� �
¼ 0

XN
i¼1
j¼1

Yij− axi þ byj þ c
� �h i

� −1ð Þ ¼ 0

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð12Þ

Opening the brackets,

XN
i¼1
j¼1

−Yijxi− −ax2i −bxiy j−cxi
� �h i

¼ 0

XN
i¼1
j¼1

−Yijy j− −axiy j−by2j−cyj

� �h i
¼ 0

XN
i¼1
j¼1

−Yij− −axi−byj−c
� �h i

¼ 0

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð13Þ

Opening further, Eq. (13) becomes

−
XN
i¼1
j¼1

Yijxi þ a
XN
i¼1

x2i þ b
XN
i¼1
j¼1

xiy j þ c
XN
i¼1

xi ¼ 0

−
XN
i¼1
j¼1

Yijy j þ a
XN
i¼1
j¼1

xiy j þ b
XN
j¼1

y2j þ c
XN
j¼1

yj ¼ 0

−
XN
i¼1
j¼1

Yij þ a
XN
i¼1

xi þ b
XN
i¼1
j¼1

yjxi þ Nc ¼ 0

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð14Þ

Taking the negative quantities to the right hand side of the equation,

a
XN
i¼1

x2i þ b
XN
i¼1
j¼1

xiy j þ c
XN
i¼1

xi ¼
X
i¼1
j¼1

Yijxi

a
XN
i¼1

xiy j þ b
XN
j¼1

y2j þ c
XN
j¼1

yj ¼
X
i¼1
j¼1

Yijy j

a
XN
i¼1

xi þ b
XN
j¼1

yj þ Nc ¼
XN
j¼1

Y j

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð15Þ
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This can be further put in matrix form as shown in Eq. (16).

XN
i¼1

x2i
XN
i¼1
j¼1

xiy j

XN
i¼1

xi

XN
i¼1
j¼1

xiy j

XN
j¼1

y2j
XN
j¼1

yj

XN
i¼1

xi
XN
j¼1

yj N

2
66666666666664

3
77777777777775

a
b
c

2
4
3
5 ¼

XN
i¼1
j¼1

Yijxi

XN
i¼1
j¼1

Yijy j

XN
i¼1
j¼1

Yij

2
666666666666664

3
777777777777775

ð16Þ

Eq. (16) is a typical form ofmatrix equation as can be seen in existing literature (Unwin, 1978; Davis, 2014).With Eq. (16), simultaneous equation
can be applied in determining the constants a, b and c. However, with a bulk data set, this method becomes cumbersome.

Eq. (16) is equivalent to the matrix equation:

DE ¼ F

where:

D ¼

XN
i¼1

x2i
XN
i¼1
j¼1

xiy j

XN
i¼1

xi

XN
i¼1
j¼1

xiy j

XN
j¼1

y2j
XN
j¼1

yj

XN
i¼1

xi
XN
j¼1

yj N

2
66666666666664

3
77777777777775
; E ¼

a
b
c

2
4
3
5 and F ¼

XN
i¼1
j¼1

Yijxi

XN
i¼1
j¼1

Yijy j

XN
i¼1
j¼1

Yij

2
666666666666664

3
777777777777775

Hence, our matrix Eq. (16) becomes

DE ¼ F ð17Þ

Calculating the inverse of D (i.e. D−1),

D−1 ¼ 1
Dj j � adjD ð18Þ

where:

adjD the Adjoined of D
|D | the determinant of D
The determinant of D is given as

