Accepted Manuscript

Carbonate platform facies development of the turonian wata formation in central and eastern sinai, Egypt

M.A. Khalifa, S. Farouk, A.M. Hassan

PII: S1464-343X(16)30305-3

DOI: 10.1016/j.jafrearsci.2016.09.011

Reference: AES 2669

To appear in: Journal of African Earth Sciences

Received Date: 21 February 2016
Revised Date: 11 September 2016
Accepted Date: 15 September 2016

Please cite this article as: Khalifa, M.A., Farouk, S., Hassan, A.M., Carbonate platform facies development of the turonian wata formation in central and eastern sinai, Egypt, *Journal of African Earth Sciences* (2016), doi: 10.1016/j.jafrearsci.2016.09.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CARBONATE PLATFORM FACIES DEVELOPMENT OF THE TURONIAN WATA FORMATION IN CENTRAL AND EASTERN SINAI, EGYPT	1 2 3
	4
M. A. Khalifa*, S. Farouk**, and A. M. Hassan***	5
*Geology Determent. Menoufia University, Shiben El Kom, Egypt.	6
kh_cycle@yahoo.co.uk	7
**Exploration Determent, Egyptian Petroleum Research Institute, Nasr City,	8
11727, Egypt. geo.sherif@hotmail.com	9
***Geology Determent, Sohag University, Sohag, Egypt,	10
geoabdallah@gmail.com	11
	12
	13
ABSTRACT	14
	15
	1.0
The Wata carbonate platform in central and eastern Sinai show a clear pattern	16
of evolutionery development during sedimentation. Three feetes are	17
of evolutionary development during sedimentation. Three facies are	17
recognized in the carbonate platform. Inner-platform in the south, inter-	18
recognized in the carbonate platform. Inner-platform in the south, inter-	10
platform basin in the middle, and outer-platform in the northwest. Such	19
platform busin in the initiale, and outer platform in the northwest. Such	1)
classification was probably performed by the effect of Syrian Arc System that	20
culminated during Turonian in Sinai. Inner-platform includes fining-upward	21
cycles, each begins with packstone, followed by wackestone and capped by	22
lime-mudstone or claystone or molluscan bioclastic wackestone at the base	23
capped by sandy oolitic packstone or dolostone. The dominant faunal	24
associations are molluscs, and echinoids. Inter-platform basin occurs north of	25
inner-platform and extends northwest-southeast direction and comprises	26
	27
fining-upward cycles, each of which begins with bioclastic ostracodal	27
packstone, calcisphere packstone, bioclastic packstone, capped by	28
packstone, cardisphere packstone, biociastic packstone, capped by	20
wackestone and lime-mudstone The faunal association includes, sponge	29
wackestone and fine madstone the faunal association metades, sponge	<i>∠ y</i>
spines, ostracodes, molluscan debris and calcispheres. They were deposited in	30
1 · · · · · · · · · · · · · · · · · · ·	

shoal marine and barrier. The outer-platform occurs at Gebel Giddi and	31
extended northwestwards. The lithofacies are entirely represented by	32
calcisphere wackestone/packstone, with a reduced thickness of 20 m.	33
Keyword: Carbonate platform, Wata Formation, Turonian, Sinai, Egypt	34
	35
1. Introduction	36
Passive margin basins are generally considered to be the major site of	37
carbonate platform formation (e.g. Wright and Burchette, 1999; Einsele,	38
1992; Bachmann and Kuss, 1998). The largest and most extensively studied	39
Cenozoic platforms come from the Florida-Bahamas region (e.g., Schlager,	40
1981 &1999; Schlager and Ginsburg, 1981 and Ginsburg, 2001), the Great	41
Barrier Reef (e.g., Davies et al., 1989) and the NW shelf of Australia	42
(Butcher, 1990). Sedimentology and stratigraphy of these platforms are	43
dominantly controlled by the low rate of sedimentation and the localization of	44
siliciclastic supply from the adjacent mature continental landscape or isolation	45
from clastic supply in offshore banks, subsidence at relatively slow rates in	46
the Cenozoic (~0.03-0.04 m/ky, from Schlager and Ginsburg, 1981) as well	47
as regional or eustatic sea-level changes. During the Cenomanian-Turonian a	48
carbonate platform which extended over large parts of northern parts of Sinai	49
was established (Bauer et al., 2002). As a result of eustasy and local	50
subsidence, the sea level fluctuated over the predominantly shallow water	51
platform during the Cenomanian and Turonian leading to cyclic	52
sedimentation of a variety of sedimentary rocks.	53

Ghorab (1961) assigned the name Wata Formation for the carbonate	54
succession at Wadi Wata in western Sinai. In central and eastern Sinai, little	55
sedimentological work has been done on the Turonian Wata Formation (e.g.,	56
Said, 1971; Barakat et al., 1986; El Azabi and Al Araby, 1996; Bachmann	57
and Kuss, 1998; Luning et al., 1998a and 1998b; Kuss et al., 2000; Khalifa et	58
al., 2003; El-Hariri et al., 2012). However, geological discussion on the Wata	59
Formation was done by (Issawi et al., 1981; Cherif et al., 1989; Kora and	60
Hamama, 1987; and Ziko et al., 1993). All the above studies were focused on	61
local Turonian sections without focusing on the lateral and vertical facies	62
changes during the Turonian time. The studied localities in the present work	63
are situated at Gebel Giddi, El Mineidra El Kebira, Gebel Shiti, Gebel Gunna,	64
Gebel El Hazim and Wadi Watir in central eastern Sinai (Fig. 1). Aims of this	65
paper are 1) to describe the facies associations of the Wata Formation, 2) to	66
interpret the possible depositional environments of the studied facies, 3) to	67
document the broad stratigraphical and depositional history of the Wata	68
carbonate platform, and 4) to interpret the reasons for the development of	69
pure carbonate platform in this particular area. This approach will help in	70
understanding the dominant control on development of carbonate platform.	71
2. Geological setting	72
The Sinai Peninsula lies at the junction between Africa and Asia continents	73
and represents the Asian part of Egypt. Egypt lies in the northeast of the	74
African Plate, where it forms a part of the Sahara Craton (El Emam et al.,	75
1990) that is considered as a part of a passive continental margin of	76

Gondwana. During its passive margin phase, the North African margin was	77
also influenced by pulses of compression, strike-slip and extension in specific	78
areas (Guiraud et al., 2001). Most notably in the Arabian-Egyptian region, the	79
margin was affected by tectonic inversion along the Syrian Arc (Garfunkel,	80
1999). Geologically, Egypt includes three structural units; the Arabian-	81
Nubian Massif in the south, southern facies belt in the central region; and the	82
northern facies belt in the extreme north. The Arabian-Nubian Shield (New-	83
Proterozoic) in the southern Western Desert, the eastern parts of the Eastern	84
Desert (Red-Sea hills) and the southern Sinai consist of gneisses, granitoids,	85
and meta-sedimentary rocks. It was formed by early evolution from the	86
accretion of island arcs (during New-Proterozoic) and of oceanic terrains	87
(Stern, 1985; Guiraud et al., 2001). The Upper Cretaceous southern facies belt	88
(equivalent to stable shelf of Said, 1962) onlapped on the Arabo-Nubian	89
Massif extending in a northeast-southwest direction. It represents a platform	90
consisting mostly of the Maghrabi/Bahariya formations (Early Cenomanian);	91
El Heiz (Late Cenomanian), El Hefhuf Formation (Turonian-Santonian) and	92
Ain Giffara Formation (Campanian). The above sequence is capped by the	93
Khoman Chalk (Maastrichtian). The northern facies belt of Late Cretaceous	94
age (equivalent to the unstable shelf of Said, 1962) is coeval to the southern	95
facies belt, and was affected by the Syrian Arc System (Late Cretaceous),	96
which formed northeast-southwest trending anticlinal and synclinal structures.	97
The northern facies belt in this study comprises the Galala/Raha formations	98
(Cenomanian), Abu Qada Formation (Cenomanian-Turonian), Wata	99

Formation (Turonian), Matulla Formation (Campanian) and the Sudr Chalk	100
(Maastrichtian). The Hercynian Orogeny affected the southern facies belts,	101
where it retarded the deposition of Silurian, Devonian, Carboniferous,	102
Permian, Triassic, and Jurassic rocks. This made a prolonged hiatus between	103
the top of the Naqus Formation and the Lower Cretaceous Malha Formation	104
(422.9- 99.5 Ma). The Laramide Revolution occurred between the Lower	105
Cretaceous Malha Formation and the Cenomanian Galala Formation, making	106
a wide gap or hiatus starting from 112 to 99.6 Ma. Also, the Hercynian	107
Orogeny affected the northern facies belts. This made a prolonged hiatus	108
between the top of the Naqus Formation and the Lower Cretaceous Malha	109
Formation (422.9-112 Ma). The Syrian Arc System can be traced from Syria	110
to the central Western Desert of Egypt, via Sinai and the northern part of the	111
Eastern Desert (Kuss et al., 2000). Folding of the Syrian Arc System began in	112
post-Cenomanian times and reached its acme during the Late Cretaceous (Aal	113
and Lelek, 1994; Farouk and Faris, 2012; Farouk et al, 2014). Hence, the	114
Turonian rocks were deposited on the paleotopgraphy of the structural highs	115
and lows in central and eastern Sinai. This affected on the facies type of the	116
Turonian Wata Formation both laterally and vertically. At Gebel Shiti, Gebel	117
Gunna, and Wadi Watir, the contact between the Abu Qada and the Wata	118
formations is unconformable and is placed between the claystone of the	119
topmost Abu Qada Formation and the limestone containing bivalves and	120
planktonic foraminifera of basal Wata Formation. At Gebel El Hazim, the	121
contact is unconformable and is placed between the brown sandstone of the	122

