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Effects of Evapotranspiration on Regional Land
Surface Temperature in an Arid Oasis Based

on Thermal Remote Sensing
Yujiu Xiong, Shaohua Zhao, Jing Yin, Cheng Li, and Guoyu Qiu

Abstract— Evapotranspiration (ET) is crucial to arid and
semiarid environments because it substantially affects the energy
and water cycles. Based on the estimation of continuous ET
from barren or sparsely vegetated areas, this letter inves-
tigated how ET affects the regional land surface tempera-
ture (LST) in the Shiyanghe river catchment area, a typical
inland river catchment in Northwest China. ET was estimated
during 2008–2011 using a three-temperature model and
MODIS data sets. LST was retrieved from the MODIS prod-
uct (MOD11A2). Results taken from transects that began in the
oasis area and ended in the desert reveal that ET decreased, with
the daily average ET in the oasis being approximately 1.4 mm
larger than that in the desert. By contrast, the LST in the oasis
was 8 K lower than that in the desert. Statistical results suggested
that ET and LST showed a negative relationship (R2 = 0.83).
Further analysis showed that the correlation was strongly depen-
dent on the water availability in barren or sparsely vegetated
areas. It is concluded that in water-limited barren or sparsely
vegetated regions, the negative correlation between ET and LST
may provide alternative information for water management, such
as identifying groundwater recharge in arid regions.

Index Terms— Evapotranspiration (ET), land surface
temperature (LST), Moderate Resolution Imaging
Spectroradiometer (MODIS), Shiyanghe river catchment,
thermal remote sensing, three-temperature model (3T model).

I. INTRODUCTION

EVAPOTRANSPIRATION (ET) includes evaporation
from the soil and water surface and vegetation transpira-

tion. ET is significant because it is a key hydrological variable
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that links the water, energy, and carbon cycles. Therefore,
information on the spatial distribution of ET is required in
water and energy-related applications.

Remote sensing imagery is becoming an unprecedented
source of land surface data that is logistically and eco-
nomically impossible to be obtained through ground-based
observation, and is useful for retrieving surface variables [e.g.,
land surface temperature (LST)] [1]. These advantages make
remote sensing the most feasible technology for monitoring
spatiotemporal distributions of ET from regional to global
scales [2]–[4].

Although substantial progresses have been made in quanti-
fying spatiotemporal ET [2]–[6], it is still challenging to accu-
rately estimate ET from remote sensing data as land surface is
heterogeneous and the ET process involves many controlling
factors (e.g., plant biophysics and soil properties) [7]–[9].
In water-limited arid areas, it is even more difficult to estimate
ET, especially in barren or sparsely vegetated regions. For
example, ET in barren regions was excluded from model
calculations in MOD16 [3] and AVHRR ET [4]. However,
the annual ET in these barren areas can be relatively high,
e.g., exceeding 75 mm/y and accounting for 92%–126% of
precipitation [10]. Therefore, lack of accurate information on
spatiotemporal ET in barren or sparsely vegetated regions may
limit applications of ET products such as MOD16.

In addition, in arid northern China, evaporative fraction, the
ratio between latent heat flux and available energy, is reported
to be approximately 0.9 in a dense maize land in the growing
season, whereas it is 0.3 in a desert steppe [11]. Transpiration
of vegetation, therefore, could lead to an evident cooling effect
during the growing season [12], [13]. In other arid areas,
such as the southern Great Plains [14], California [15], and
southern Israel [16], ET increased by irrigation can conse-
quently lead to an LST decrease. However, increased ET may
increase soil moisture depletion in water-limited environments
leading to the observed increase in LST [17], i.e., LST can be
affected by ET in an opposing way. ET in forest was reported
to have a warming effect on dry regions, because the ET
cooling effect can be constrained due to water availability
whereas with lower albedo, forests absorb more shortwave
radiation [18]. Thus, the effects of ET on LST remain unclear
in arid regions.

The objectives of this letter include: 1) to estimate spa-
tiotemporal ET in barren or sparsely vegetated areas and 2) to
investigate the quantitative relationship between LST and ET
in an arid oasis.
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Fig. 1. Location of the study area and land use and land cover map based
on MODIS land use product (MCD12Q1) with the International Geosphere-
Biosphere Programme classification scheme. Note: forests include evergreen
needleleaf/broadleaf forests, deciduous needleleaf/broadleaf forests, mixed
forests, and open and closed shrublands. Grasslands include grasslands,
savannas, and woody savannas. The elevation statistics is based on the Shuttle
Radar Topography Mission 90 m DEM.

