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The application of polynomial analyses to detect global
vegetation dynamics during 1982–2012
Yanxu Liu, Yanglin Wang, Yueyue Du, Mingyue Zhao and Jian Peng

Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental
Sciences, Peking University, Beijing, China

ABSTRACT
Use of the normalized difference vegetation index (NDVI) to build
long-term vegetation trends is one of the most effective techni-
ques for identifying global environmental change. Trend identifi-
cation can be achieved by ordinary least squares (OLS) analysis or
the Theil–Sen (TS) procedure with a Mann–Kendall (MK) signifi-
cance test, and these linear regression approaches have been
widely used. However, vegetation changes are not linear, and
thus the response of vegetation to global climate change may
follow non-linear trends. In this article, a polynomial trend-fitting
method, which uses stepwise regression and expands on previous
research, is presented. With an improved fitting ability, this proce-
dure may reveal trends that were concealed by linear fitting
methods. Globally, the traditional TS-MK method reveals signifi-
cant greening trends for 37.27% of vegetated land, and significant
browning trends for 7.98%. Using the polynomial analysis, 34.62%
of pixels were fitted by high-order trends. The significant greening
trends covered up to 30% of cultivated land, thus indicating that
cultivated vegetation may be increasing faster than natural vege-
tation. Significant vegetation browning mostly occurred in sparse
vegetation areas, which suggests that vegetation growth may be
more sensitive to climate change in arid regions. Our results show
that use of polynomial analysis can help further elucidate global
NDVI trends.
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1. Introduction

Vegetation plays a critical role in regulating carbon and maintaining the stability of the
climate on a global scale, and the monitoring of vegetation dynamics has been recog-
nized as a key issue in global environmental change research (de Jong et al. 2013; Peng
et al. 2012). The most common method used to monitor vegetation on global and
regional scales is satellite-based estimations of vegetation indices (Nemani et al. 2003;
Running et al. 2004). The normalized difference vegetation index (NDVI) is a satellite-
based indicator of vegetation greenness that has been widely applied to describe the
spatiotemporal characteristics of green cover (Gao et al. 2012; Hwang et al. 2011;
Lanorte et al. 2014; Tucker 1979; Tucker et al. 2001), and determining long-term trends
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in the NDVI is an effective way of detecting vegetation variability under global environ-
mental change (Jiang et al. 2013; Nie et al. 2012; Stow et al. 2007; Weiss et al. 2004).
However, as the results depend largely on the remote sensors and regression algorithms
used, the results of global NDVI trend analysis are often controversial (Alcaraz-Segura
et al. 2010; Fensholt and Proud 2012; Steven et al. 2003; Wessels, van den Bergh, and
Scholes 2012).

A significant issue that should be addressed involves the NDVI trend-fitting method
(Verbesselt et al. 2010a, 2010b; Verbesselt, Zeileis, and Herold 2012). ordinary least
squares (OLS) regression is a widely used method for determining the relationship
between the spatiotemporal characteristics of the NDVI and the driving factors (Bao
et al. 2014; Ju et al. 2010; Li et al. 2013; Liu et al. 2014; Mao et al. 2012; Rocchini and
Vannini 2010). Meanwhile, the NDVI data adopted from satellite sensors often contain
noise, which cannot be eliminated from the non-robust least squares algorithm in OLS.
However, several techniques can be used to decompose time series in order to eliminate
the noise (Rios et al. 2015). Common methods for processing NDVI data include singular
spectrum analysis (Ma et al. 2013; Cañón, Domínguez, and Valdes 2011), Fourier trans-
form (Yan et al. 2015; Kleynhans et al. 2010), wavelets (Mishra, Crews, and
Neuenschwander 2012; Martínez and Gilabert 2009), and empirical mode decomposition
(Kandasamy et al. 2013; Tucker et al. 2005), and these methods can effectively extract
the shape of the non-linearity from the data. Therefore, both non-linearity and noise
should be considered during the selection of an appropriate method for processing
NDVI time series.