topmost part of the Abu Qada Formation and the yellowish white limestone	123
with chert bands of the basal Wata Formation (Fig. 2). At Gebel Giddi and El	124
Mineidra El Kebira the Wata Formation conformably overlies the Early	125
Turonian Abu Qada Formation. At the first locality, this contact is placed	126
between the yellowish grey limestone of the uppermost Abu Qada Formation	127
and the white chalky limestone with chert nodules in the basal part of the	128
Wata Formation. The upper contact of the Wata Formation at Gebel Shiti,	129
Gebel El Hazim and Wadi Watir is unconformable and lies between the pale	130
yellow limestone with chert bands of the topmost Wata Formation and the	131
green claystone of the basal Matulla Formation. At Gebel Gunna, the same	132
upper contact is placed between the cherty limestone of uppermost part of the	133
Wata Formation and the dolomite of the basal Matulla Formation (Fig. 2).	134
Lithologically, the Wata Formation at Gebel Giddi consists of chalky	135
limestone enriched with ammonites and molluscan shell fragments and	136
measures about 28 m in thickness. At El Mineidra El Kebira, this formation is	137
made up of marly limestone intercalated with marls and claystone and	138
assumes about 93.5 m in thickness (Fig. 3A). The limestone is enriched with	139
gastropods, brachiopods, algae, corals, sponges and echinoids (Fig. 3B).	140
Southeastwards, the Wata Formation outcrops and forms the cap of El Tih	141
escarpment such as at Gebel Shiti and Gebel Gunna assuming about 35 m in	142
thickness. This formation increases in thickness further northeast at Gebel El	143
Hazim and Wadi Watir reaching up to 100 m (Fig. 2). At the latter localities	144
the Wata Formation comprises of hard thick to thin bedded limestone and	145

dolostone with occasionally marl layers (Fig. 3C). Few clay and sandstone are	146
intercalated with the limestones. The marl beds are fossiliferous with	147
ammonites and molluscan shell fragments.	148
The Wata Formation contains several benthic foraminifera marker for the	149
Late Turonian age, among which are Discorbis turonicus Said & Kenawy, D.	150
minutus Said & Kenawy and Eponides lotus (Schwager). It also yielded rare	151
and sporadic planktonic foraminifera such as, Hedbergella delrioensis Carsey,	152
H. simplex Morrow, H. planispira (Tappan) Whiteinella archaeocretacea	153
Pessagno, Whiteinella baltica Douglas & Rankin, W. inornata (Bolli) and	154
Heterohelix moremani (Cushman). The first appearance of the Discorbis	155
turonicus during the Late Turonian has been accepted by several previous	156
workers in Egypt (e.g., El Shinnawi and Sultan, 1972; Andrawis, 1990;	157
Shahin and Kora, 1991; Ismail, 2000; Samuel et al., 2009). In addition to, the	158
Upper Turonian zonal index ammonite Coilopoceras requienianum	159
(D'Orbigny) has been found in the Wata Formation. In east central Sinai, the	160
Wata Formation is assigned to the Middle-Late Turonian due to the	161
occurrence of the calcareous nannofossils CC 12 Zone (Bauer et al., 2001,	162
2003; Farouk, 2015; Farouk et al., 2016).	163
3. Methods	164
To delineate the nature of the lower and upper contacts of the Wata	165
Formation with the overjacent and subjacent rock units, six stratigraphic	166
sections have been measured at Gebel Giddi, El Mineidra El Kebira, Gebel	167
Shiti, Gebel Gunna, Gebel El Hazim and Wadi Watir (Figs. 1,2). The rock	168

samples have been studied in thin sections under petrographic microscope.	169
Micro- and macro faunal associations were identified from this rock unit to	170
delineate its biozone and exact age. The measured sections have been	171
correlated on the basis of the ammonite fossils and lithological characteristics.	172
4. Facies analysis	173
The petrographic investigation on the Wata Formation revealed the presence	174
of several lithofacies represented by lime-mudstone, molluscan bioclastic	175
wackestone, ostracodal wackestone, foraminiferal wackestone, pelletal	176
foraminiferal packstone, sandy oolitic molluscan packstone, calcispheres	177
packstone, dolosparite, dolomicrite, quartzarenite and claystone (Fig. 2).	178
4.1 - Lime-mudstone (LM)	179
The lime-mudstone lithofacies is common in the Wata Formation. At Wadi	180
Watir, it forms a thick horizon near the topmost part of the Wata Formation	181
with a thickness of 12.0 m. At Wadi Hegni (Gebel El Hazim) and Gebel Shiti	182
the lime-mudstone is common and represented by three beds, each of which	183
does not exceed 6.5 m in thickness (Fig. 2). At Gebel Gunna, this lithofacies	184
is reduced in thickness, and is represented by 2.0 m thick near the middle part	185
of the formation. It is also present at El Mineidra El Kebira, where it is	186
intercalated with the calcispheres and ostracodal packstones (Fig. 2). This	187
lithofacies consists of fine dense and dark grey microcrystalline calcite and	188
contains rare foraminiferal skeletal particles floating in the dense lime mud.	189
Such facies are completely obliterated by aggrading neomorphism into	190

microsparry calcite (Fig.4A). Also, the lime mud shows slight degree of
recrystallization into xenotopic microspar (10 um) and dolomitized in parts.
Interpretation: the lime-mudstone was deposited in calm water due to the
absence of variable amount of skeletal particles. Most of lime mud may be
derived from the abrasion and micrtization of the skeletal particle especially
in the restricted areas. The microspar was originally deposited as micrite with
associated clay minerals, as well as the rare skeletal particles, suggesting that
this lithofacies was deposited in a subtidal or low ramp environment below
wave base (Calvet and Tucker, 1988). Within argillite layers the skeletal
material lies parallel to the bedding suggesting slow sedimentation rates
(Elrick and Read, 1991). This facies is devoid of indigenous benthonic fauna
or burrows suggesting anoxic conditions during deposition (Marquis and
Laury, 1989). The absence of wave and current-induced structures suggests a
subtidal environment below storm wave base (Keller, 1997).

4.2- Molluscan bioclastic wackestone (MBW)

The molluscan bioclastic wackestone forms the topmost part of the Wata Formation at El-Tih escarpment and Gebel Gunna with a thickness of about 4.0 m, and 20.0 m respectively. At Wadi Watir, it is about 11.0 m thick near the lowermost part of the sequence, each bed ranges in thickness from 3 to 8 m thick (Fig. 2). It is enriched with bivalves and different skeletal debris. Petrographically, it is made of sorted molluscan particles forming about 80% of the rock and shows preferred orientation parallel to the bedding plane.

Most of the molluscan particles exhibit aggrading neomorphism from their	214
centers and are coated with micrite envelopes (Fig. 4B). The micritic matrix	215
became granular as well as mosaic sparry calcite in parts. Rock particles are	216
mainly molluscan shell fragments and bioclastic grains.	217
Interpretation: Bivalves rich skeletal assemblages are widely recorded in	218
modern non-tropical carbonate sediments on the Wanganui shelf off central	219
western New Zealand (Gillespie et al., 1992). The assemblage is often best	220
represented in areas with relatively higher sedimentation rate of fine	221
terrigenous material, less favored by many of the other skeletal contributors,	222
and often associated with shallower-shelf waters (Nelson et al., 1988).	223
4.3- Ostracodal wackestone (OW)	224
This lithofacies is recorded in the Wata Formation at Gebel Gunna and Wadi	225
Watir assuming a thickness of 10.5 m and 12.0 m respectively. It also occurs	226
at El Mineidra El Kebira intercalated with calcispheres	227
packstone/wackestone. Rocks of this lithofacies are yellowish brown to	228
creamy in colour, hard and are characterized by a papery or thinly laminated	229
appearance. Petrographic investigation revealed that the rock is made up of	230
dark grey dense micrite matrix rich with thin bivalve shells that are composed	231
of calcite with a radial fibrous structure. Ostracodes are scattered randomly in	232
the lime matrix (Fig. 4C). Rare foraminiferal tests are also recorded	233
disseminated in the matrix and show microspar filling the whole tests as a	234
result of aggrading recrystallization (Fig. 4C). Few clear dolomite rhombs are	235
also observed within the lime mud matrix. They are idiotopic with	236

unequigranular fabric and range in size from 0.02 to 0.05 mm. Also, few	237
pores and vugs are more or less filled with coarse mosaic spar as cement.	238
Interpretation: Bioturbated mudstones and wackestones with moderate fossil	239
diversity (ostracodes, pelecypods, gastropods, miliolids, other benthic	240
foraminifera, dasycladaceans, and sponge spicules) are attributed to semi-	241
restricted lagoons (Colombie and Strasser, 2005). Faunal diversity is low and	242
normal marine fauna are lacking, except for ostracode shells, calcipheres and	243
dasycladacean algae, which indicate quiet, sheltered conditions such as a	244
lagoonal environment (Khalifa and Zaghloul, 1990). Zoophycos burrows	245
indicate deep subtidal conditions. Similar facies elsewhere in the geological	246
record have been interpreted as low energy sub-wave base deposits (Markello	247
and Read, 1981).	248
1.4- Foraminiferal wackestone (FW)	249
1.4- Foraminiferal wackestone (FW) Foraminiferal wackestone occurs at El Minediara El-Kebiara. It occurs also at	249250
Foraminiferal wackestone occurs at El Minediara El-Kebiara. It occurs also at	250
Foraminiferal wackestone occurs at El Minediara El-Kebiara. It occurs also at the middle part of the Wata Formation in both Wadi Watir and Wadi Hegni	250 251
Foraminiferal wackestone occurs at El Minediara El-Kebiara. It occurs also at the middle part of the Wata Formation in both Wadi Watir and Wadi Hegni (Gebel Hazim) where it attains a thickness of about 20 m, and 12 m	250251252
Foraminiferal wackestone occurs at El Minediara El-Kebiara. It occurs also at the middle part of the Wata Formation in both Wadi Watir and Wadi Hegni (Gebel Hazim) where it attains a thickness of about 20 m, and 12 m respectively. It is composed of yellowish brown limestone, very hard, massive	250251252253
Foraminiferal wackestone occurs at El Minediara El-Kebiara. It occurs also at the middle part of the Wata Formation in both Wadi Watir and Wadi Hegni (Gebel Hazim) where it attains a thickness of about 20 m, and 12 m respectively. It is composed of yellowish brown limestone, very hard, massive with some chert nodules. This lithofacies is made essentially of skeletal	250251252253254
Foraminiferal wackestone occurs at El Minediara El-Kebiara. It occurs also at the middle part of the Wata Formation in both Wadi Watir and Wadi Hegni (Gebel Hazim) where it attains a thickness of about 20 m, and 12 m respectively. It is composed of yellowish brown limestone, very hard, massive with some chert nodules. This lithofacies is made essentially of skeletal particles closely packed in a dark dense micrite matrix. Skeletal particles are	250251252253254255

