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ABSTRACT: The true monthly mean temperature is defined as the integral of the continuous temperature measurements in
a month (Td0), which is apparently different from the average (Td1) of the monthly averaged maximum (Tmax) and minimum
(Tmin) temperatures. Unfortunately, Td1 instead of Td0 has been widely used as the monthly mean temperature, not only as an
input parameter for various models in ecology, climatology and hydrology but also as an effective factor for climate change
studies. It has already been demonstrated in previous researches that the bias between Td0 and Td1 (Tbias = Td1 − Td0) cannot
be ignored; in some places, it could even be very large. Therefore, it is with great urgency that Td0 should replace Td1 to
eliminate the impact of the imperfect monthly mean temperature on related researches. However, Td0 cannot be obtained
directly due to the lack of the historical observations of land surface air temperature (Ta) at a higher temporal resolution,
e.g. hourly observations. In this study, a multiple linear regression (MLR)-based method is created to calculate Td0 with the
predictors of daylength, diurnal temperature range (DTR = Tmax − Tmin) and Td1. The MLR method performs very well, with
a mean R2 of 0.61 over global land and 0.76 in arid or semi-arid areas. It can be used to improve studies on regional climate
change and evaluations of climate model simulations.
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1. Introduction

Air temperature is a measurement of the atmospheric ther-
mal state, which is one of the most fundamental variables
widely used in ecology (O’Connor et al., 2007), clima-
tology (Jones and Moberg, 2003) and hydrology (Piani
et al., 2010) researches. The true monthly mean tempera-
ture (Brooks, 1921; Conner and Foster, 2008) is defined as
the integral of the continuous temperature measurements
in a month (Td0), which is apparently different from the
average of the monthly maximum and minimum temper-
atures (Td1) (Jones et al., 1999). There are three reasons
why Td0 cannot be replaced by Td1. First, the timing of
the occurrences of maximum and minimum temperatures
(Tmax and Tmin) can be widespread. Therefore, while Tmax
and Tmin have a clear physical meaning, their monthly
mean is difficult to interpret physically. Second, Td1 may
exaggerate the spatial heterogeneities compared with Td0,
because the impact of a variety of geographic (e.g. eleva-
tion) and transient (e.g. cloud cover) factors is greater on
Tmax and Tmin (and hence in Td1) than that on the hourly
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averaged mean temperature, Td0 (Zeng and Wang, 2012).
Finally, Td1 samples land surface air temperature (Ta) only
twice, leaving approximately two thirds of the day unmon-
itored and missing important information from weather
events (Wang, 2014). However, Td1 has been used as the
monthly mean temperature instead of Td0 in observations,
modelling and other applications for historical and tech-
nical reasons (Thompson and Solomon, 2002; Kalnay and
Cai, 2003; Schär et al., 2004).

The bias between Td1 and Td0 (Tbias) cannot be ignored.
Ye et al. (2002) drew the conclusion that Tbias had sea-
sonal and regional variations by comparing Td1 with Td0 in
China. Bonacci et al. (2013) compared Tbias at three main
meteorological Croatian stations in different climate con-
ditions and obtained the same conclusion. Wang (2014)
compared the multiyear averages of bias between Td1 and
Td0 during cold seasons and warm seasons and found that
the multi-year mean bias during cold seasons in arid or
semi-arid regions could be as large as 1 ∘C. Wang (2014)
made a quantitative assessment of the bias in the use of Td1
to estimate the trends of the mean Ta and found that the
use of Td1 had an important impact on the warming rate
on regional and local scales. Gough and He (2015) exam-
ined two methods to calculate the mean daily temperature,
one based on the average of daily minimum and maximum
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temperatures and the other based on the average of 24 h
at Churchill, Manitoba. Their results provide a cautionary
note for the use of the min/max method of determining the
mean temperatures, particularly in areas that are fog prone.

WMO (1983) suggested that it was advisable to use a
true mean or a corrected value to correspond to a mean
of 24 observations a day. Zeng and Wang (2012) argued
from scientific, technological and historical perspectives
that it is time to use the true monthly mean temperature
in observations and model outputs. However, observations
of Tmax and Tmin were the only available data sources that
were widely used for the mean air temperature over land in
the mid-19th century (Jones et al., 2007), while the hourly
Ta observations have been available globally since the 21st
century. Therefore, the existing length of the hourly time
series drastically limits the use of Td0 and hinders the
replacement of Td1 with Td0.