Use of nonparametric regression has been shown to be an effective way to reduce
noise (Theil 1950). Recently, a few studies have applied a combination of the Theil–Sen
(TS) median slope trend analysis and the Mann−Kendall (MK) monotonic test instead of
OLS linear regression (Fensholt et al. 2012; Schucknecht et al. 2013). The TS estimator of
a set of two-dimensional points is the median of the slopes determined by all pairs of
sample points (Theil 1950). The adoption of the nonparametric TS regression ensures
that vegetation trends are robust with respect to outliers and reduces the effects of
sensor measurement errors (Fernandes and Leblanc 2005). This procedure can be
applied on the raw NDVI series with no need to smooth data (Fuller and Wang 2014).
Compared with the computationally intensive smoothing algorithms, significant
increases or decreases in the NDVI for each pixel can be detected quickly through the
TS–MK combination method (Fensholt et al. 2012; Guay et al. 2014; Neeti and Eastman
2011).

However, it should be noted that the overwhelming majority of NDVI series are non-
linear, whereas the TS median slope trend is a robust linear regression procedure.
Therefore, some sharp changes over a short period of time may be ‘latent’ in the
relatively low slope of an overall trend. High-order regression involves the application
of stepwise selection algorithms that can determine non-linear vegetation trends. Jamali
et al. (2014) applied high-order regression models to map the latent trends with
polynomials over the Sahel in Africa. Compared with decomposition methods applied
to 10 day and monthly data, the high-order regression was shown to be effective for
detecting inter-annual changes in non-linear NDVI series.

To further detect the latent change pixels in non-linear shifts, it would be beneficial to
test for global latent change pixels with an improved algorithm. This study attempted to
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do that, and the data were used to detect the different trend types for typical regions
and land-cover types across the globe. The overall aims of this study were to improve
the trend classification scheme and to explore new regional disparities in global vegeta-
tion dynamics.

2. Methods

2.1. Data and processing

Among the NDVI data sets derived from different satellite sensors, the Global Inventory
Modeling and Mapping Studies (GIMMS) NDVI data set, which begins in 1981, is suitable
for describing long-term vegetation dynamics (Beck et al. 2011; de Jong et al. 2011;
Forkel et al. 2013; Tucker et al. 2005). Its recent successor, GIMMS3g, has been found to
be in overall acceptable agreement with Moderate Resolution Imaging
Spectroradiometer (MODIS) NDVI data (Fensholt and Proud 2012). Notably, the
GIMMS3g data set showed statistically significant (p = 0.05) increases in vegetation
productivity over 15% of the high northern latitudes, which is a trend that was not
detected in the predecessor GIMMSg data set (Guay et al. 2014). As high spatial
resolution is not a strict requirement for global-scale studies, the GIMMS3g data set
with a 1/12-degree resolution does provide a good data source for projects involved
with the mapping of global vegetation dynamics (Tian et al. 2015).

The GIMMS3g NDVI data were downloaded from Eco Cast for the period from 1982 to
2012 (http://ecocast.arc.nasa.gov/data/pub/gimms/). In this study, the maximum value
composite (MVC) method was adopted to generate the annual NDVI for the 31 year
study period. This common method is capable of minimizing atmospheric effects, scan
angle effects, cloud contamination, and solar zenith angle effects (Holben 1986; Peng
et al. 2012). Specifically, the MVC method focuses on the highest biomass month in a
year. Here, the maximum NDVI values lower than 0.2 were removed as they represented
mostly bare areas.

The global land-cover map GlobCover 2009 was obtained from the European Space
Agency (ESA; http://due.esrin.esa.int). This land-cover map includes 22 land-cover types
for the year 2009, and data are provided at a spatial resolution of 300 m (Bicheron et al.
2011), which is higher than that of the widely used MODIS V005 Global 500 m Land
Cover Type Product MCD12Q1.GlobCover 2009 was used here to analyse trends in
various land-cover types.