II. DATA AND METHODOLOGY

A. Description of the Study Area

The study area in the Shiyanghe river catchment covers
about 40 579 km2, and is located at approximately 36° 29′
−39° 27′ N and 101° 41′ −104° 16′ E on the northern slope
of Qilian Mountain and the eastern part of the Hexi Corridor
in Gansu province, Northwest China (Fig. 1). The Shiyanghe
River is an inland river that originates in the southern part of
the Qilian Mountain and ends at the Minqin Oasis. Most of
the area is flat (elevation 1300–2000 m) except for the Qilian
Mountain highland area in the south (elevation 2000–5500 m).
The climate changes from south to north: the south is a
cold semiarid to semihumid area with an annual precipitation
of 300–600 mm and pan evaporation of 700–1200 mm; the
middle is the Hexi Corridor, a cool and arid area with an
annual precipitation of 150–300 mm and pan evaporation of
1200–2000 mm; the north land, surrounded by the
Badain Jaran and Tengger deserts, is temperate arid with an
annual precipitation of less than 150 mm and pan evaporation
of more than 2000 mm [19]. Due to limited water resources,
the area has suffered a serious loss of natural vegetation,
gradual soil salinization, and desertification [19], [20].

B. Data Preparation

The data sets used for this letter include an 8-day MODIS
LST/emissivity data (MOD11A2) at 1 km spatial resolution
and an ET product at 1 km spatial resolution and 16-day
temporal resolution estimated using a three-temperature model
(3T model) and MODIS data. All of the MOD11A2 (version 5)
were recorded between 2008 and 2011 and provided free
of cost by NASA. The 3T model, based on energy balance
without requiring aerodynamic resistance, has been tested to
be simple and accurate [10], [21]–[26]

Es = 1

L

(
Rn,s − Gs − (Rn,sr − Gsr)

Ts − Ta

Tsr − Ta

)

soil evaporation (1)

Ec = 1

L

(
Rn,c − Rn,cr

Tc − Ta

Tcr − Ta

)
vegetation transpiration

(2)

ET = Es + Ec evapotranspiration (3)

where ET is evapotranspiration, and Es and Ec are the soil and
vegetation components of ET, respectively, both in millimeters;
L is the latent heat of vaporization; the subscripts “s,” “c,” “a,”
“sr,” and “cr” represent soil, canopy, atmosphere, reference
soil, and reference canopy, respectively; Rn is net radiation
and G is soil heat flux, both in W/m2; T is temperature in K.

In this letter, soil surface temperature (Ts) and canopy
temperature (Tc) were calculated using LST (MOD11A2) and
the normalized difference vegetation index (MOD13A2) by
assuming that LST is a weighted summation of Ts and Tc [27].
Ta , the mean daily value for every 16-day period according to
the composition dates of the MODIS product (MOD13A2) was
calculated from the daily air temperature of Minqin national
meteorological station. Tsr and Tcr for each period were the
maximum value for the Ts and Tc, respectively [25]–[26],
obtained from the decomposed MOD11A2 over the study area.
Rn and G were retrieved from MODIS products (version 5),
and detailed descriptions of the model parameterization can be
found in [24]–[26]. The instantaneous ET estimated from the
3T model was extrapolated to daily value (a mean value for a
16-day period) based on a sinusoidal function for cloudless
days (4) according to [28]; details about the equation are
available in [25]. Then, the daily ETs were scaled to 16-day
(or yearly) values by considering a cloud coefficient [29]. The
cloud coefficient was equal to 0.65 and was calculated using
the meteorological data: mean annual cloud cover and the
number of sunny days for the period from 1981 to 2010

ETD = ET
2N

π sin(π · t/N)
(4)

where ET and ETD are the instantaneous and daily (here
a mean value for a 16-day period) ET rates, respectively.
N is the duration of ET during the daytime and t is the time
between sunrise and the data collection time of the passing
satellite sensor.

Four transects (lines D1, D2, D3, and D4 in Fig. 1),
beginning at the oasis and ending in the desert, were selected
so that the changes in LST and ET could be measured.
Lines D1, D2, and D3 were almost perpendicular to the main
stream, whereas line D4 was an extension of the main stream.

C. Method to Evaluate ET Estimation

ET estimation was compared with flux tower ET and water
balance ET. Flux tower ET was calculated from a Bowen ratio
system installed at a sparsely vegetated desert around Minqin
oasis (102° 55′ 5′′ E, 38° 37′ 48′′ N), operating from
May 2010 to December 2011 [10]. Observational items include
soil heat flux at 2 and 5 cm, respectively, below the ground
surface, air temperature and relative humidity over ground
at two different heights (i.e., 1.5 and 2.0 m), and other
routine meteorological factors (e.g., net radiation) over ground
at a 2 m height. All data were collected by a datalogger
(model DT500 series 3, Datataker, Australia) at every 5 s.
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Fig. 2. Comparison of the estimated and observed ET. (a) Yearly scale.
(b) Daily scale. MAE and MAPE represent mean absolute error and mean
absolute percent error, respectively.