Dj j ¼

XN
i¼1

x2i
XN
i¼1
j¼1

xiy j

XN
i¼1

xi

XN
i¼1
j¼1

xiy j

XN
j¼1

y2j
XN
j¼1

yj

XN
i¼1

xi
XN
j¼1

yj N

�������������������

�������������������

¼
XN
i¼1

x2i N
XN
j¼1

y2j−
XN
j¼1

yj

XN
j¼1

yj

0
@

1
A−

XN
i¼1
j¼1

xiy j N
XN
i¼1
j¼1

xiy j−
XN
i¼1

xi
XN
j¼1

yj

0
BB@

1
CCA

þ
XN
i¼1

xi
XN
i¼1
j¼1

xiy j

XN
j¼1

yj−
XN
i¼1

xi
XN
j¼1

y2j

0
BB@

1
CCA

ð19Þ

To determine the adjoined of D, let the matrix D be represented by

D ¼
d11 d12 d13
d21 d22 d23
d31 d32 d33

2
4

3
5 ð20Þ
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and let cij be the entries of the matrix of cofactor of D, such that c11 is a cofactor of d11 and so on. Hence, by the definition

C11 ¼ N
XN
j¼1

y2j−
XN
j¼1

yj

XN
j¼1

yj

0
@

1
A ð21Þ

C12 ¼ − N
XN
i¼1
j¼1

xiy j−
XN
i¼1

xi
XN
j¼1

yj

0
BB@

1
CCA ð22Þ

C13 ¼
XN
i¼1
j¼1

xiy j

XN
j¼1

yj−
XN
j¼1

xi
XN
j¼1

y2j

0
BB@

1
CCA ð23Þ

C21 ¼ − N
XN
i¼1
j¼1

xiy j−
XN
j¼1

yj

XN
i¼1

xi

0
BB@

1
CCA ð24Þ

C22 ¼ N
XN
i¼1

x2i −
XN
i¼1

xi
XN
i¼1

xi

 !
ð25Þ

C23 ¼ −
XN
i¼1

x2i
XN
j¼1

yj−
XN
i¼1

xi
XN
i¼1
j¼1

xiy j

0
BB@

1
CCA ð26Þ

C31 ¼
XN
i¼1
j¼1

xiy j

XN
j¼1

yj−
XN
j¼1

y2j
XN
i¼1

xi

0
BB@

1
CCA ð27Þ

C32 ¼ −
XN
i¼1

x2i
XN
j¼1

yj−
XN
i¼1
j¼1

xiy j

XN
i¼1

xi

0
BB@

1
CCA ð28Þ

C33 ¼
XN
i¼1

x2i
XN
j¼1

y2j−
XN
i¼1
j¼1

xiy j

XN
i¼1
j¼1

xiy j

0
BB@

1
CCA ð29Þ

Let C be the matrix of cofactor of D. Thus,

C ¼
C11 C12 C13
C21 C22 C23
C31 C32 C33

2
4

3
5 ð30Þ

By the definition of the adjoined of a matrix,

adjD ¼ CT ¼
C11 C21 C31
C12 C22 C32
C13 C23 C33

2
4

3
5 ð31Þ

where CT is the transpose of C.
Substituting Eq. (31) into Eq. (18),

D−1 ¼ 1
Dj j

C11 C21 C31
C12 C22 C32
C13 C23 C33

2
4

3
5 ð32Þ

∴D−1 ¼

C11

Dj j
C21

Dj j
C31

Dj j
C12

Dj j
C22

Dj j
C32

Dj j
C13

Dj j
C23

Dj j
C33

Dj j

2
6666664

3
7777775

ð33Þ



Table 1
Summary of values of equation symbols.

xi yj Yij N xiyj xi
2 yj

2 Yijxi Yijyj

122, 720 105, 706 189, 117 16, 641 779,5 27.4 907,0 40.9 673, 155.1 1, 455, 105 1, 222, 040
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Pre-multiplying Eq. (17) with D−1

D−1DE ¼ D−1 F ð34Þ

⇒

IE ¼ D−1 F ð35Þ

where I = identity matrix.
Fig. 1. Bouguer gravity map of Anambra Basin.
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Substituting for E, D−1 and F in Eq. (35)