2.2. Trend estimation

This study employed an improved approach whereby vegetation variations were divided
into cubic, quadratic, linear, and concealed trends with an algorithm during trend
estimation. Additionally, insignificant trends were defined as fluctuations. The concealed
trends were defined as valid cubic or quadratic trends with statistically insignificant
linear slope coefficients, which means that there was no apparent increase or decrease
over the whole period, but patterns of change did exist within the annual NDVI series
(Jamali et al. 2014). The introduction of cubic and quadratic trends was in response to
the observation that a better fit can be achieved for some NDVI series by higher-order
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polynomials compared with traditional linear regression procedures. Based on the fitting
equation,

Y ¼ a0 þ a1x þ a2x2 þ a3x3; (1)

where x is the year order, Y is the annual NDVI, and a0, a1, a2, a3 are the coefficients,
stepwise regression was introduced in the algorithm and the choice of predictive variables
was made by an automatic procedure. Compared with the selection of cubic or quadratic
coefficients based on their significance, stepwise regression in this study involved signifi-
cance tests both for all coefficients used in the model and for the regression model itself.
The goal of the stepwise regression was to choose a small subset from the larger set of
variables so that the resulting regression model was simple, yet retained a good predictive
ability. In other words, the R2 for a cubic regression model could be higher than that for a
linear regression model, but if the coefficient was insignificant, the variable may act as an
irrelevant regressor. Thus, the objective of the stepwise regression was not to obtain the
highest value of R2 but to determine the simplest and best-fit regression.

The variables x, x2, and x3 and coefficient selection depended on the F-test in this
study. In particular, we used a stepwise linear regression model where high-order
regressors were considered as variables. Thus, the fitting equation was simplified to
Y = a0 + a1x1 + a2x2 + a3x3 (x1 = x, x2 = x2, x3 = x3, where x ranged from 1 to 31). Then, a
backward selection model was used beginning with all of the candidate variables in the
model and we discarded the least significant variable at each step. This process con-
tinued until no insignificant (p ≥ 0.05) variables remained. Moreover, if the high-order
coefficients were both insignificant, the fitting equation was simplified to a linear
regression, which is a common technique used in vegetation dynamic research.

Specifically, we used the TS procedure with an MK significance test to fit the NDVI
change trends and used the results as a cross-reference for comparison with the
stepwise regression results. We set the significance level at p < 0.05 and realized both
TS–MK and stepwise algorithms in MATLAB R2012a (MathWorks). The formulas for the
TS–MK procedure are described below.

The TS slope estimator is the median of the slopes calculated between observation
values for all pairwise time steps, namely between observations Xj and Xi at pairwise
time steps tj and ti as follows (Sen 1968; Theil 1950):

slope ¼ Median
Xj � Xi
tj � ti

� �
: (2)

For NDVI variations, slope > 0 represents revegetation and slope < 0 represents vegeta-
tion degradation or deterioration.

Similar to the TS procedure, the MK test examines the slopes between all pairwise
combinations of samples, where the indicator, Kendall’s S, is defined as follows (Kendall
1962, 1975; Mann 1945; Neeti and Eastman 2011):

S ¼
Xn�1

i¼1

Xn
j¼iþ1

sign xi � xj
� �

; (3)
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sign xi � xj
� � ¼

1 if xi � xj<0
0 if xi � xj ¼ 0
�1 if xi � xj>0

8<
: : (4)

Here, n is the length of the time series and xi and xj are observations at times i and j,
respectively. When there are independent and identical distributions among data values,
the variance is derived as follows:

Var Sð Þ ¼ n n� 1ð Þ 2nþ 5ð Þ
18

¼ σ2; (5)

where σ is the standard deviation and Var Sð Þ is the covariance of S. The equation for MK
significance (Z) is then computed as follows:

Z ¼
S�1ffiffiffiffiffiffiffiffiffi
Var Sð Þ

p for S>0

0 for S ¼ 0
Sþ1ffiffiffiffiffiffiffiffiffi
Var Sð Þ

p for S<0

8><
>: : (6)

In this study, Zj j > 1.96 (equivalent to p < 0.05) was judged as significant.