The daily ET was the sum of instantaneous values (i.e., mean
value of each 10 min) through the Bowen ratio energy balance
method. Water balance ET from 2008 to 2011 was used to
assess the modeled ET. Generally, the water balance equation
for a river basin at a yearly scale can be written as [30]

ETWBE = P − R− � S (5)

where P , R, �S, and ETWBE are precipitation, runoff,
water storage change, and ET in millimeters, respectively.
An endorheic basin has no runoff at basin outlet (R = 0).
In the study basin, irrigation (I ) consumes approximately 86%
of the total water use [20], thus it was taken into account.
When water storage change is assumed to be zero [31], (5) can
be simplified to (6). All of the precipitation (calculated using
Thiessen polygon method) and irrigation data were provided
by the water resources bulletin of Gansu province

ETWBE = P + I. (6)

The mean absolute error (MAE) and mean absolute percent
error (MAPE) were used to assess the difference between the
model estimation and observation [25].

III. RESULTS AND DISCUSSION

A. Assessment of the Estimated ET

Fig. 2 shows a comparison between the estimated ET and
water balance ET as well as the Bowen ratio flux tower ET
as follows.

1) At yearly scale, the differences between the estimated
ET and Bowen ratio flux tower ET are small, with
margins of 9 and 36 mm for 2010 and 2011, respectively.

2) At the basin scale, the MAE (MAPE) between the
estimated ET and water balance ET is 36 mm/y (12.5%)
over the four years, with values of 25, 53, 51, and
16 mm/y in 2008–2011, respectively.

3) At daily scale, the MAE and MAPE are 0.16 mm d−1

and 22.77%, respectively, for the sparsely vegetated
sandy desert. The errors indicate that biases exist in the
ET estimations. The bias may be caused by uncertain-
ties in observations and model parameterizations [26].
For instance, ETW B E is likely underestimated, because

Fig. 3. Annual ET and LST maps of Shiyanghe river catchment. Top: maps
are the annual ET for 2008–2011, respectively. Bottom: maps are the annual
LSTs.

the precipitation records do not include snowfall and
illegal groundwater mining used for irrigation cannot
be monitored and quantified. Additionally, the cloud
coefficient may cause uncertainty when scaling daily
ET to periodical values (here 16-day). The coefficient
should be calculated using the observed cloud cover
and the number of sunny days for each 16-day inter-
val [29]. However, in this letter the cloud coefficient is a
mean annual value owing to the lack of meteorological
observations. This assumption may lead to estimation
uncertainty. For example, if the cloud coefficient has an
uncertainty of ±10% and increases to 0.715 in 2008,
the ET will increase by 32 mm. Nevertheless, the
comparison indicated that the estimated ET was close
to the observed ET.

B. Spatial Characteristics of ET and LST

Fig. 3 shows that ET decreases gradually from south to
north, whereas LST increases. For example, ET declines
along a gradient starting in the southern mountain areas
(>400 mm/y) with abundant vegetation coverage, and mov-
ing down into the sparsely vegetated regions in the north
(<100 mm/y). This change in trend is in good accordance with
the regional climate and vegetation distribution. The southern
part of the study area belongs to semiarid climate while the
northern part belongs to arid, and thus the precipitation in the
north is lower than that in the south, leading to a higher ET
in the south.

C. ET Effects on Land Surface Temperature

The effects of ET on LST were investigated in two ways
using the data collected from transects that began inside the
oasis and moved toward the desert area, and from different
land cover types (desert and oasis).

Fig. 4 shows that ET declines and LST increases from inside
the oasis toward the desert. LST increases quickly within the
first 10 km (from about 304–312 K) and then shows little
change thereafter. According to the 90 m digital elevation
model (DEM) [32], the topographic gradient of each transect
is very small, with a maximum standard deviation of 43 m
(table in Fig. 1). The statistics indicate that the topographic
gradient may have little impact on the LST change. However,
ET decreases within the first 10 km, located in the oasis with
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Fig. 4. Value of LST and ET versus distance (km) inside oasis toward desert
in the growing season. Note: Di represents the observational line i (i = 1, 2,
3, 4), see Fig. 1 for details. LST is the mean value of MOD11A2 between
DOY 161 and 289 in each year, and ET is the mean value of ET in the
corresponding period.