susceptible to change to microspar by aggrading neomorphism while their

259

internal structure is still well preserved. Bioclastic grains account about 5% of	260
the rock. They are represented mainly by ostracodal valves with curved shape	261
and size up to 0.20 mm (Fig.4D). Other elongated bioclastic grains, which	262
refers to molluscan particles, are also encountered. They are replaced by	263
mosaic sparry calcite with straight intercrystalline boundaries with a size of	264
about 0.04 mm (Fig. 4D).	265
Interpretation: The common presence of benthonic foraminifera, e.g.	266
miliolide indicates restricted water condition. It usually occurs in shallow	267
water and back reef lagoon (Henson, 1950). Moreover, Wilson (1975) has	268
found that miliolide are the most common foraminiferal particles representing	269
the shallow restricted lagoon environments. This lithofacies was deposited in	270
deeper subtidal conditions. The presence of mud-supported texture, and the	271
apparent absence of wave and current structures, suggests that this facies was	272
deposited in a low energy environment below normal wave base (Calvet and	273
Tucker, 1988; Tucker and Wright, 1990). The faunal diversity indicates a	274
stable open marine environment at moderate depth, characterized by the	275
accumulation of foraminifera and molluscan debris.	276
	277
15. Pallatal foraminifaral nackstone (PFP)	278

4.5- Pelletal foraminiferal packstone (PFP)

The pelletal foraminiferal packstone lithofacies has a wide distribution 279 throughout the Wata Formation. It is represented by two horizons at Gebel 280 Shiti with a total thickness of 9.m. At Gebel Gunna, this lithofacies occurs at 281 the lower part of the Wata Formation with a thickness which ranges from 2.0 282

to 9.0 m. Rocks belonging to this lithofacies are whitish gray to creamy in	283
colour, well-bedded, hard and characterized by comb structure in parts. In thin	284
section, this lithofacies is essentially made up of well rounded micritic pellets	285
that originate from the extensive micritization of the foraminiferal tests. They	286
are well rounded, sorted, vary in size from 0.20 to 0.30 mm and are cemented	287
by microspar which forms the other foraminiferal tests (Fig. 5A).	288
Foraminifera are represented by benthonic forms such as miliolide and	289
ostracodes. Most of the miliolide and ostracodes were extensively micritized	290
to the extent that the whole particles change to dull dark grey, looks like,	291
pellets. Moreover, some relics of the miliolide still occur (Fig. 5A). They are	292
rounded in shape and have a size of about 0.30 mm. Rare bioclastic grains as	293
well as crinoid plates also occurs.	294
Interpretation: The pelleted forminiferal wackestone that contains a more	295
restricted miliolides and ostracodes indicates brackish water environment	296
(Mack and James, 1986). The predominance of micrite in between particles	297
reflects quiet water condition.	298
	299
4.6- Sandy oolitic molluscan packstone (SOMP)	300
The sandy oolitic molluscan packstone is encountered at the lower part of the	301
Wata Formation both at Wadi Watir and Wadi Hegni (Gebel Hazim) with a	302
total thickness of about 21 m (Fig. 2) Rocks belonging to this lithofacies are	303

light grey to yellowish grey in colour, medium-grained, hard, rich with

molluscan shell debris, and characterized by large scale cross-bedding at

304

305

Wadi Watir. The rock is made essentially of coarse oolitic skeletal particles	306
and detrital quartz grains packed in a coarse mosaic matrix (Fig.5B). Oolites	307
account for about 15% of the rock with a size reaching 0.50 mm in diameter.	308
Some of these oolites suffer aggrading neomorphism to pseudospare starting	309
from the core. Skeletal particles account for about 30% of the rock and are	310
represented by molluscs, echiniods, foraminiferal tests and algae with rare	311
bryozoan fragments (Fig.5B). Molluscan shell walls were replaced by	312
pseudospare as a result of aggrading neomorphism. In addition, some of them	313
show micrite envelopes around their shells as a result of algal borings. Few	314
shell debris of the molluscan grains are subjected to silicification, i.e.,	315
cryptocrystalline silica replaced the original shell of the oyster fragments. Fine	316
to coarse-grained detrital quartz grains make 15 % of the rock. These grains	317
show clear diagenetic feature where the grain peripheries are replaced with	318
calcite. Granular spare crystals as well as drusy calcite are acting as cement	319
while the massive spar that represents secondary cement, may be resulted	320
from the recrystallization of the original lime mud (Fig. 5B).	321
Interpretation: The sandy oolitic molluscan packstone grainstone was	322
probably deposited in current or wave-agitated shallow subtidal environments	323
(Osleger and Read, 1991). The highly diversity of allochems (echinoids,	324
bryozoa, mollusca, peloids, ooids and intraclasts) embedded in a sparry	325
calcite cement, point to an influence of shallower and more agitated water,	326
probably shoal area (Wilson, 1975 and Flugel, 1982). The association of	327
peloids, intraclasts and oolites reflects restricted shoal deposits with moderate	328

to high circulation (Luning et al., 1998a). The oolitic-intraclastic grainstone is	329
deposited in agitated, shallow subtidal water as low-relief shoal (Tucker et al.,	330
1993).	331
	332
4.7 - Calcisphere packstone (CP)	333
This lithofacies occurs in the Wata Formation at El Giddi area. The rock is	334
yellowish white in colour with thickness of 24 m. The rock consists of	335
calcispheres (35%), bioclasts (15%), algae (3%) echinoid spines (2%) and	336
lime mud matrix (Fig.5C). Calcispheres are common, and show a concentric	337
wall structure. Bioclasts are most probably derived from algal skeletons. Few	338
algal fragments are observed and are represented by coated grains (oncolites).	339
Their internal cells are filled with micrite. The embedding material is a lime	340
mud matrix (45%) and shows thin laminations and containing few empty	341
pores (Fig. 5C).	342
Interpretation: The calcispheres assemblage is most typical of off-shelf	343
waters where turbulence is minimal, allowing the pelagic settling and	344
accumulation of planktonic foraminifera-rich ooze (Hayton et al., 1995; El-	345
Azabi and Farouk, 2011). This assemblage may occur at shallow depths in	346
partly enclosed basins where low-energy zones develop at the end of current	347
paths as found in Bass Basin, southeastern Australlia (Blom and Alsop,	348
1988). The presence of oncolite indicates restricted marine water or lagoon	349
(Peryt, 1977). However, a literature overview suggests that two environments	350
were the main habitat of calcispheres, i.e. shallow water sheltered	351

environments and an open marine realm. Calcispheres indicate well -	352
sheltered, very shallow water such as lagoonal, back reef (Marszalek, 1975;	353
Kaźmierczak, 1975 and1976).	354
4.8- Dolosparite (DSS)	355
In the Wata Formation, this lithofacies is represented by three horizons that	356
occur between the pelletal foraminiferal packstone lithofacies at Gebel Shiti .	357
Each horizon has a thickness of about 1.50 m. It also occurs at Gebel Hazim	358
(Wadi Hegni) with an average thickness of 5 m. Rocks belonging to this	359
lithofacies are greyish yellow to dark brown, hard, burrowed. The rock mainly	360
consists of well-defined dolomite rhombs (90-95%) and some unfilled pore	361
spaces. The matrix is mosaic sparry calcite with a size ranging from 0.16 to	362
0.24 mm. Most of the dolomite rhombs are of medium-grained (0.08 mm) and	363
show hypidiotopic to xenotopic fabric and equigranular texture (Fig. 5D).	364
They are of rich inclusion type where they contain thin threads of ferric	365
hydroxide along the rhombohedral cleavage. Vugs and pores are mostly	366
unfilled while rare of them are filled with rounded to subrounded chert	367
nodules with size of about 0.8-0.16 mm. These filled pores that originally	368
may be formed due to burrowing organisms were filled with cryptocrystalline	369
silica.	370
Interpretation: This type of coarse-grained dolostone suggests later phase of	371
dolomitization, since the coarse dolomite rhombs are usually need long period	372
of time to be formed. This dolomite facies is interpreted to represent an	373
intermediate to late-diagenetic replacement dolomite. The coarse crystal size	374

suggests a major, probably long lasting, dolomitization event. Cloudy cores
represent replacive dolomite, whereas the clear rims are zoned dolomite
cements that occlude intercrystalline porosity (Lohmann and Meyers, 1977
and Amthor and Friedman, 1991). This type includes dolomite cement and
dolomite replacing precursor cement. This dolomite type occurs together with
fine crystalline dolomite types. Paragenetic relationships indicate that coarse
crystalline dolomite is later than fine crystalline dolomite (Khalifa and Abu
El-Hassan, 1993) and contemporaneous (replacive dolomite). Coarse-
crystalline dolomites may occur as a replacement of limestone during late
diagenesis in the deep subsurface (Machel and Anderson, 1989) and this
process may be controlled by the coarse-grained texture of the original
deposits that are being replaced during late diagenesis (Folk and Land, 1975;
Sibley et al., 1993).