2.3. Trend classification scheme

Based on our polynomial analysis method, the general scheme consisted of a four-phase
procedure that distinguished among the following five trend classes: cubic, quadratic,
significant linear change, insignificant linear change, and concealed (Figure 1). First, the
backward selection stepwise regression and the TS–MK procedure were operated inde-
pendently, and the TS slope with the Z-test for linear regression was also obtained. If both
a2 and a3 were 0, the high orders were eliminated and the fitting equation was simplified
to a linear regression. Second, the pixels that were neither of a high order nor significant in
the MK Z-test were classified into the greening or browning classes, the pixels that were
not of a high order but were significant in the MK Z-test were classified into the significant
greening or browning classes, and the pixels that were of a high order but were insignif-
icant in the MK Z-test were extracted as the concealed class. Third, the pixels that were
both of a high order and significant in the MK Z-test were separated into two classes. If a3
was non-zero, the pixels were classified into the cubic class; otherwise, pixels were classified
into the quadratic class. Finally, the five trend classes were further divided, whereby the
two high-order classes were defined as cubic or quadratic and, depending on the signs of
positive or negative attributes of a2 and a3, these trends were further classified as quadratic
down-up, quadratic up-down, cubic up-down-up, or cubic down-up-down trends.

2.4. Distinguishing trend types across regions and land-cover types

The three defined statistical levels included the global level, the national and regional
level, and the land-cover level. On the global level, the new results were mapped and
compared with calculations from the traditional TS–MK procedure. The regional level
encompassed several bordered countries, while the national level only described nations
with large areas. The eight nations selected for analysis included Russia, Canada, China,
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USA, Brazil, Australia, India, and Argentina. The supplementary regions that do not
include large-area countries were Europe, southeastern Asia, central Asia, western Asia,
northern Africa, eastern Africa, western Africa, central Africa, and southern Africa.

On the land-cover level, the land-cover types that showed a scattered distribution or
were present in relatively small quantities were merged, thus simplifying the 22 land-
cover types of the GlobCover 2009 map to 11 typical types (Table 1). The typical cover
types included several major global vegetation types such as broad-leaved forest,
needle-leaved forest, shrublands, grasslands, crops, and bare areas (Figure 2). This
combination allowed woody, herbaceous, and cultivated vegetation to be distinguished,
which may be associated with different change trends.

3. Results

3.1. Trends on a global scale

For the traditional TS–MK method, the ratio between pixels showing significant
greening and those showing significant browning was approximately 4.5:1, and

Figure 1. Flow chart of the trend classification scheme (TS, Theil–Sen; MK, Mann−Kendall).
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these trends accounted for 37.27% and 7.98% of the pixels, respectively. Meanwhile,
54.75% of the pixels showed insignificant changes, 34.85% showed apparent green-
ing, and 19.90% showed browning, thus yielding a ratio of about 1.7:1 (Figure 3).
These data suggest that more revegetation occurred within the insignificant trends
than significant variation. As more than half of the NDVI changes were insignificant,

Figure 2. Distribution of the typical land-cover types.

Table 1. Typical land-cover types merged from the land-cover types in the GlobCover
2009 map (Bicheron et al. 2011).
Typical cover type (abbreviated) Original land-cover types in the GlobCover 2009 map

Crop Irrigated croplands and rain-fed croplands
Crop veg Mosaic croplands/vegetation and mosaic vegetation/croplands
Broad evergreen Closed to open broad-leaved evergreen or semi-deciduous forest
Closed broad Closed broad-leaved deciduous forest
Open broad Open broad-leaved deciduous forest
Closed needle Closed needle-leaved evergreen forest
Open needle Open needle-leaved deciduous or evergreen forest
Shrub Closed to open shrubland
Grass Closed to open grassland
Sparse veg Sparse vegetation
Bare areas Bare areas

Closed (>40%), open (15–40%), closed to open (>15%).

Figure 3. Differences in the trend classification results between the traditional TS–MK (Theil–Sen
and Mann−Kendall) procedure and the proposed polynomial analysis by stepwise regression.
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more detailed change trends should be quantified. After separation of the cubic and
quadratic types, significant linear variation pixels were reduced to 26.13%, and 9.86%
of the pixels showed cubic trends and 9.10% of the pixels showed quadratic trends.
Cubic trends were detected for 8.13% of the pixels of up-down-up trends. In compar-
ison, 7.16% of the quadratic trends pixels showed a down-up type. From these
results, it can be inferred that many of the pixels classified as ‘significant change’
pixels by the TS–MK procedure became high-order types because the proportion of
significant greening pixels under our polynomial analysis decreased by more than 10–
23.36%. Moreover, the percentage of pixels with a concealed trend was 15.66%,
which is a considerable proportion of the total ‘insignificant change’ pixels. In
summary, high-order fitting was necessary to accurately characterize the data, as
34.62% of the pixels were reassigned to new variation types in the polynomial
analysis.