Taking this into consideration, we use the multiple linear
regression (MLR) method with predictors of daylength,
diurnal temperature range (DTR=Tmax − Tmin) and Td1
to fit the historical bias between Td1 and Td0 at approxi-
mately 6600 global-distributed weather stations from 2000
to 2013. Then, the historical Td0 can be obtained based
on the relationship between Tbias and Td1. The study is
organized as follows: the data and methodology are pre-
sented in Section 2. The analysis and discussion of the
results are presented in Section 3. The conclusions appear
in Section 4.

2. Materials and methods

2.1. Data

The hourly observations of Ta over global land for the
years 2000–2013 were downloaded from the NOAA
National Climatic Data Center (NCDC) Integrated Sur-
face Database (ISD) (Smith et al., 2011). The ISD dataset
comprises worldwide hourly surface weather observa-
tions from approximately 20 000 stations historically and
has undergone extensive automated quality control (Lott,
2004). The ISD data used in this article are available online
at ftp://ftp.ncdc.noaa.gov/pub/data/noaa/.

2.2. Predictor variable selections

Three predictor variables, daylength, DTR (DTR= Tmax −
Tmin) and Td1 (Td1 = (Tmax +Tmin)/2), are chosen for two
reasons below.

From the perspective of data length, the observations of
Tmax and Tmin can be traced to the mid-19th century (Jones
et al., 2007); these are the longest observed variables avail-
able to date. Td1 and DTR calculated from Tmax and Tmin
are then very appropriate for the consideration of the data
length. Daylength, the ratio of daytime to a 24-h period,
is a function of the month, day and latitude and it is not
restricted by data length. Therefore, daylength, DTR and
Td1 are the three suitable variables existed to model the
historical Tbias for historical and technological reasons.

From the perspective of physical mechanism, owing to
the longwave cooling effect, the Ta near surface reaches

its minimum during the early morning after sunrise. Then
Ta rises because of sensible heating from the surface and
reaches its maximum in the early afternoon. Generally,
Td1 samples Ta twice a day during the daytime, while Td0
includes air temperature information over both daytime
and nighttime. As the daylength gets longer, there are less
hourly Ta observations at night, most of which are lower
than Td1, causing a decrease in the bias between Td1 and
Td0. DTR represents the contrast of Ta between daytime
and nighttime. It responds to surface moisture and veg-
etation transpiration (Feddema et al., 2005; Zhou et al.,
2007), which affect to what extent energy received by the
surface is partitioned into latent and sensible heat fluxes. In
arid or semi-arid regions, more energy is partitioned into
sensible heat, heating the air above the surface and affect-
ing the shape of the diurnal cycle that results in a higher
DTR. Td1 is closely associated with the atmospheric down-
ward longwave radiation, which warms the air above the
surface during both day and night. Under clear sky con-
ditions, atmospheric downward longwave radiation can be
empirically calculated as a fourth-power function of the
surface air temperature (Wang and Dickinson, 2013).

2.3. Data reprocessing

The first step involved excluding temperature observations
that were flagged as erroneous by ISD quality control.
Next, we included hourly temperature observations that
passed the time consistency check recommended by the
WMO (Zahumenský and SHMI, 2004) to remove unreal-
istic jumps. The ISD data were then converted from coordi-
nated universal time (UTC) to local solar time. MLR-based
method can be used both on stations and grids and both the
results are good. We have tried the regression at both sta-
tion and 1∘ × 1∘ grid scale and found that the results are
a little better at station scale. However, in most scientific
researches such as temperature trend studies, grid data are
required. Therefore, the results at 1∘ × 1∘ grid scale were
reported in this article. It is easy to use current available
datasets, e.g. GHCN to derived T0.

The monthly averaged DTR was produced only if
hourly temperatures were available for more than 22 h
a day and at least 15 days a month. In this study, Tmax
and Tmin were selected from hourly Ta. Td1 was cal-
culated as the average of Tmax and Tmin. Td0 was the
integral of the monthly averaged 24-h temperatures.
DTR was calculated as the difference between Tmax
and Tmin. According to Herbert Glarner’s formula
(www.gandraxa.com/length_of_day.xml, accessed 13
May 2015), monthly daylength was computed from the
latitude and midpoint of each month (Reda and Andreas,
2004).