4.9- Dolomicrite (DM)

In the Wata Formation, the dolomicrite occurs only at Wadi Hegni (Gebel El 390 Hazim) it is faint yellowish in color, thinly bedded with rare shell debris and 391 measures about 10 m in thickness. Mircroscopically, the rock of this 392 lithofacies consists mainly of very fine dolomite rhombs (70-80%), as well as 393 some detrital quartz grains. Dolomite rhombs are usually hypidiotopic to 394 xenotopic with equigranular texture (Fig.6A). They range in size from 8 to 15 395 um and are mostly of inclusion rich type along the rhombohedral cleavage, as 396

well as they are lacking zoning. Some unfilled vugs and pore spaces with a	397
size of 0.20 mm in diameter are also recorded.	398
Interpretation: In many cases dolomicrite can form shortly after deposition or	399
as an early-stage replacement mineral in modern supratidal and shallow	400
intertidal environments as found in the Recent sediments in Arabian Gulf	401
(Friedman, 1968; Shinn et al., 1965; Shinn, 1983). The presence of this facies	402
within the carbonate facies reflect the lowering in sea level during	403
sedimentation that permit the slight evaporation and consequent	404
dolomitization (Folk and Land, 1975).	405
4.10- Quartzarenite (QA)	406
In the Wata Formation, the quartzarenite lithofacies lies in the middle part	407
between the sandy oolitic packstone lithofacies at Wadi Watir (Fig. 6B). In	408
thin sections, the rock consists of well sorted quartz grains accounting 95% of	409
the rock with rare feldspar grains and carbonate rock fragments. The quartz	410
grains are medium- to coarse-grained, well rounded, Clay matrix is rarely	411
recorded as very fine dull grains. Quartz grains are rounded and highly	412
compacted with tangential and suture contacts. They range in size from 0.2 to	413
0.4 mm in diameter. Most of the grains are highly mature and coated with	414
dark ferruginous material as thin films (Fig.6B). The cementing materials are	415
represented essentially by silica overgrowths that form an equal envelopment	416
around the original quartz grains. The silica overgrowths are separated by	417

418

ferric oxide.

Interpretation: The quartzarenite that is well sorted may be deposited on the	419
shore as dune and beach sands and may include near shore littoral sand. Also,	420
quartzarenite can be found in the intertidal zone. The presence of silica	421
overgrowths as cement indicates subaerial exposure of the sandstone and or	422
deposition in continental environment ,since most of the silica overgrowths in	423
sandstones is considered second phase of cementation as evidenced by the	424
presence of iron oxides coating around quartz grains. This phenomenon was	425
described in the quartzareintes that bound the depositional sequences in	426
fluvial and fluviomarine facies (Salem et al., 1998 and Abdel Wahab et al.,	427
1998). The northward thinning of the quurtzarenite reflects the proximity of	428
this facies to terrigenous provenance south and eastwards peripheries of basin.	429
4.11- Claystone lithofacies (CL)	430
Claystone lithofacies is recorded only in the middle and upper parts of Gebel	431
Shiti in east central Sinai (Fig.2). In the later locality it forms the base of the	432
second cycle and the middle part of the last cycle. It has a thickness varying	433
from 3.0 to 9.0 m. The rock is yellowish gray in colour, highly with thin	434
laminae of gypsum as well as thin bands of ferruginated sandstone	435
(quartzwacke).	436
Interpretation: The deposition of claystone may be occurred during rapid	437
settling from suspension probably as consequence of clay flocculating from	438
concentrated suspension (Potter et al., 1980) .The claystone can be	439
transported from cratonic area nearby the basin during subsidence or increase	440
in sea level (Osleger and Read, 1991).	441

5. Discussion	442
The Wata carbonate platform in central and eastern Sinai show transitional	443
facies changes from southeast to northwest and can be classified into three	444
coeval environments. These are: inner-platform in the southeast, inter-	445
platform basin in the middle and outer platform in the northwest (Fig. 7A).	446
This opinion is contradicted with Wilmsen and Nagm (2012) who considered	447
that the depositional setting of the Cenomanian and Turonian in the southern	448
Galala plateau as a homoclinal carbonate ramp. This classification is similar	449
to the opinion of Bauer et al. (2002) during their study of Turonian Wata	450
Formation in Sinai. The subdivision of the carbonate platform was affected	451
probably by the Syrian Arc System that was active during the Late Cretaceous	452
(Shahar, 1994: Walley, 1998). In Sinai, "Early Alpine" transgression since the	453
Turonian resulted in the structural inversion of older half grabens (Moustafa	454
and Khalil, 1990).	455
The inner-platform includes Gebel Shiti, Gebel Gunna, Gebel El Hazim	456
(Wadi Hegni) and Wadi Watir. The most pronounced facies associations are	457
represented by lime-mudstone, dolosparite, dolomicrite, ostracodal	458
wackestone, molluscan bioclastic packstone, sandy oolitic molluscan	459
packstone and quartzarenite. Such facies were probably deposited in shallow	460
subtidal to intertidal environments. These lithofacies show vertical	461
arrangement in the form of fining-upward cycles. Each cycle commences with	462
sandy oolitic molluscan packstone, followed upward either by molluscan	463
bioclastic wackestone and capped by lime-mudstone, or molluscan bioclastic	464

wackestone, capped by lime-mudstone. The vertical arrangement of such	465
cycles that show fining-upward cycles indicates subsidence during	466
sedimentation. This may represent the foundation stage of platform formation	467
(Szulezewzki et al., 1996). The presence of coarse-grained and fine-grained	468
dolomite in the inner platform indicate vibration in sea-level between	469
intertidal to supratidal during sedimentation. The formation of dolomite needs	470
shallowing water and sea-level fall to enable dolomitization process to be	471
performed while the carbonate lithofacies indicate high-stand sea-level (Bauer	472
et al., 2002). At Wadi Watir, the oolitic packstone was accumulated vertically	473
forming the lower half of the sequence. Subsequent to the oolitic facies, the	474
quartzarenite facies was accumulated above the oolitic facies. Their	475
deposition was occurred in shallow subtidal to intertidal zone (Klein, 1970).	476
The quartz grains were derived from the exposed basement rocks in	477
southeastern side of the basin. The oolitic and quartzarenite lithofacies were	478
deposited in high agitation water in shoal marine representing a barrier. Such	479
a barrier may represent the transition from the inner platform to inter-platform	480
setting (Figs. 7A&7B). However, sediment transport, coarse-grained	481
carbonates, and oolitic shoals are generally common on platforms during	482
highstand (James and Kendall, 1992).	483
The inter-platform basin occurs north of the inner-platform (Fig. 7A) and	484
occurs at El Mineidra El Kebira. In such restricted basins, the lithofacies have	485
an average thickness of 93 m. In the inter-platform basin, the carbonate	486
succession comprises fining-upward cycles, each of which begins with	487

bioclastic ostracodal packstone, bioclastic packstone, capped by wackestone	488
and lime-mudstone. Such facies associations reflect increased carbonate	489
production rates. Such fining-upward cycles may indicate local structural	490
control such as continuous subsidence during sedimentation. The packstones	491
were deposited in shallow warm condition near the wave base, when	492
subsidence started the water condition was changed (depth, salinity, wave	493
actionetc.) which permit the sedimentation of wackestone and lime-	494
mudstone. The presence of miliolids, ostracode suggests sheltered and quiet	495
water condition (Wilson, 1975).	496
The outer-platform occurs at Gebel Giddi and is extended farther northwards	497
(Figs. 7A&7B). The lithofacies are entirely represented by calcisphere	498
wackestone/packstone, with a reduced thickness of 20 m (Fig. 2). The outer	499
platform facies is made up of different lithofacies (e.g.calcisphere	500
wackestone/packstone) that widely differ from the inner and inter-platform	501
facies. The hemipelagic calcisphere wackestone/packstone facies contains	502
decimeter-scale bedding and are arranged in 05- to 40 cm thick beds that are	503
massive, bioturbated and lack evidence of cyclicity. Contacts between beds	504
are sharp and conformable. These lithofacies were deposited from suspension	505
(hemipelagic facies) and transported down slope by gravity. This is similar to	506
the platform margin south-central Pyrenees, Spain (Drzewiecki and Simo,	507
2000). The thickness of the outer-platform reaches up to 93 m, more or less,	508
three times than the inner- and inter-platform. This indicates that the rate of	509
subsidence in the outer-platform is greater than inner- and inter-platforms.	510

These subsidence events in each section seem to have been approximately	511
simultaneous through the entire area, although they can have very different	512
responses in each section. For example, a major subsidence event can be	513
recognized in all sections in the Late Cenomanian, but the local consequences	514
of that event were very different: even causing the drowning of the previous	515
shallow platform, whereas in others was the opposite, causing their uplift and	516
emersion.	517
Calcispheres are usually denoted as hollow, spherical calcareous microfossils	518
of various origins. Some calcispheres were interpreted e.g. as being	519
representatives of volvocacean algae (Kaźmierczak, 1976), reproductive cysts	520
of dasycladacean green algae (Marszalek, 1975), radiolarians (Antoshkina,	521
2006), or post-mortem calcified acritarchs (Kaźmierczak and Kremer, 2005).	522
Many of the Mesozoic and Cenozoic calcispheres are now considered to be	523
calcareous dinoflagellate cysts (Keupp, 1981). As already pointed out by	524
Flugel (2004) and indicated by the above listed authors, calcispheres	525
occurring in an open marine realm mostly represent calcareous	526
dinoflagellates, or organisms related to them, and are most frequently reported	527
from Mesozoic rocks, whereas pre-Mesozoic calcispheres seem to be	528
restricted to shallow-water environments.	529
6. Deepening platform	530
Basically, the deepening platform of the Wata Formation is based on cycle	531
thickness, type of cycle, variable sedimentation rates, incomplete shallowing	532
to sea-level, and unconformities. The cycle thickness will explains to some	533

extent the accommodation space; the thick cycle may indicate increase in	534
accommodation space and high rate of subsidence, while thin cycle indicates	535
decrease in accommodation space. These phenomena can be explained by	536
Fischer plots that they are conventionally drawn by cumulative departure from	537
mean cycle thickness against cycle number (no less than 50) (e.g., Sadler et	538
al., 1993). In this way, thick cycle packages positively deviate from the mean	539
cycle thickness, and form the rising limbs of the plots, reflecting a long-term	540
increase in accommodation space; whereas thin cycle packages negatively	541
deviate from the average cycle thickness, and form the falling limbs,	542
reflecting a long-term decrease in accommodation space.	543
The type of the cycles in the studied carbonate sequence in platform in the	544
measured sections can explain the deepening platform. The cycles in the	545
measured sections show fining-upward, some cycles begin with packstone and	546
capped by wackestone or lime-mudstone. Such type of cycles were described	547
by Khalifa (1996) as submergence cycles, i. e., the cycle begins with	548
deposition of packstones in shallow water, then followed upward by	549
subsidence that may resulted in the deposition of fine-grained facies and /or	550
deep water carbonate (wackestone). Incomplete shallowing of see-level may	551
suggest the continuous subsidence during sedimentation process, even	552
lowering in sea-level, but it did not track the rate of subsidence.	553
Another important point is the time represented by unconformities. In the	554
platform under study, there are no erosional surfaces through the succession.	555
However, the stratigraphic gaps of the unconformities at the base (intra late	556