Fig. 5. Scatterplots showing the relation between LST and ET of the transects
based on Fig. 4, for lines (a) D1, (b) D2, (c) D3, and (d) D4.

good water conditions and vegetation cover, from approxi-
mately 2.2 to 0.8 mm/d, and then changes little thereafter
(Fig. 4). In the desert areas, the LST is about 8–12 K larger
than that in the oasis area. A daily ET of 1.0–2.0 mm/d could
reduce the LST by 8–12 K. This is because in the vegetated
area ET consumes approximately 39% of net radiation on
average, whereas in barren or sparsely vegetated areas it only
consumes a maximum of 30% of net radiation. Statistical
results further suggested that although LST was obtained
at the moment of MODIS overpass (approximately around
12:00 local time), ET and LST are negatively correlated, with
determination coefficients (R2) (slope in mm/d/K) of 0.94
(−0.143), 0.84 (−0.129), 0.73 (−0.117), and 0.81 (−0.145),
respectively, for D1, D2, D3, and D4 (Fig. 5). These results
indicate that the ET from oasis has a statistically significant
cooling effect in the inland river catchment area.

Fig. 6 shows the relation between mean annual ET and
LST of different land use types. The barren or sparsely
vegetated area accounts for 50.49% of the study region, and the

Fig. 6. Mean annual ET (a) and LST (b) of different land cover/use types .

remaining includes grassland, forest, and cropland with ratios
of 34.08%, 9.01%, and 5.12%, respectively. Forests correspond
to the highest ET, undulating around 500 mm for the four
years. The ET of grassland (around 420 mm) is higher than
that of cropland (around 380 mm). Although having the largest
area, barren or sparsely vegetated lands have the lowest ET,
with a value of around 200 mm. Meanwhile, LST of desert is
the highest. Statistics based on Fig. 6 show that at yearly scale,
the linear relationship between ET and LST is significant, with
R2 (slope in mm/y/K) of 0.96 (−27.805). The results shown
in Figs. 5 and 6 indicate that ET and LST in the arid region
generally showed a negative relationship.

In this letter, ET estimation is dependent on LST, and a
correlation between the LST and ET values may be implicit.
However, statistics using MOD16 (an ET product estimated
based on the Penman–Monteith method without using LST)
and MOD11A2 in vegetated areas of the four transects indicate
that LST and ET also showed a negative relation, with a
mean R2 (slope in mm/d/K) of 0.70 (−0.09). The results
indicate that the relation between LST and ET obtained in
this letter is reliable.

However, the relation between ET and LST may be more
complicated than the results shown here, especially in arid
regions characterized as high moisture constraint and low,
nonuniform vegetation cover. In this letter, the negative cor-
relation between ET and LST was strongly dependent on
data obtained from barren or sparsely vegetated area, because
most points from these regions distributed closely along the
regression line, especially when LST was larger than 308 K or
when ET values were lower than 1.2 mm/d (black pentagons
in Fig. 5). For the other land use type, the negative correlation
was poor, and a positive correlation was observed between
limited ET and LST values of forest [green triangles in
Fig. 5(c)], with R2 (slope in mm/d/K) of 0.92 (0.50). This
may be a result of the two major factors (i.e., energy and
water) that control ET. Soil water availability in oasis is better
than in desert; therefore, ET from vegetated areas in the oasis
is strongly controlled by both radiation and soil water, and
ET values for a given land type may show certain differences
due to variation in the soil water availability. In contrast, ET
from barren or sparsely vegetated areas is controlled only by
soil water, and water limitation leads to a significant negative
relationship between ET and LST.
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IV. CONCLUSION

Based on the estimation of spatiotemporal ET in barren or
sparsely vegetated areas, the quantitative relationships between
ET and regional LST was investigated in a typical arid inland-
river basin in Northwest China. Statistical results suggest that
ET decreases along transects beginning inside the oasis and
moving toward the desert area, with the average daily ET
in the oasis being approximately 1.4 mm larger than that in
the desert area. In contrast, LST in the oasis is 8 K lower
than that in the desert. Further analysis showed a negative
relationship between ET and LST, with a mean determination
coefficient (R2) of 0.83, and the significant correlation was
strongly dependent on the water availability in barren or
sparsely vegetated areas. The relation between ET and LST
may provide alternative information for water management,
such as identifying groundwater recharge in arid regions.

The estimated ET will be thoroughly tested in combination
with more flux tower data, and the feedback mechanism
behind ET and temperature in arid region warrant further
study.
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