3.2. Trends on a continental scale

In general, many of the regions with a high density of human activity experienced
revegetation during the 31 years analysed in this study; in contrast, semi-arid areas with
sparse vegetation suffered from vegetation degradation (deterioration) (Figure 4). In
Europe, India, the northern Amazon basin, western Africa, and northern parts of North
America, significant vegetation greening trends were found. In comparison, significant
vegetation browning trends were detected mainly in sparse vegetation areas such as
western America, northwestern China, and southern Argentina. Furthermore, high-order-
type pixels appeared either in moist regions along middle latitudes or near the tundra at
high latitudes. This wide distribution pattern reveals that inter-annual non-linear vegeta-
tion variations can be detected over relatively large expanses rather than in aggregated
local areas.

The statistics for the continental scale also show that there were some differences in
the proportions of high-order-type pixels (Figure 5). Asia showed the highest proportion

Figure 4. Map of global vegetation dynamics for 1982–2012. Data were obtained through poly-
nomial analyses and statistics on a continental scale; the sample sites were selected artificially to
illustrate the forms of different trend types. Asia includes Russia in this figure.
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of cubic-trending pixels on a continental scale, with values as high as 11.73%; mean-
while, the percentage was the lowest in Oceania at 5.75%. More than 19% of the pixels
in both Oceania and North America showed concealed trends, while the percentage was
9.94% for Africa. Moreover, the proportion of greening pixels was several times larger
than the proportion of browning pixels on the continents, and the percentage of
significant browning pixels was less than 5%. Therefore, these data suggest that even
with extensive human activity, the global NDVI has increased largely because of the
increasing trends in cultivated areas.

3.3. Trends on national and regional scales

Among the eight countries with large areas, the highest percentage of significant
greening pixels was found in India at 42.78%, whereas the second highest percentage
was 33.28% in Brazil. The percentage of browning pixels in India was 8.43%, which was
slightly above the 7.93% observed in Australia; the highest percentage was 24.20% in
Argentina. In Canada and USA, there were notable concealed trends that encompassed
more than 19% of the pixels, which indicates that cubic or quadratic trends existed
whereas the variation had been offset in the overall time frame; in India, only 8.86% of
the pixels showed concealed trends. These values could represent differences in the
vegetation dynamics observed among the eight analysed countries.

In addition to the eight-country analysis, other territories on the continents were
divided into nine regions. In southeastern Asia, the percentage of browning pixels was
as high as 19.37%, but it was only 4.05% in western Africa. The similarity of the
vegetation variations in western Asia and northern Africa can be explained by the
homogeneous land-cover types. Southern Africa had the highest percentage of greening
pixels (44.54%); the percentage in central Asia was also high at 42.80%. These data
suggest that linear fitting models are particularly ineffective for some regions of Africa,
where concealed trends accounted for a small but substantial portion of the data.
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Figure 5. Proportions of different vegetation variation types on national and regional scales.
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3.4. Differences in trend types with respect to land-cover types

As vegetation variations are diverse across the different countries and regions, land-
cover types should be separated and analysed to determine the contribution of land-
cover types to these variations. As expected, the results from our analyses showed
apparent differences in the trends among the various land-cover types (Figure 6). The
new fitting procedure was most effective for the sparse veg and open needle land-cover
types, as the high-order pixels contributed to more than 40% of the total, and cubic-
trending pixels contributed 12.29% and 12.83%, respectively. Moreover, significant
greening in the crop veg and crop land-cover types indicates that cultivated land
experienced considerable productivity increases over the 30 year period. More than
20% of the pixels for the closed needle and closed broad land-cover types showed
concealed trends. This means that non-linear trend analysis is certainly needed for this
land-cover type to characterize the trends accurately, as latent trends would be lost
using the traditional procedure. Moreover, the differences between broad evergreen and
closed broad land-cover types were significant. This phenomenon may be attributed to
differences in the local climates, which are the basic driving force of vegetation
dynamics. Generally, the vegetation dynamics for most of the land-cover types were
effectively quantified with the new procedure. However, some undetermined variations
were still present, including a percentage accounting for more than 45% of ‘insignificant
change’ pixels in the shrub and grass land-cover types.