Albian) and the top (intra middle Cenomanian) of the sequence set are	557
substantial, and can be considered in the analysis. As the hiatus represented in	558
these two surfaces are below the resolution of the biostratigraphy, we	559
estimated a corresponding minimum time interval of 0.4 my. However, this	560
value is tentative. Nevertheless, since the unconformities lie below and above	561
the stratigraphic successions considered, possible modification of the hiatus	562
estimates does not notably modify the results of the analysis. This point needs	563
to be considered when comparing these results with those published for other	564
basins.	565
The contact between the Cenomanian and Turonian rocks is unconformable	566
that may be resulted from the non-deposition along a certain period of time	567
between them. This is evidenced by the absence of the Late Cenomanian-	568
Early Turonian Mammites nodosoides Zone (Bartov et al., 1980) or creating a	569
stratigraphic gap in Sinai and Eastern Desert of Egypt (Bauer et al., 2003;	570
Farouk, 2015). A stratigraphic gap occurs across the C/T boundary in large	571
parts of Sinai, apart from slope and basin deposits in the subsurface of	572
northernmost Sinai (Jenkins, 1990). In north Sinai, this gap is probably	573
related to submarine non-deposition or exposure on isolated highs, which	574
reflect the initial pulses of the Syrian Arc movements (Bartov et al., 1980;	575
Kuss et al., 2000).	576
Moreover, platform drowning is reflected by the rapid deepening of the	577
depositional system during the post-CeSin 7 TST and possibly also influenced	578

the genesis of the stratigraphic gap, as drowned carbonate platforms are often

579

characterized by extreme condensation or long hiatuses (Schlager, 1999). For
example, platform drowning across the C/T boundary in sequence boundary
Sb5 was associated with a long stratigraphic gap in the Lower Turonian
Watinoceras coloradoense Zone (Philip and Airaud-Crumiere, 1991 and
Philip et al., 1998). As in Sinai, this gap was followed by condensed deposits
in the Mammites nodosoides zone during the TST, and the establishment of a
new platform in the middle Turonian HST (Philip and Airaud-Crumiere,
1991). In the Pyrenees, a shorter interval of strong condensation and a
stratigraphic gap in the Early Turonian were also caused by platform
drowning (Drzewiecki and Simo, 1997). In this context, it cannot be excluded
that drowning in Sinai started before the onset of the post-CeSin 7 TST
deposits, and the stratigraphic gap may possibly be related to the drowning
phase.

7. Conclusions

Detailed studies of facies and facies associations of the Turonian Wata Formation in central Sinai revealed the presence of three coeval carbonate platform environments: the inner-platform in the southeast, inter-platform in the middle and outer-platform towards the northwest. The inner-platform lithofacies occurs at Gebel Shiti, Gebel Gunna, Gebel El Hazim and Wadi Watir. The most pronounced facies associations are represented by limemudstone, dolosparite, dolomicrite, ostracodal wackestone, molluscan bioclastic packstone, sandy oolitic molluscan packstone and quartzarenite. Such facies were probably deposited in shallow subtidal to intertidal

environments. These lithofacies show vertical arrangement in the form of	603
fining-upward cycles. Each cycle commences with sandy oolitic molluscan	604
packstone at base, followed upward by molluscan bioclastic wackestone and	605
capped by lime-mudstone, or molluscan bioclastic wackestone and capped by	606
lime-mudstone.	607
The inter-platform basin occurs north of the inner-platform and occurs at El	608
Mineidra El Kebira. The carbonate succession in such basin comprises fining-	609
upward cycles, each of which begins with bioclastic ostracodal packstone,	610
bioclastic packstone, capped by wackestone and lime-mudstone. Such fining-	611
upward cycles may indicate local structural control such as continuous	612
subsidence during sedimentation. The outer-platform basin occurs north of	613
the inner-platform and occurs at Gebel Giddi. The outer-platform comprises	614
of entirely of calcisphere wackestone/packstone without remarked cyclicity.	615
References	616
Aal, A. A., Lelek, J. J., 1994. Structural development of the Northern Sinai,	617
Egypt and its implications on the hydrocarbon prospectivity of the Mesozoic.	618
In: Al-Husseini, M. I. (Ed.), Middle East Geoscience Conference, GEO'94.	619
Gulf Petrolink, Bahrain, GeoArabia 1, 15–30.	620
Abdel Wahab, A., Salem, A. M. K., Mcbride, E. F., 1998. Quartz cement of	621
meteoric origin in silcrete and nonsilcrete sandstones, Lower Carboniferous,	622
western Sinai, Egypt. Journal African Earth Sciences 27, 277-290.	623
Amthor, I. E. and Friedman, G. M., 1991. Dolomite-rock textures and	624
secondary porosity development in Ellenburger Group carbonates (Lower	625

Ordovician), west Texas and southern New Mexico: Sedimentology 38, 343-	626
362.	627
Andrawis, S. F., 1990. Tables of foraminifera biozones. In Said, R. (Ed.), The	628
Geology of Egypt. Balkema, Rotterdam, pp. 639-648.	629
Antoshkina, A. I. 2006. Palaeoenvironmental implications of	630
Palaeomicrocodium in Upper Devonian microbial mounds of the Chernyshev	631
Swell, Timan-northern Ural Region , Facies 52, 611-625.	632
Bachmann. M.; Kuss, J., 1998. The Middle Cretaceous carbonate ramp of the	633
northern Sinai: sequence stratigraphy and facies distribution In: Wright. V.	634
P. and Burchette. T. P (Eds.) Carbonate Ramps Geological Society London,	635
Special Publication 149, 253-280, Oxford (Blackwell).	636
Barakat, M. G., Darwish, M., El-Barkooky, A. N., 1986. Lithostratigraphy of	637
the post-Carboniferous- pre-Cenomanian clastics in West Central Sinai and	638
Gulf of Suez, Egypt. Eighth Exploration Conference of first oil well. 17-23.	639
Bartov, Y., Lewy, Z., Steinitz, G., Zak, I., 1980. Mesozoic and Tertiary	640
stratigraphy, paleogeography and structural history of the Gebel Areif en	641
Naqa area, eastern Sinai. Israel Journal Earth Sciences 29, 114–139.	642
Bauer J., Marzouk, A., Steuber, T., Kuss, J., 2001. Lithostratigraphy and	643
biostratigraphy of the Cenomanian—Santonian strata of Sinai, Egypt.	644
Cretaceous Research 22, 497–526	645
Bauer, J., Kuss, J., Steuber, T. 2002. Platform Environments, Microfacies and	646
Systems Tracts of the Upper Cenomanian - Lower Santonian of Sinai, Egypt.	647
Facies 47, 1-26	648

Bauer, J., Kuss, J., Steuber, T., 2003. Sequence architecture and carbonate	649
platform configuration (Late Cenomanian-Santonian), Sinai, Egypt.	650
Sedimentology 50, 387-414.	651
Blom, W. M., Alsop, D. B., 1988. Carbonate mud sedimentation on a temperate	652
shelf. Bass Basin, southeastern Australia. Sedimentary Geology 60, 269-280.	653
Butcher B. P., 1990. Northwest shelf of Australia. In: Edwards J. D.,	654
Santogrossi P. A. (Eds.), Divergent/passive margin basins. American	655
Association Petroleum Geologists Memoir 48, 81–115.	656
Calvet, E., Tucker, M., 1988. Outer ramp cycles in the Upper Muschelkalk of	657
the Catalan Basin, northeast Spain. Sedimentary Geology 57, 785–798.	658
Cherif, O. H., Al Rifaey, I. A., Al Afifi, F. I, Orabi, H. O., 1989. Foraminiferal	659
biostratigraphy and Paleocology of some Cenomonian-Turonian exposures in	660
West-Central Sinai (Egypt); Revue de Micropaleontology 31, 243-262.	661
Colombie. C., Strasser, A., 2005. Facies, cycles, and controls on the evolution	662
of a keep-up carbonate platform (Kimmeridgian, Swiss Jura), Sedimentology	663
52, 1207–1227.	664
Davies P. J., Symonds P.A., Feary D. A., Pigram C. J., 1989. The evolution of	665
the carbonate platforms of northeastern Australia. In: Crevello P.D., Wilson J.	666
L., Sarg J. F., Read J. F. (Eds.). Controls on carbonate platform and basin	667
development. Society Economic Paleontologists Mineralogists, Special	668
Publication 44, 233–258.	669