⇒
a
b
c

2
4
3
5 ¼

C11

Dj j
C21

Dj j
C31

Dj j
C12

Dj j
C22

Dj j
C32

Dj j
C13

Dj j
C23

Dj j
C33

Dj j

2
6666664

3
7777775

XN
i¼1
j¼1

Yijxi

XN
i¼1
j¼1

Yijy j

XN
i¼1
j¼1

Yij

2
666666666666664

3
777777777777775

ð36Þ

Let: F11 ¼ ∑
N

i¼1
j¼1

Yijxi, F21 ¼ ∑
N

i¼1
j¼1

Yijy j and F31 ¼ ∑
N

i¼1
j¼1

Yij

⇒
a
b
c

2
4
3
5 ¼

C11

Dj j
C21

Dj j
C31

Dj j
C12

Dj j
C22

Dj j
C32

Dj j
C13

Dj j
C23

Dj j
C33

Dj j

2
6666664

3
7777775

F11
F21
F31

2
4

3
5 ð37Þ
Fig. 2. Regional map of Anambra Basin.
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⇒
a
b
c

2
4
3
5 ¼

C11 F11
Dj j þ C21 F21

Dj j þ C31 F31
Dj j

C12 F11
Dj j þ C22 F21

Dj j þ C32 F31
Dj j

C13 F11
Dj j þ C23 F21

Dj j þ C33 F31
Dj j

2
6666664

3
7777775

By multiplication of matricesð Þ ð38Þ

⇒
a
b
c

2
4
3
5 ¼

C11 F11 þ C21 F21 þ C31 F31
Dj j

C12 F11 þ C22 F21 þ C32 F31
Dj j

C13 F11 þ C23 F21 þ C33 F31
Dj j

2
6666664

3
7777775

ð39Þ

By equality of matrices,

a ¼ C11 F11 þ C21 F21 þ C31 F31
Dj j ð40Þ

b ¼ C12 F11 þ C22 F21 þ C32 F31
Dj j ð41Þ

c ¼ C13 F11 þ C23 F21 þ C33 F31
Dj j ð42Þ
Fig. 3. Residual map of Anambra Basin.
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Substituting for C11, F11, C21, F21, C31, F31 and |D | in Eq. (40),

∴a ¼

N
XN
j¼1

y2j−
XN
j¼1

yj

XN
j¼1

yj

0
@

1
AXN

i¼1
j¼1

Yijxi− N
XN
i¼1
j¼1

xiy j−
XN
j¼1

yj

XN
i¼1

xi

0
BB@

1
CCAXN

i¼1
j¼1

Yijy j þ
XN
i¼1
j¼1

xiy j

XN
j¼1

yj−
XN
j¼1

y2j
XN
i¼1

xi

0
BB@

1
CCAXN

i ¼ 1
j¼1

Yij

XN
i¼1

x2i N
XN
j¼1

y2j−
XN
j¼1

yj

XN
j¼1

yj

0
@

1
A−

XN
i¼1
j¼1

xiy j N
XN
i¼1
j¼1

xiy j−
XN
i¼1

xi
XN
j¼1

yj

0
BB@

1
CCAþ

XN
i¼1

xi
XN
i¼1
j¼1

xiy j

XN
j¼1

yj−
XN
i¼1

xi
XN
j¼1

y2j

0
BB@

1
CCA

ð43Þ

Substituting for C11, F11, C21, F21, C31, F31 and |D | in Eq. (41),

∴b ¼

− N
XN
i¼1
j¼1

xiy j−
XN
i¼1

xi
XN
j¼1

yj

0
BB@

1
CCAXN

i¼1
j¼1

Yijxi þ N
XN
i¼1

x2i −
XN
i¼1

xi
XN
i¼1

xi

 !XN
i¼1
j¼1

Yijy j−
XN
i¼1

x2i
XN
j¼1

yj−
XN
i¼1
j¼1

xiy j

XN
i¼1

xi

0
BB@

1
CCAXN

i¼1
j¼1

Yij

XN
i¼1

x2i N
XN
j¼1

y2j−
XN
j¼1

yj

XN
j¼1

yj

0
@

1
AXN

i¼1
j¼1

xiy j N
XN
i¼1
j¼1

xiy j−
XN
i¼1

xi
XN
j¼1

yj

0
BB@

1
CCAþ

XN
i¼1

xi
XN
i¼1
j¼1

xiy j

XN
j¼1

yj−
XN
i¼1

xi
XN
j¼1

y2j

0
BB@

1
CCA:

ð44Þ
Fig. 4. Software derived residual map of Anambra Basin.
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Substituting for C11, F11, C21, F21, C31, F31 and |D | in Eq. (42),