4. Discussion

4.1. Sensitivity of the fitting curves

To observe the ideal fitting curves for each trend type, random sample sites were
selected for further evaluation with the polynomial analysis procedure (Figure 7). At
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Figure 6. Proportions of vegetation variation types for different land-cover types.

INTERNATIONAL JOURNAL OF REMOTE SENSING 1577

D
ow

nl
oa

de
d 

by
 [

L
ib

ra
ry

 S
er

vi
ce

s 
C

ity
 U

ni
ve

rs
ity

 L
on

do
n]

 a
t 0

0:
07

 3
0 

M
ar

ch
 2

01
6 



sites 1 and 2, significant greening or browning trends were obvious and the fit was
linear. At sites 3 and 4, an almost stochastic allocation appeared with an ambiguous
distribution. At sites 5 and 6, quadratic trends with both down-up and up-down patterns
were better fits than linear trends. Therefore, if the linear fitting method had been
adopted, rapid vegetation variations would have been underestimated and trends
would have appeared similar to those at sites 1 and 2. Likewise, at sites 7 and 8, cubic
trends with up-down-up and down-up-down patterns were observed; these consisted of
two points of inflection for each curve. These trends would have been obscured had OLS
linear regression been used, but the complex variations were notable with the high-
order regression analysis.

The most persuasive samples were at sites 9 and 10, where the concealed trends
would not have passed the significance test in the TS–MK linear regression. In fact, the
fast browning during the 1980s at site 9 and the fast greening after 2008 at site 10 were
remarkable and should not be neglected. Nevertheless, some high-order trends still
existed that could not be fitted by the high-order analysis, such as those at sites 15 and
16. In a sensitivity analysis, we found that when a biquadratic trend was added, 1.92%,
3.64%, and 5.74% of pixels classified as showing quadratic, cubic, and ‘insignificant
change’ trends, respectively, were reclassified as showing biquadratic trends. These
reassignment quantities are not considered to represent a large amount because
when a cubic trend was added to a hypothetical quadratic classification, 19.90% of
the pixels were reassigned. We did not attempt to quantify these higher-order curves as
too short an interval was used to achieve a quantitative analysis that would have
meaningful ecological implications.

Figure 7. Fitting curves for sample sites with different vegetation variation types (NDVI: normalized
difference vegetation index). Site 1: – open needle-leaved deciduous or evergreen forest; site 2 –irrigated
croplands; site 3 – bare areas; site 4 – closed to open grassland; site 5, site 7, site 8 – rain-fed croplands;
site 6 – open broad-leaved deciduous forest; site 9 – closed broad-leaved deciduous forest; site 10, site 11
– sparse vegetation; site 12 – mosaic croplands/vegetation.
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4.2. Implications for the driving forces

The contribution of polynomial analysis to the detection of vegetation dynamics was
remarkable as the high-order fitting method not only raised the regression accuracy but
also endowed the curves with more ecological relevance in that vegetation degradation
(deterioration) and revegetation appeared at different times in the high-order curves.
Vegetation degradation mostly occurred in semi-arid regions (Figure 4). As shown by
Fensholt et al. (2012), there is a good correspondence between vegetation dynamics
and precipitation in most semi-arid areas; the notable exception here is that negative
vegetation trends appeared with positive precipitation trends in southern Argentina.
Besides rainfall, some national afforestation programmes likely had an important role in
the vegetation growth (Piao et al. 2015). However, global vegetation growth cannot be
merely the result of afforestation; in particular, several regions dominated by agriculture
had increasing NDVI trends, which was likely due to human influences rather than
climatic variables.