Drzewiecki, P. A., Simo, J. A. T., 1997. Carbonate platform drowning and	670
oceanic anoxic events on a mid- Cretaceous carbonate platforms, south-	671
central Pyrenees, Spain. Journal of Sedimentary Research 67, 698-714	672
Drzewiecki, P. A., Simó, J. A., 2000. Tectonic, eustatic and environmental	673
controls on Mid-Cretaceous carbonate platform, south central Pyrenees,	674
Spain: Sedimentology 47, 471-495.	675
Einsele, G. ,1992. Sedimentary basins. Berlin7 Springer Verlag.	676
EI-Azabi, M. H. and El-Araby. A., 1996. Depositional facies and	677
paleoenvironments of Albian - Cenomanian sediments in Gebel EI-Minsherh,	678
north central Sinai, Egypt Geological Society of Egypt, Special Publication	679
2, 151-198. Cairo.	680
El-Azabi, M.H. and Farouk, S. 2011. High-resolution sequence stratigraphy	681
of the Maastrichtian-Ypresian succession along the eastern scarp face of the	682
Kharga Oasis, south Western Desert, Egypt. Journal International Association	683
Sedimentology, 58, 579–617.	684
El Emam, A., Dishopp, D., Dunderdale, I., 1990. The structural setting of the	685
central Western Desert, Egypt. In: Proceedings of the 10 th Egyptian General	686
Petroleum Corporation Seminar 2, 30–70	687
El Shinnawi, M.A.; Sultan, I. Z., 1972. Biostratigraphy of some Upper	688
Cretaceous sections in the Gulf of Suez area, Egypt. Proceeding of 5th	689
Colloquium African micropaleontology, p. 263-29.	690

El-Hariri, T., Mousa, A., Moustafa, T., Farouk, S. 2012. Facies and	691
sedimentary environments of the Abu Qada Formation at Gabal El-Gunna,	692
Southeastern Sinai, Egypt. Egyptian Journal of Petroleum, 21, 71–79.	693
Elrick, M. and Read, J. F., 1991. Cyclic ramp to basin carbonate deposits,	694
Lower Mississippian Wyoming and Montana; A combined field and computer	695
modeling study; Journal Sedimentary Research 61, 1194-1224.	696
Farouk, S. 2015. Upper Cretaceous sequence stratigraphy of the Galala	697
Plateaux, western side of the Gulf of Suez, Egypt. Marine and Petroleum	698
Geology. 60, 136-158.	699
Farouk, S., Ahmad, F., Powell, J., Marzouk, A. 2016. Integrated microfossil	700
biostratigraphy, facies distribution and depositional sequences of the upper	701
Turonian to Campanian succession in northeast Egypt and Jordan. Facies.	702
62:8	703
Farouk, S., Faris, M., 2012. Late Cretaceous calcareous nannofossil and	704
planktic foraminiferal bioevents of the shallow-marine carbonate platform in	705
Mitla Pass, west central Sinai, Egypt. Cretaceous Research, 33, 50-56.	706
Farouk, S., Marzouk, A.M., Fayez, A., 2014. The Cretaceous / Paleogene	707
boundary in Jordan. Journal of Asian Earth Sciences. 94, 113–125.	708
Flugel, E., 1982. Microfacies analysis of limestone; Springer Verlag, Berlin,	709
Heidberg, New York, 631 p.	710
Flugel, E., 2004. Microfacies of carbonate rocks: analysis, interpretation, and	711
application. Springer, Berlin, p 976	712

Folk, R.L., Land, L. S., 1975. Mg/Ca ratio and salinity: Two controls over	713
recrystallization of dolomite; American. Association Petroleum Geologists	714
Bulletin, 59: pp. 68.	715
Friedman, G. M., 1968. The fabric of carbonate cement and matrix and its	716
dependence on the salinity of water. In: Muller, G. and Friedman, G. M.	717
(Eds.); Recent development in carbonate sedimentology in central Europe;	718
N.Y. Springer verlag, 225p.	719
Garfunkl, Z., 1999. History and paleogeography during the Pan- African	720
orogen to stable platform transition: Reappraisal from the evidence from Elat	721
area and the northern Arabian-Nubian Shield. Israel Jour. of Earth Sciences	722
48, 135-157.	723
Ghorab, M.A., 1961. Abnormal stratigraphic features in Ras Gharib oil field;	724
3ld Arab Petroleum congress, Alexandria, 2: 1- 10.	725
Ginsburg, R. N., 2001. Subsurface geology of a prograding carbonate	726
platform; results of the Bahama Drilling Project. Society of Economic	727
Paleontologists Mineralogists, Special Publication; 70. [Tulsa, USA].	728
Gillespie, P. A., Walsh, J. J., Watterson, J., 1992. Limitations of dimension	729
and displacement data from single faults and the consequences for data	730
analysis and interpretation: Journal of Structural Geology 14, 1157-1172	731
Guiraud, R.; Issawi, B.; Bosworth, W., 2001. Phanerozoic history of Egypt	732
and surrounding areas. In: Ziegler, P. A., Cavanzza, W.; Robertson, A.H.F.	733
and Crasquin-Soleau S (Eds.) Peri-Tethys Memoir 6: Peri-Tethyan	734

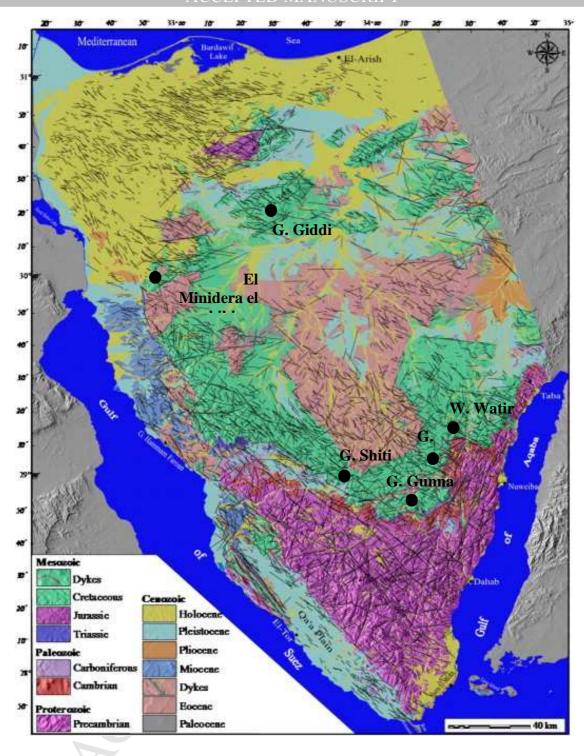
Rift/Wrench Basins and Passive Margins. Memoir Musum History Nature,	735
469-509. Paris.	736
Hayton, S., Nelson, C. S., Hood, S. D., 1995. A skeletal assemblage	737
classification system for non-tropical carbonate deposits based on New	738
Zealand Cenozoic limestones. Sedimentary Geology 100, 123-141.	739
Henson, F. R. S., 1950. Cretaceous and Tertiary reef formations and	740
associated sediments in the Middle East. American Association Petroleum	741
Geologists Bulletin 34, 215-238.	742
Ismail, A. A., 2000. Upper Cretaceous stratigraphy and micropaleontology of	743
the western part of the Gulf of Aqba, East Sinai, Egypt. Middle East Research	744
Center, Ain Shams University, Earth Science Series 14, 239–261.	745
Issawi, B., El. Hinnawi, M., El-Khawaga, E., Labib, S., Anani, N. 1981.	746
Contribution to the geology of Wadi Feiran area, Sinai, Egypt, Geol. Survey	747
Egypt, Internal Report, 1-43.	748
James, N.P., Kendall, A. C., 1992. Introduction to carbonate and evaporite	749
facies models In: Walker. R.G. (Ed.): Facies models: response to seal-level	750
changes. Geological Association of Canada, 265-275	751
Jenkins, D., 1990. North and central Sinai. In: Said, R. (Ed.), The Geology of	752
Egypt, pp. 361–380. Balkema, Rotterdam.	753
Kaźmierczak, J., 1975. Colonial Volvocales (Chlorophyta) from the Upper	754
Devonian of Poland and their paleoenvironmental significance. Acta	755
Palaeontologica Polonica 20, 73–89.	756

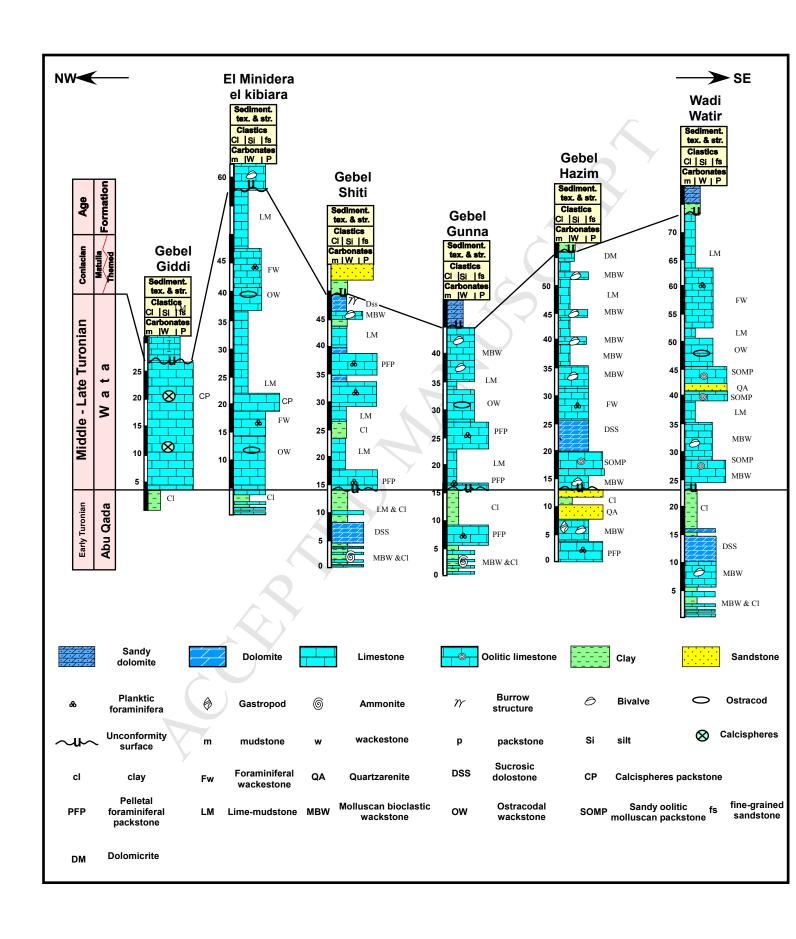
Kaźmierczak, J., 1976. Volvocacean nature of some Palaeozoic non-	757
radiosphaerid calcispheres and parathuramminid "foraminifera." Acta	758
Palaeontologica Polonica 21, 245–262.	759
Kazmierczak, J., Kremer, B., 2005. Early post-mortem calcified Devonian	760
acritarchs as a source of calcispheric structures. Facies 51, 554-565	761
Keller, M., 1997. Evolution and sequence stratigraphy of an Early Devonian	762
carbonate Ramp, Cantabrian Mountains Northern Spain. Journal of	763
Sedimentary Research 67, 638–652.	764
Keupp, H., 1981. Die kalkigen Dinoflagellaten-Zysten der borealen Unter-	765
Kreide (Unter-Hauterivium bis Unter-Albium). Facies 5, 1-190	766
Khalifa, M. A., 1996. Depositional cycles in relation to sea-level changes, case	767
studies from Egypt and Saudi Arabia. Egyptian Journal of Geology 40,141-	768
171.	769
Khalifa, M.A., Zaghloul, S. A., 1990. Carbonate lithofacies and depositional	770
environments of the Lower Eocene Farafra Oasis, Western Desert, Egypt.	771
Journal of African Earth Sciences 11, 281-	772
Khalifa, M.A., Abu-El Hassan, M.M., 1993. Lithofacies, cyclicity, diagenesis	773
and depositional environments of the Upper Cenomanian, El Heiz Formation,	774
Bahariya Oasis, Western Desert, Egypt, Journal African Earth Sciences 17,	775
555-570.	776
Khalifa, M. A, Askalany, M. M., Seleim, M. M., 2003. Lithofacies and	777
depositional environments of the Cenomanian Galala Formation and Early	778