2.4. Multiple linear regression

The form of the regression equation can be expressed as
Equation (1):

Tbias = adaylength + bDTR + cTd1 (1)

where a, b, c are the regression coefficients (Figure
S1, Supporting Information) of MLR. Tbias can also
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be expressed as the difference between Td1 and Td0
(Equation (2)):

Tbias = Td1 − Td0 (2)

Synthesizing Equations (1) and (2), Td0 is a linear com-
bination of daylength, DTR and Td1. When the regres-
sion coefficients are known, the historical Td0 can be
calculated as:

Td0 = (1 − c) Td1 − adaylength − bDTR (3)

In each grid, the multicollinearity among the predictor
variables was evaluated by the variance inflation factor
(VIF) (Chatterjee and Price, 1977). Chatterjee and Price
(1977) suggested that if VIF was in excess of 10, the
regression results were unreliable. There were 0.59% grids
on land with a VIF> 10 excluded after this step. Then
MLR-based method was conducted on each grid. The
responding variable was Tbias, and the predictor variables
were daylength, DTR and Td1 with a full time series. All
the variables were normalized previously. Note that there is
no pattern to the residuals plotted against the fitted values,
and no heteroscedasticity can be observed.

2.5. Model evaluation

We evaluated the model in two steps. The first step
was to calculate the ratio between the R2 from ten-
fold cross-validation (Efron, 1983), which represented the
applicability of the regression equation, and the R2 from
the original MLR using all data groups. In the tenfold
cross-validation, the sample is divided into ten subsam-
ples. Each of the ten subsamples serves as a hold-out
group and the combined observations from the remaining
nine subsamples serve as the training group. The perfor-
mance of the ten prediction equations applied to the ten
hold-out samples is recorded and then averaged. Because
the hold-out sample was not involved in the selection of
the model parameters, the performance of this sample is a
more accurate estimate of the operating characteristics of
the model with new data (Kabacoff, 2011).

The second step was to compute the differences of
observed and fitted Tbias between cold seasons (November
to April in the Northern Hemisphere or May to October
in the Southern Hemisphere) and warm seasons (May to
October in the Northern Hemisphere or November to April
in the Southern Hemisphere). By comparing the spatial
patterns of the observed and predicted differences of Tbias
between warm and cold seasons, one can check whether
the model can accurately reflect the impact of DTR and Td1
on Tbias because daylength only depends on latitude. This
step illustrates the applicability of the method in climatic
study because daylength does not vary annually.

2.6. Contributions of the predictors

The relative weights method was computed to demonstrate
the contribution each predictor made to R2. This method
approximates the average increase in the R2 obtained
by adding a predictor variable across all possible sub-
models, considering both predictor’s direct effect and its

effect when combined with other predictors (Johnson and
LeBreton, 2004).

3. Results and discussion

3.1. Performance of the method (statistical analysis and
model evaluation)

Regressions in nearly all the grids on the land (95.03%)
passed the 𝛼 = 0.05 Student’s t-test (Figure S2). Figure 1
shows a scatterplot of the observed Tbias against the fitted
Tbias obtained by the MLR method in a grid located in
France. The MLR explains 92.3% of the Tbias from 2000
to 2013 with a mean square error (MSE) of 0.009. This
indicates that the method can simulate Tbias accurately at
the grid. The MSE and R2 of MLRs over all the grids
on land are shown in Figures 2 and 3, respectively. A
low MSE and a high R2 suggest a good regression result.
In Figure 2, 81.36% of the grids have an MSE <0.05.
In Figure 3, 63.36% of the grids have an R2

>0.5. The
MLR method performs very well, with an R2 median of
0.61 over global land and 0.76 in arid or semi-arid areas.
The grids distributed in mid-latitude regions show a good
result, while the performance of grids along the coast and
in polar regions is poor.