Other variation trends may be useful for forecasting the collapse of ecosystems,
especially where there is no confidence that the vegetation would recover after a
sharp period of deterioration. Urbanization with significant land-cover change was a
major force of vegetation deterioration, and the vegetation greenness was more likely
to decrease in the exurban and suburban areas than in the highly urban and urban
core areas (Zhou et al. 2014). Change in these areas was pronounced and often worse
than in cropland-occupied areas, i.e. 2.3 million km2 of forest was lost globally during
2000–2012 (Hansen et al. 2013). The losses of subtropical forests were largely con-
sistent with the pattern of browning trends shown in Figure 4. Although bush
encroachment and regeneration of secondary forest showed some revegetation
trends, the former ecosystem functions likely have been transformed (Fensholt et al.
2015). In other words, although some variation trends indicative of revegetation after
deterioration were observed, these were probably the result of regeneration via
different vegetation types after a collapse, rather than a reversion to the previous
state.

4.3. Limitations

A key point that should be highlighted is that the polynomial analysis procedure
described here is by no means the only such technique that can be applied in vegeta-
tion dynamic analyses; in fact, a diverse range of both regression methods and signifi-
cance tests can be used. The analysis presented in this article was applied to find the
most ‘acceptable’ trends rather than the most ‘accurate’ trends. While we obtained more
accurate fitting results with higher-order functions, additional evidence is required to
confirm the Earth observation trends. In this regard, we intend to highlight the advan-
tages of effective trend fitting for our polynomial analysis rather than claim that our
procedure outperforms earlier techniques in all respects.

The uncertainties derived from data sources and from trend-fitting methods should
be separated. Although some inter-comparisons among different NDVI products have
been performed (Scheftic et al. 2014; Tarnavsky, Garrigues, and Brown 2008), the
differences in inter-annual NDVI fitting trends among the various NDVI products are
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still unclear and would benefit from further attention. To better illustrate the ecological
implications of changes in vegetation, the results of our polynomial analysis emphasize
the utility of returning to high-order regressions based on the widely used TS–MK
procedure. However, as Fensholt et al. (2015) demonstrated that if different data-
processing methods are introduced, some inconsistent trends are to be expected.

The polynomial regression procedure described here does have a drawback in that
trends cannot be extended far into the future, as fitting results may depend on the
period studied in the analysis. Thus, this type of research can only document vegetation
growth in past records rather than forecast future vegetation variations. Importantly,
however, our method can detect some ecological processes over a 30 year timescale,
and vegetation deterioration or revegetation trends were observed successfully. The
algorithm applied in this study is reasonable because the study period was larger than
one or two vegetation deterioration or revegetation periods. In other words, because we
used a relatively long time series, there was a low amount of uncertainty in the model
results. In future research, applying ecological models to simulate future vegetation
dynamics would be helpful for understanding global change. Our studies on past
changes would therefore be informative for the development of such ecological models.

5. Conclusion

In this study, a polynomial trend-fitting method that uses stepwise regression was
proposed for mapping vegetation dynamics. Vegetation variations were classified into
cubic, quadratic, linear, and concealed trends. Based on the GIMMS3g NDVI data set,
31 years of global vegetation dynamics were mapped. We found that 34.62% of the
pixels could be assigned to new variation types under the polynomial analysis compared
with the traditional TS–MK procedure. Additionally, 15.66% of the pixels with concealed
trends were formerly defined as ‘insignificant change’ pixels. In particular, Asia had the
highest proportion of cubic-trending pixels on a continental scale, which amounted to
11.73% of the total, and Canada had the highest proportion of quadratic-trending pixels
(17.28%) among all of the large countries studied. Moreover, up to 30% of the cultivated
land cover showed significant greening in the NDVI data, thus indicating considerable
global agriculture production growth over the study period. The closed needle and closed
broad forest-cover types showed the highest proportion of concealed-trending pixels,
which amounted to 20%. Vegetation degradation and revegetation trends were identi-
fied successfully using this polynomial analysis, and such changes could have important
ecological implications. Overall, this polynomial analysis procedure was valuable for
identifying non-linear trends in vegetation dynamics. In future research, inter-compar-
isons of annual NDVI trends among different NDVI products are needed, and other non-
linear trend-fitting methods should be investigated to monitor global land changes
more effectively.
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