Turonian Abu Qada Formation, Central Western Sinai, Egypt. Annals.	779
Geological Survey, Egypt XXVI, 217-234.	780
Klein G. Dev., 1970. Tidal origin of a Precambrian quartzite. The lower fine-	781
grained quartzite (Middle Dalradian) of Islay-Scotland. Journal of	782
Sedimentary Petrology 40, 973–998	783
Kora, H., Hamama, H., 1987. Biostratigraphy of the Senonian succession in	784
Bir Safra area, Southeastern Sinai, Egypt, Mars. Sci. Bull., 14(2): 303-314.	785
Kuss, J., Scheibner, C., Gietl. R., 2000. Carbonate platform to basin transition	786
along an Upper Cretaceous to Lower Tertiary Syrian Arc uplift, Galala	787
Plateaus, Eastern Desert, Egypt. GeoArabia 5, 405-424, Bahrain.	788
Luning, S., Kuss, J., Bachmann, M., Marzouk, A. M.; Morsi, A. M., 1998a	789
Sedimentary response to basin inversion: Mid Cretaceous - Early Tertiary pre-	790
to syndeformational deposition at the Areif El Naqa anticline (Sinai, Egypt)-	791
Facies, 38,103-136, Erlangen.	792
Luning, S., Marzouk, A.M., Morsi, A.M., Kuss, J., 1998b. Sequence	793
stratigraphy of the Upper Cretaceous of central-east Sinai, Egypt. Cretaceous	794
Research 19, 153–196.	795
Machel, H. G., Anderson, J. H., 1989. Pervasive subsurface dolomitization of	796
the Nisku Formation in central Alberta: Journal of Sedimentary Petrology 59,	797
891-911.	798
Mack, G. H., James, W. C., 1986. Cyclic sedimentation in the mixed	799
siliciclastic-carbonate Abo-Hueco transitional zone (Lower Permian),	800
southwestern New Mexico. Journal Sedimentary Petrology 56, 635-647.	801

Markello, J. R., Read, J. F., 1981. Carbonate ramp-to-deep shale shelf	802
transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation,	803
southwest Virginia Appalachians. Sedimentology 2, 573–597.	804
Marszalek, D. S., 1975. Calcisphere ultrastructure and skeletal aragonite from	805
the algae Acetabularia antillana. Journal of Sedimentary Petrology 45, 266-	806
271.	807
Marquis, S.A., Laury, R.L., 1989. Glacio-eustasy, depositional environment,	808
diagenesis and reservoir character of Geon Limestone Cyclothem	809
(Desmoinesian), Concho platform, central Texas. American Association of	810
Petroleum Geologists Bulletin 73, 166–181.	811
Moustafa, A.R., Khalil, M.H. 1990. Structural characteristics and tectonic	812
evolution of north Sinai fold belts: In R. Said (Ed.), Geology of Egypt, A. A.	813
Balkema, Rotterdam, Brookfield, pp. 381–389	814
Nelson, C. S., Keane, S. I.; Head, P. S., 1988. Non-tropical carbonate deposits	815
on the modern New Zealand shelf. Sedimentary Geology 60, 71-94.	816
Osleger D, Read J.F., 1991. Relation of eustasy to stacking patterns of meter-	817
scale carbonate cycles, Late Cambrian, USA. Journal Sediment Petrology 61,	818
1225–1252	819
Peryt, T. M., 1977. Environmental significance of foraminiferal algal	820
oncolites: In: Flugel, E. (Ed.) Fossil Algae, Recent Results and	821
Developments. Springer-Verlag, Heidelberg, 375 p.	822

Philip, J., Airaud-Crumière C., 1991. The demise of the rudistbearing	823
carbonate platforms at the Cenomanian/Turonian boundary: a global control.	824
Coral Reefs 10, 115-125.	825
Philip, J., Borgomano, J., Al-Maskiry, S., 1995. Cenomanian-Early Turonian	826
carbonate platform of northern Oman; stratigraphy and palaeo-environments.	827
Palaeogeography Palaeoclimatology Palaeoecology 119, 77–92.	828
Potter, P. E., Maynard, J. B., Pryor W. A., 1980. Sedimentology of Shale.	829
Springer, New York, p 306	830
Sadler, P. M., Osleger, D. A. and Montanez, I. P., 1993. On the labeling,	831
length and objective basis of Fischer plots. Journal of Sedimentary Petrology	832
63, 360-368.	833
Said, R. 1962. The geology of Egypt; Elsevier, Amsterdam-Oxford- New	834
York, 337 p.	835
Said, R., 1971. Explanatory Note to Accompany the Geological map of Egypt,	836
Geololgical Survey of Egypt. Paper (56,) 123 p.	837
Salem, A. M. K., Abdel Wahab, A. McBride, E. F. 1998. Diagenesis of	838
shallowly buried cratonic sandstones, southwest Sinai, Egypt. Sedimentary	839
Geology 119, 311-335.	840
Samuel, M. D., Ismail, A.A., Akarish, A. I. M., Zaky, A. H., 2009. Upper	841
Cretaceous stratigraphy of the Gebel Somar area, north-central Sinai, Egypt.	842
Cretaceous Research 30, 22–34.	843
Shahar, J., 1994. Tile Syrian Arc system: an overview. Palaeogeography	844
Palaeoclimatology Palaeoecology 112, 125-142	845

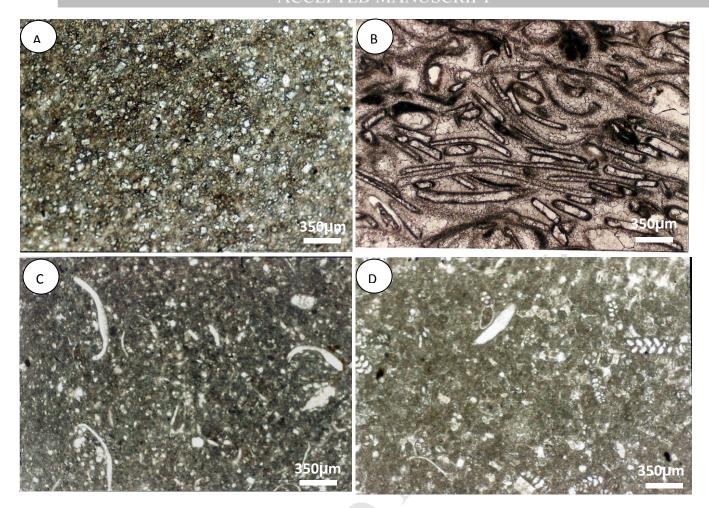

Shinn, E.A., Ginsburg, R. N.; Lloyd, R. M., 1965. Recent supratidal dolomite	846
from Andros Island, Bahamas. In: Pray, L. C., Murray, R.C. (Eds.),	847
Dolomitization and Limestone Diagenesis: Society of Economic	848
Paleontologists and Mineralogists Special Publication 13, 112-123.	849
Schlager, W., 1981. The paradox of downward reefs and carbonate platforms.	850
Geological Society of American Bulletin 92, 197-211.	851
Schlager, W., Ginsburg, R. N., 1981. Bahama carbonate platforms, the deep	852
and the past. Marine Geology, 44, 1–24.	853
Schlager, W., 1999. Type 3 sequence boundaries. In: Harris, P.M.; Saller, A.	854
H., J. A. Simo, J. A. (Eds.) Advances in Carbonate Sequence Stratigraphy:	855
Application to Reservoirs, Outcrops and Models. Society Economic	856
Paleotologista Mineralogists Special Publication 63, 35–45.	857
Shahin, A., Kora, M., 1991. Biostratigraphy of some Upper Cretaceous	858
succession in the Eastern Central Sinai, Egypt. Neues Jahrbuch für Geologie	859
und Paläontologie, Monatshefte 11, 671–692.	860
Shinn, E. A., 1983. Tidal flat environment. In: Scholle P. A., Bebout D. G.,	861
Moore, C. H. (Eds.) Carbonate depositional environments. American	862
Association of Petroleum Geologists Memoir 33, 171–210	863
Sibley, D. F., Gregg, J. M., Brown, R. G.: Laudon, P. R., 1993. Dolomite	864
crystal size distribution, In: Rezak, R., Lavoie, D. L. (Eds.), Carbonate	865
Microfabrics: Springer-Verlag, New York, p. 195-204.	866
Stern, R. J., 1985. The Najd fault system, Saudi Arabia and Egypt. A late	867
Precambrian rift-related transform system Tectonics 4, 497–511	868