∴c ¼

XN
i¼1
j¼1

xiy j

XN
j¼1

yj−
XN
j¼1

xi
XN
j¼1

y2j

0
BB@

1
CCAXN

i¼1
j¼1

Yijxi−
XN
i¼1

x2i
XN
j¼1

yj−
XN
i¼1

xi
XN
i¼1
j¼1

xiy j

0
BB@

1
CCAXN

i¼1
j¼1

Yijy j þ
XN
i¼1

x2i
XN
j¼1

y2j−
XN
i¼1
j¼1

xiy j

XN
i¼1
j¼1

xiy j

0
BB@

1
CCAXN

i¼1
j¼1

Yij

XN
i¼1

x2i N
XN
j¼1

y2j−
XN
j¼1

yj

XN
j¼1

yj

0
@

1
A−

XN
i¼1
j¼1

xiy j N
XN
i¼1
j¼1

xiy j−
XN
i¼1

xi
XN
j¼1

yj

0
BB@

1
CCAþ

XN
i¼1

xi
XN
i¼1
j¼1

xiy j

XN
j¼1

yj−
XN
i¼1

xi
XN
j¼1

y2j

0
BB@

1
CCA:

ð45Þ

Eqs. (43), (44) and (45) are the relevant equations for the derivation of the constants a, b, and c. After the derivations of the constants, they are
substituted into Eq. (6) to enable us calculate the residuals by subtracting the determined regional gravity values from the observed Bouguer gravity
values.
5. Discussion

A test of the three Eqs. (43), (44), and (45) was done using a gravity
data set acquired in the Anambra Basin, southeastern Nigeria, West
Africa. The Anambra Basin is one of the inland basins in Nigeria. In re-
cent years, it became an interest area due to its hydrocarbon potentials.
The given data set was used to generate values for all the symbols rep-
resented in the three equations. A summary of the data set symbols is
given in Table 1.

Substitution of the values in Table 1 into Eqs. (43), (44) and (45)
gave the values of the constants a, b, and c respectively as represented
in Eqs. (46), (47) and (48).

a ¼ 29:78765775 ð46Þ

b ¼ 12:36490103 ð47Þ

c ¼ −286:551731 ð48Þ

Substituting Eqs. (46), (47) and (48) into Eq. (3), gave the regional
anomaly formula as

ΔgR ¼ 29:78765775xi þ 12:36490103yj−286:551731 ð49Þ

Substituting Eq. (49) into Eq. (6), the residual (Eq. (6)) becomes

eij ¼ Yij− 29:78765775xi þ 12:36490103yj−286:551731
� �

ð50Þ

Fig. 1 is the Bouguer gravitymap of the Anambra Basin. Eqs. (49) and
(50) were applied in generating the data set for plotting Figs. 2 and 3 as
regional and residual gravity maps of the Anambra Basin respectively.
Fig. 4 is a residual gravity map automatically generated from the
Bouguer map using polynomial blog-in inside the Oasis Montaj soft-
ware. A comparison of Fig. 3 with Fig. 4 proved this equation to have a
better enhancing capacity than the existing software. This can be ob-
served from both the northeast, southeast and north central portions
of the residual maps.
6. Conclusion

This work has shown that separation of regional–residual anomalies
during the processing of a large gravity data set is possible by using
trend surface analysis, without the application of any special software.
Even when computer programmes are in use, the young scholars can
nowappreciate the steps and activities being carried out by the comput-
er. A comparison of this equationwith existing software has shown that
it has a higher enhancing capacity.
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