To illuminate the reason for the differences of the sim-
ulated results in different regions, we chose two stations
for further analysis. Figures 4 and 5 present the time series
of Tbias, daylength, DTR and Td1 at two stations. One is
located in an arid area (Figure 4) and the other is located in
a coastal area (Figure 5). In Figure 4, Tbias has an obvious
seasonal variation and a relatively large fluctuation in arid
regions, such as Sardy Field, USA, daylength, DTR and
Td1, all have similar seasonal variations with Tbias. There
is little seasonal variation of Tbias in coastal areas, such
as Bochambeau, French Guiana, as shown in Figure 5. In
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Figure 1. Scatterplot of the observed and fitted monthly Tbias (Tbias = Td1
− Td0) of a grid (4.5∘W, 45.5∘N) in France. Td0 is the integral of the
continuous temperature measurements in 1 month, and Td1 is the average
of the maximum (Tmax) and minimum (Tmin) temperatures. The dashed

line is the 1 : 1 relationship.
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Figure 2. MSE of MLR of Tbias = Td1 − Td0. Td0 is the integral of the continuous temperature measurements in 1 month, and Td1 is the average of
the maximum (Tmax) and minimum (Tmin) temperatures. A low MSE indicates a good regression result. Of all of the grids, 81.36% have an MSE

<0.05.
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Figure 3. R-square of the MLR of Tbias = Td1 − Td0. Td0 is the integral of the continuous temperature measurements in 1 month, and Td1 is the
average of the maximum (Tmax) and minimum (Tmin) temperatures. Values closer to 1 indicate a good regression result. Of all of the grids, 63.36%
over land have an R2 value >0.5. The MLR method performs very well with a median R2 value of 0.61 over global land and 0.76 in arid or semi-arid

areas.

addition, the amplitude of the variation is small. Thus, it
is difficult to depict Tbias along the coast. Stations in polar
regions have similar temporal variations of Tbias along the
coast. This is because in coastal regions, changes of Ta are
largely determined by advection rather than local impacts
(e.g. land–atmosphere interaction). In polar regions, the
main energy comes from longwave radiation, and there is
no obvious seasonal variation. Furthermore, cold front that
occurs randomly significantly affects the DTR over polar
regions.

3.2. Contributions of the predictor variables

The relative weights (%) of the predictor variables
(Figure 6) are used here to evaluate the contribution each
predictor makes to the R2 quantitatively, considering both
its direct effect (e.g. its correlation with the criterion)
and its effect when combined with the other variables in
the regression equation (Johnson and LeBreton, 2004).
The sum of the relative weights of the three predictor
variables, daylength (Figure 6(a)), DTR (Figure 6(b)) and
Td1 (Figure 6(c)), is 1. A larger value represents more

contributions a specific predictor makes to the R2. In most
of the grids on land, daylength contributes the most to
the explanation of the Tbias variation. The mean relative
weights of daylength, Td1 and DTR are 54.2, 25.6 and
20.2%, respectively.

Although DTR explained the Tbias least, it has an impor-
tant effect on the spatial distribution of Tbias. Figure 7
shows the differences of multiyear averaged Tbias between
cold seasons (November to April in the Northern Hemi-
sphere or May to October in the Southern Hemisphere)
and warm seasons (May to October in the Northern Hemi-
sphere or November to April in the Southern Hemisphere).
Figure 7(a) shows the observed Tbias, while Figure 7(b)
shows the fitted Tbias using the MLR model. Both demon-
strate that Tbias is higher in cold seasons than in warm
seasons around the globe, especially in arid or semi-arid
regions, which have the same pattern with Wang (2014).
This pattern may be related to the contribution of DTR for
the reasons that the values of daylength and Td1 increase
with latitude, while the distribution of DTR (Figure S3) is
in good agreement with the distribution of the differences
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Figure 4. Time series of Tbias = Td1 − Td0, daylength, DTR and Td1 [the mean temperatures of the daily maximum (Tmax) and minimum (Tmin)
temperatures] at Sardy Field, USA, which is located in an arid region. Tbias = Td1 − Td0 has an obvious seasonal variation and a relatively large
range of fluctuation; Td0 is the integral of the continuous temperature measurements in 1 month. Daylength, DTR and Td1 all have similar seasonal

variations with Tbias.
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Figure 5. Time series of Tbias = Td1 − Td0, daylength, DTR (DTR= Tmax − Tmin) and Td1 [the mean temperatures of the daily maximum (Tmax) and
minimum (Tmin) temperatures] at the Bochambeau, French Guiana station (52.4∘W, 4.8∘N) along the coast. Td0 is the integral of the continuous
temperature measurements in 1 month. There is little seasonal variation of Tbias. In addition, the amplitude of variation is small. It is difficult to

depict the Tbias along the coast with the predictor variables of daylength, DTR and Td1.
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Figure 6. Relative weights (%) of predictor variables of Tbias = Td1 − Td0: (a) daylength, (b) DTR (DTR= Tmax − Tmin) and (c) Td1 [the mean
temperatures of the daily maximum (Tmax) and minimum (Tmin) temperatures]. A larger value represents a larger contribution that a specific predictor

makes to the R2. The mean relative weights of daylength, Td1 and DTR are 54.2, 25.6 and 20.2%, respectively.

of Tbias, high in arid or semi-arid regions and low in humid
regions.