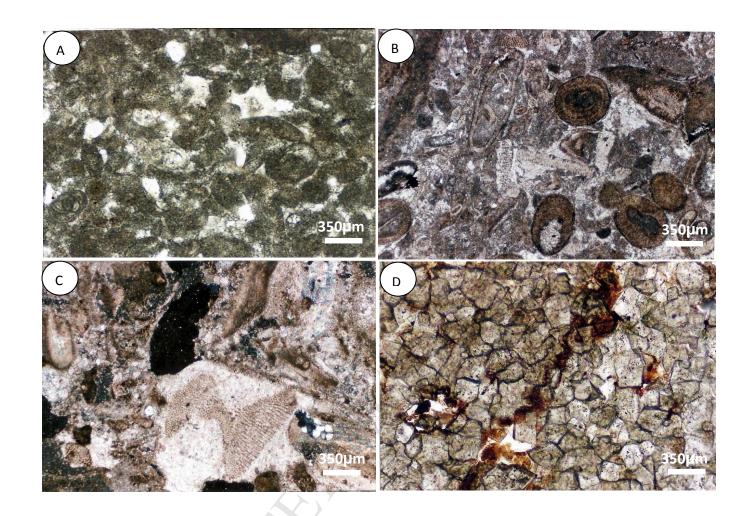

Szulezewzki, M. Belka. Z., Skompski, S., 1996. The drowning of a	869
carbonate platform: an example from the Devonian-Carboniferous of the	870
southwestern Holy Cross Mountains. Sedimentary Geology 106, 21-49.	871
Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell	872
Scientific Publication, Oxford, p 49	873
Tucker, M. E., Calvet, F., Hunt, D., 1993. Sequence stratigraphy of carbonate	874
ramps: Systems tracts, models and application to the Muschelkalk carbonate	875
platforms of eastern Spain. In: Posamentier, H.W., Summerhayes, C.P., Haq,	876
B.U., Allen, G.P. (Eds.), Sequence Stratigraphy and Facies Associations.	877
International Association of Sedimentologists Special Publication 18,	878
Blackwell, Oxford, pp. 397.	879
Walley, C.D., 1998. Some outstanding issues in the geology of Lebanon and	880
their importance in the tectonic evolution of the Levantine region.	881
Tectonophysics 298, 37-62.	882
Wilmsen, M., Nagm, E., 2012. Depositional environments and facies	883
development of the Cenomanian-Turonian Galala and Maghra el Hadida	884
formations of the Southern Galala Plateau (Upper Cretaceous, Eastern Desert,	885
Egypt). Facies 58, 229–247.	886
Wilson, J. L., 1975. Carbonate facies in geologic history. Springer Verlag, 470	887
p.	888
Wright, V. P., Burchette, T. P., 1999. Shallow-water carbonate environments.	889
In: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and	890
Stratigraphy. Blackwell, Oxford, 688 p.	891

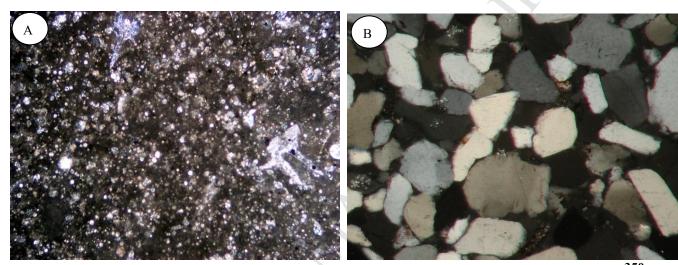
Ziko, A., Darwish, M.; Eweda, S., 1993. Late Cretaceous- Early Tertiary	892
stratigraphy of the Themed area, East Central Sinai, Egypt; Neues Jahrbuch	893
für Geologie und Paläontologie, Monatshefte H.3, Stuttgart; 135-149.	894
	895
Figures Captions.	896
	897
Fig. 1: Location and geological map of the Sinai showing the location of the	898
studied sections of the Wata Formation.	899
Fig. (2): Lithostratigraphic correlation chart of the Wata Formation at the east	900
central Sinai, showing its, lateral, vertical facies associations, and thickness	901
variations (horizontal distance not to scale).	902
Fig. (3A): Filed photograph showing the thin-bedded limestone of the Wata	903
Formation, forming the inter-platform along Sudr El-Haitan Plateau. The	904
outcrop is 200 m long. Photograph is looking north-east.	905
Fig (3B): Field photograph showing the massive limestone rich in sponges,	906
characterizing the upper part of the Wata Formation, Sudr El-Haitan.	907
Fig. (3C): Field photograph showing the massive carbonate deposits of the	908
Wata Formation (60 m thick) that unconformably overlies and underlies the	909
Abu Qada and the Matulla formations, respectively, cropping out at Ekma	910
Plateau.	911
Fig. 4A): A- Photomicrograph showing fine dense and dark grey	912
microcrystalline calcite that contains rare foraminiferal skeletal particles	913
floating in the dense lime-mud, Lime-mudstone lithofacies, Wadi Hegni.	914

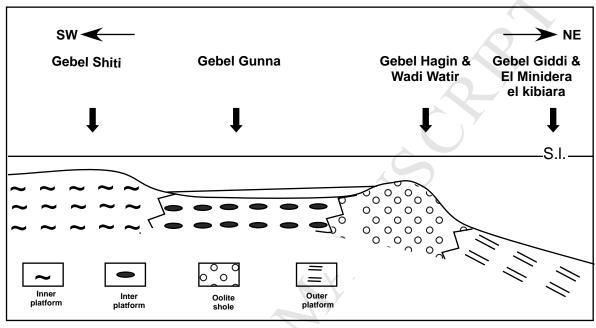
Fig. 4B): Photomicrograph of the molluscan bioclastic packstone that made	915
up of sorted molluscan particles and showing preferred orientation parallel to	916
the bedding plane. Most of the molluscan particle exhibit aggrading	917
neomorphism from their centers and coated with micrite envelopes,	918
Molluscan bioclastic packstone lithofacies, Wadi Hegni.	919
Fig. 4C): Photomicrograph of the ostracodal wackestone that comprises	920
ostracodes and peloids embedded in lime-mud matrix. Notice the partial	921
dolomitization of the lime-mud and the peloids, producing fine-grained	922
idiotopic to hypidiotopic dolomite crystals, Ostracodal wackestone	923
lithofacies, El Tih scarp (Gebel Shiti, Gebel Gunna, Gebel Hazim and Wadi	924
Watir).	925
Fig. 4D): Photomicrograph showing foraminiferal wackestone in which some	926
tests (Heterohelix spp.) are scattered in a lime-mud matrix with association of	927
bioclasts and pellets, Foraminiferal wackestone lithofacies, Wadi Watir.	928
Fig. 5A): Photomicrograph showing the pelletal foraminiferal packstone	929
lithofacies that consists of benthonic foraminifera and rounded to ovoided	930
pellets, embedded in lime-mud matrix. Notice the relics of miliolid partly still	931
preserved within the pellets, El Tih scarp (Gebel Shiti, Gebel Gunna, Gebel	932
Hazim and Wadi Watir).	933
Fig. 5B): Photomicrograph showing the sandy oolitic molluscan packstone	934
lithofacies that consists of oolites, echinoides stems and shell debris. Notice	935
the aggrading neomorphism of the lime-mud matrix and the syntaxial calcite	936
overgrowth around echinoids. Wadi Hegni.	937

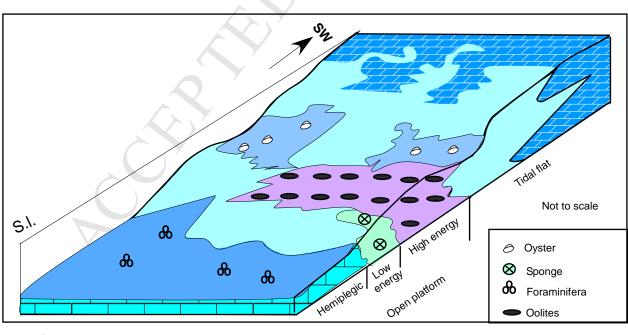
Fig.5C): Photomicrograph of the calcisphere packstone, in which the	938
calcispheres are round to spherical with association of spongy spines and	939
debris of bioclasts, Calcispheres packstone, Gebel Giddy and El Mineidra El	940
Kebira.	941
Fig. 5D): Photomicrograph of the dolosparite lithofacies that consists of well-	942
defined dolomite rhombs and some unfilled pore spaces. Most of the dolomite	943
rhombs are of medium-grained (0.08 mm) and show hypidiotopic to	944
xenotopic fabric and equigranular texture. Notice some ferrugination cutting	945
along cracks, El Tih scarp (Gebel Shiti, Gebel Gunna, Gebel Hazim and Wadi	946
Watir).	947
Fig. 6A): Photomicrograph of the dolomicrite that consists mainly of very fine	948
dolomite rhombs as well as some detrital quartz grains. Dolomite rhombs are	949
interlocked together usually lacking zoning and exhibit hypidiotopic to	950
xenotopic with equigranular texture, Wadi Hegni (Gebel El Hazim).	951
Fig. 6B): Photomicrograph of the quartzarenite that comprises compact,	952
rounded to subrounded, medium- to coarse-grained quartz grains, Wadi	953
Watir.	954
Fig. 7A): A schematic diagram showing the possible lateral facies changes	955
and the subdivisions of the platform of the Wata Formation.	956
Fig. 7B): Schematic diagram showing the depositional environments of the	957
inner-, inter- and outer-platforms of the Wata Formation in Sinai Peninsula in	958
northwest-southeast direction.	959




3A




3C



350 μm

(B)

Facies analysis of the Turonian Wata platform in Sinai.

Wata platform is classified into Inner-platform, inter-platform, outer-platform.

Different lithofacies associations have been deduced in each platform type.

Platform classification was probably performed by the effect of Syrian Arc System.

Deepening platform of the Wata Formation is based on the fining-upward cycles.