Compared with observed Tbias (Figure 7(a)), the fitted
Tbias (Figure 7(b)) shows almost the same distribution,
again verifying the reliability of our methods.

3.3. Predictability of the method

How well will this regression model perform in the predic-
tion of the historical Tbias? The tenfold-validation method
(Efron, 1983) was used to evaluate the applicability of the
regression equation at each site. The ratio between the R2

from tenfold cross-validation and the R2 from the original
MLR (Figure 8) is close to 1 at most of the land sites,

except for those along the coast and in polar regions. This
indicates that the regression equation is applicable and that
this method can be used to predict the historical Tbias over
land globally, except for coastal and polar areas.

4. Conclusion

The mean land surface air temperature (Td1) calculated
from observations of Tmax and Tmin has been widely used
in climatic change studies. However, studies have shown
that Td1 may have significant biases in depicting clima-
tology and long-term trends of the mean air temperature
over land in particular for regional studies. This is because
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Figure 7. Differences of multiyear averaged Tbias = Td1 − Td0 (unit: ∘C) between cold seasons (November to April in the Northern Hemisphere
or May to October in the Southern Hemisphere) and warm seasons (May to October in the Northern Hemisphere or November to April in the
Southern Hemisphere). Td0 is the integral of the continuous temperature measurements in 1 month, and Td1 is the average of the maximum (Tmax)
and minimum (Tmin) temperatures. (a) Observed Tbias and (b) fitted Tbias using a MLR model. Both demonstrate that Tbias is higher in cold seasons
than warm seasons around the globe, especially in arid or semi-arid regions. Compared with observed Tbias (a), the fitted Tbias (b) shows almost the

same distribution, which again verified the reliability of our methods.
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Figure 8. The ratio between the R2 from tenfold cross-validation and the R2 from the original MLR of Tbias = Td1 − Td0 using all data groups. A ratio
closer to 1 indicates the high applicability of the regression equation.

the diurnal cycle of Ta depends on surface conditions, i.e.
surface wetness and vegetation coverage.

In this study, we propose an MLR-based method with
three predictor variables of daylength, DTR and Td1 to
model the bias of Td1 (Tbias =Td1 − Td0, where Td0 is

the mean Ta calculated from 24 observations of hourly
temperature). The MLR method performs very well, with
a mean R2 of 0.61 over global land and 0.76 in arid or
semi-arid areas. The mean relative weights of daylength,
Td1 and DTR are 54.2, 25.6 and 20.2%, respectively.

© 2015 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 36: 2103–2110 (2016)
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Although ranking last, DTR has an important effect on the
spatial distribution of Tbias.

The limitation of this method is that a uniform global
regression equation cannot be obtained directly. However,
this method has the potential to change the situation of
the lack of historical Td0 and facilitates the transformation
from Td1 to Td0.
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Figure S1. Regression coefficients of multiple linear
regression (MLR) of Tbias = Td1 − Td0. (a) Daylength, (b)
daily temperature range (DTR = Tmax − Tmin) and (c) Td1
[mean temperatures of the daily maximum (Tmax) and min-
imum (Tmin) temperatures].
Figure S2. The cyan dots indicate that the regressions pass
the 𝛼 = 0.05 Student’s t-test, and the red pluses indicate
that the regressions do not pass the confidence test.
Figure S3. Annual mean diurnal temperature range (DTR
= Tmax − Tmin) in units of ∘C from 2000 to 2013. The
value of DTR is high in arid or semi-arid region, and low
in humid regions, which shows a good agreement with
the distribution of Tbias = Td1 − Td0 differences between
cold seasons and warm seasons. Td0 is the integral of the
continuous temperature measurements in a month, Td1 is
the average of the maximum (Tmax) and minimum (Tmin)
temperatures.
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